Inversion of short lived pollutants in the global atmosphere using remote sensing data

Johann Rasmus Nüß
Nikos Daskalakis, Mihalis Vrekoussis

LAMOS group, IUP, University Bremen
Outline

1. Objective
2. Glyoxal
3. Inverse Modeling
 - 4DVAR versus 3DVAR
4. TM5
5. Zooming
6. Summary & Outlook
Objective

- Better estimate of global glyoxal fluxes from various local sources
- For the first time using Tropomi satellite data in TM5
Inversion of short-lived pollutants in the global atmosphere using remote sensing data

Johann Rasmus Nüß, Nikos Daskalakis, Mihalis Vrekoussis

Objective

- Better estimate of global glyoxal fluxes from various local sources
- For the first time using Tropomi satellite data in TM5

→ Short lifetime requires high resolution (model and observations)
Objective

- Better estimate of global glyoxal fluxes from various local sources
- For the first time using Tropomi satellite data in TM5
 - Short lifetime requires high resolution (model and observations)
 - 4DVAR approach versus Data Assimilation
Objective

- Better estimate of global glyoxal fluxes from various local sources
- For the first time using Tropomi satellite data in TM5
 \(\rightarrow\) Short lifetime requires high resolution (model and observations)
 \(\rightarrow\) 4DVAR approach versus Data Assimilation
 \(\rightarrow\) Multiple species influence one another
Glyoxal

- Smallest dicarbonyl (CHOCHO)
- Formed by oxidation of hydrocarbons
- Mostly ($\approx 70\%^1$) natural origin
- Sinks:
 - photolysis ($63\%^1$)
 - OH ($23\%^1$)
 - wet/dry deposition ($8\%/6\%^1$)
 - Aerosol formation (??)
- Life time: ≈ 1.3 h in the sun2, global mean 2.5 h to 3 h1,3

1Myriokefalitakis et al. 2008, ACP
2Volkamer et al. 2005, GRL
3Fu et al. 2008, JGR; Stavrakou et al. 2009, ACP
Inversion of short lived pollutants in the global atmosphere using remote sensing data

Johann Rasmus Nüß, Nikos Daskalakis, Mihalis Vrekoussis

Objective

Glyoxal Inverse Modeling

4DVAR vs DA

TM5

Zooming

Summary & Outlook

Glyoxal observations

GOME2A Glyoxal VCs: 2005-2014

- Elevated levels near...
 - Biomass burning
 - Anthropogenic emissions
 - Dense vegetation

Maps: Leonardo Alvarado (personal communication)
Glyoxal observations

GOME2A Glyoxal VCs: 2005-2014

- Elevated levels near...
 - Biomass burning
 - Anthropogenic emissions
 - Dense vegetation
 - Over the remote ocean(!)

Maps: Leonardo Alvarado (personal communication)
Glyoxal over the ocean

- Observed in multiple satellite data sets
- Verified with ship based MAX-DOAS
- Close to upwelling areas and above areas with high phytoplankton concentrations, but not always
- Cannot be reproduced with models

Maps: Leonardo Alvarado (personal communication)
Glyoxal over the ocean - Modeling

Inversion of short lived pollutants in the global atmosphere using remote sensing data

Johann Rasmus Nüß
Nikos Daskalakis, Mihalis Vrekoussis

Objective
Glyoxal
Inverse Modeling
4DVAR vs DA
TM5
Zooming
Summary & Outlook

Images: Myriokefalitakis et al. 2008, ACP
Glyoxal over the ocean - Suggested Explanations

- Concentration peaks in afternoon \rightarrow likely photochemistry
 - Unknown local source?
 - Long range transport of acetylene and acetone?
- Uptake, transport and re-release via unknown secondary organic aerosol?
- Outflow of longer lived continental isoprene \rightarrow does not fit patterns
Inverse Modeling

Find the state that minimizes the difference between a set of observations and a model that links the state to the observations.
Inverse Modeling - Mathematical description

- Forward model \mathbf{F} with parameters \vec{p} links state \vec{x} to observation \vec{y}
 \[\vec{y} = \mathbf{F}(\vec{x}, \vec{p}) \]

- Inversion (of \mathbf{F}): get cause \vec{x} from observation \vec{y}
Inverse Modeling - Mathematical description

- Forward model \mathbf{F} with parameters \mathbf{p} links state \mathbf{x} to observation \mathbf{y}

$$\mathbf{y} = \mathbf{F}(\mathbf{x}, \mathbf{p}) + \mathbf{\varepsilon}_O$$

with observational error $\mathbf{\varepsilon}_O$ (error of measurements, model, and parameters)

- Inversion (of \mathbf{F}): get cause \mathbf{x} from observation \mathbf{y}
Inverse Modeling - Cost function

- Least squares approach
- Assume a priori state \vec{x}_A
- Error covariance matrices S_O and S_A
Inverse Modeling - Cost function

- Least squares approach
- Assume a priori state \vec{x}_A
- Error covariance matrices S_O and S_A

$$J(\vec{x}) = \begin{array}{c} \text{state-a priori error} \\ \text{obs-model error} \end{array}$$

Cost = \begin{array}{c} \text{state-a priori error} \\ \text{obs-model error} \end{array}$$
Inverse Modeling - Cost function

- Least squares approach
- Assume a priori state \vec{x}_A
- Error covariance matrices S_O and S_A

$$J(\vec{x}) = (\vec{x} - \vec{x}_A)^T S_A^{-1} (\vec{x} - \vec{x}_A) +$$

$$\text{Cost} = \frac{(\text{state-a priori})^2}{\text{error}_{apri}} +$$
Inverse Modeling - Cost function

- Least squares approach
- Assume a priori state \vec{x}_A
- Error covariance matrices S_O and S_A

$$J(\vec{x}) = (\vec{x} - \vec{x}_A)^T S_A^{-1} (\vec{x} - \vec{x}_A) + (\vec{y} - F(\vec{x}))^T S_O^{-1} (\vec{y} - F(\vec{x}))$$

Cost = \frac{(\text{state-a priori})^2}{\text{error}_{apri}} + \frac{(\text{obs-model})^2}{\text{error}_{obs}}$$
Concrete applications to evaluate the cost function for given observations
Assimilate data at a single point in time, after a fixed time step.

- Optimizes only the result and only in space (but not time).
 - Optimizer does not need forward model.
Assimilation - 4DVAR

- Assimilate data \textit{spread} over the time step, \textit{back} to its starting point
- Optimizes in space \textit{and} time
3D, global CTM
- Well established and documented
- Handles different in situ and satellite datasets
- Capable of 4DVAR or 3DVAR (CTDAS)
- Zooming
Aim: Model chemistry on arbitrarily large domain
Zooming

- **Aim:** Model chemistry on arbitrarily large domain
- **Problems:**
 - High resolution \rightarrow high computational demands
 - Low resolution \rightarrow bad representation of local processes
Zooming

- **Aim:** Model chemistry on arbitrarily large domain
- **Problems:**
 - High resolution \rightarrow high computational demands
 - Low resolution \rightarrow bad representation of local processes
 - Numerical Dilution
 - Non-linear chemistry
 - Transport
 \rightarrow All especially relevant for short lived species
Aim: Model chemistry on arbitrarily large domain

Problems:
- High resolution \rightarrow high computational demands
- Low resolution \rightarrow bad representation of local processes
 - Numerical Dilution
 - Non-linear chemistry
 - Transport
 \rightarrow All especially relevant for short lived species

Solution: Use low resolution where possible and high resolution only where necessary
Inversion of short-lived pollutants in the global atmosphere using remote sensing data

Objective

Glyoxal Inverse Modeling

4DVAR vs DA

Zooming

Summary & Outlook

Image: Bergamaschi et al. 2005, ACP
Inversion of short lived pollutants in the global atmosphere using remote sensing data

Johann Rasmus Nüß
Nikos Daskalakis, Mihalis Vrekoussis

Objective
Glyoxal Inverse Modeling
4DVAR vs DA
TM5
Zooming

Summary & Outlook

Zooming - Pros and Cons

- Straightforward: increase resolution in region of interest
- Results close to full high resolution run and much faster

Image: Bergamaschi et al. 2005, ACP
Inversion of short lived pollutants in the global atmosphere using remote sensing data

Objective

Glyoxal Inverse Modeling

4DVAR vs DA

TM5

Zooming

Summary & Outlook

Zooming - Pros and Cons

- Straightforward: increase resolution in region of interest
 - Results close to full high resolution run and much faster
 - Still limited by grid box size

Image: Bergamaschi et al. 2005, ACP
Summary & Outlook

- Glyoxal as short-lived tracer with unknown fluxes
Summary & Outlook

- Glyoxal as short-lived tracer with unknown fluxes
- Inverse modeling with focus on 3DVAR and 4DVAR
Summary & Outlook

- Glyoxal as short-lived tracer with unknown fluxes
- Inverse modeling with focus on 3DVAR and 4DVAR
- Zooming
Summary & Outlook

- Glyoxal as short-lived tracer with unknown fluxes
- Inverse modeling with focus on 3DVAR and 4DVAR
- Zooming
- TM5
Summary & Outlook

- Glyoxal as short-lived tracer with unknown fluxes
- Inverse modeling with focus on 3DVAR and 4DVAR
- Zooming
- TM5
- Increase zooming capabilities of TM5 to at least $0.5^\circ \times 0.5^\circ$
Summary & Outlook

- Glyoxal as short-lived tracer with unknown fluxes
- Inverse modeling with focus on 3DVAR and 4DVAR
- Zooming
- TM5
- Increase zooming capabilities of TM5 to at least $0.5^\circ \times 0.5^\circ$
- Start using S5P data
Summary & Outlook

- Glyoxal as short-lived tracer with unknown fluxes
- Inverse modeling with focus on 3DVAR and 4DVAR
- Zooming
- TM5
- Increase zooming capabilities of TM5 to at least $0.5^\circ \times 0.5^\circ$
- Start using S5P data
- Implement inversion schemes for CHOCHO, HCHO and NO$_2$
Glyoxal as short-lived tracer with unknown fluxes

Inverse modeling with focus on 3DVAR and 4DVAR

Zooming

TM5

Increase zooming capabilities of TM5 to at least $0.5^\circ \times 0.5^\circ$

Start using S5P data

Implement inversion schemes for CHOCHO, HCHO and NO$_2$

Extend to handle multi-tracer inversion
Summary & Outlook

- Glyoxal as short-lived tracer with unknown fluxes
- Inverse modeling with focus on 3DVAR and 4DVAR
- Zooming
- TM5
- Increase zooming capabilities of TM5 to at least $0.5^\circ \times 0.5^\circ$
- Start using S5P data
- Implement inversion schemes for CHOCHO, HCHO and NO$_2$
- Extend to handle multi-tracer inversion
- Case studies for each to verify
Summary & Outlook

- Glyoxal as short-lived tracer with unknown fluxes
- Inverse modeling with focus on 3DVAR and 4DVAR
- Zooming
- TM5
 - Increase zooming capabilities of TM5 to at least $0.5^\circ \times 0.5^\circ$
- Start using S5P data
- Implement inversion schemes for CHOCHO, HCHO and NO$_2$
- Extend to handle multi-tracer inversion
- Case studies for each to verify
- Compare results to CTDAS
Acknowledgments

- The computations were performed on the HPC cluster Aether at the University of Bremen, financed by DFG in the scope of the Excellence Initiative.
- The PhD position is paid for by the University Bremen.
- Thank you to the LAMOS group, especially Nikos and Mihalis.
- Special thanks to Leonardo Alvarado for the quick provision of the glyoxal maps.
Thank you!

... to be continued ...