Seminar "Ocean, Ice and Atmosphere",

Institute of Environmental Physics (IUP), Univ. Bremen

Date: 25-Nov-2025, 12:15

Place: online via zoom https://uni-bremen.zoom-x.de/j/61865009024?

pwd=oUeJYPBt1cM1H2Hcz2QXYmDpMmTS2X.1

Satellite-based tropospheric NO₂ retrieval with explicit aerosol corrections and its application on NO₂ trend analysis in China

Yuhang Zhang^{1,2}, Jintai Lin¹, Huan Yu², Isabelle De Smedt², Nicolas Theys², Gaia Pinardi², Steven Compernolle², and Michel Van Roozendael²

¹Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China ²Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

Satellite remote sensing of tropospheric nitrogen dioxide (NO₂) is of great significance for studies on air pollution and human health. So far, there lacks of a systematic estimation for the uncertainties of tropospheric NO₂ VCDs on the global scale, and there is no quantitative evaluation of the influence of aerosols in particular. We improve the original Peking University OMI NO₂ (POMINO) tropospheric NO₂ retrieval algorithm to achieve a global retrieval of tropospheric NO₂ VCDs based on the TROPOMI, and provides a systematic evaluation for the influences of aerosol corrections and other AMF auxiliary parameters on NO₂ retrieval on a global scale. Implicit aerosol corrections, which simply treat aerosols as "effective clouds", lead to a difference of tropospheric NO₂ columns by 20% to 40% over heavily polluted regions. Compared with the TROPOMI operational NO₂ product, POMINO-TROPOMI research product with explicit aerosol corrections presents stronger signals over major polluted regions around the world, and features a reduced bias against ground-based measurements.

Furthermore, we tentatively quantify the impact of aerosols, of which the content has been reduced drastically in the last decade, on the long-term trend analysis of tropospheric NO₂ over East Central China. Based on the POMINO research products with explicit aerosol corrections, we find much stronger decreasing trend of tropospheric NO₂ over high-pollution areas in December 2012 – 2022, which shows better qualitative agreement with independent ground-based surface NO₂ measurements.

These results provide data support and scientific insight for continuously improving the satellite NO_2 retrieval and evaluating the effectiveness of air pollution control policies.