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Abstract
Roughness and backscatter of the Nansen Sound sea ice plug

by Mara Neudert

The roughness of sea ice is a critical factor for the interactions between ice, at-
mosphere, and ocean. Roughness is interrelated with melt season processes, and
sensitive to changing Arctic climatic conditions. Nansen Sound ice plug offered
an opportunity to study multiyear ice (MYI) surface and bottom roughness
evolution alongside Sentinel-1 backscatter changes over two consecutive melt
seasons. Ice thickness and surface profiles were acquired in springs 2017, 2018,
and 2019 using airborne electromagnetic induction sounding and single-beam
laser altimetry. The mean ice plug thickness increased from 1.9 m in 2017 to
2.4 m in 2019.
The surveys in 2017 and 2019 included 2D surface topography from airborne
laser scanning (ALS). After adapting the method developed by Hibler III (1972)
for filtering of aircraft altitude variations from the single-beam profiles, we com-
pared roughness obtained with both instruments. The root mean square (RMS)
height in 50-m windows decreased slightly for the altimeter profiles while it
stayed constant for the ALS digital elevation models. Roughness was also es-
timated from power spectral densities, and the findings are in support of a
constant RMS height.
The unaltered topography, despite expected roughening from non-uniform sum-
mer ablation, was attributed to the snow cover, which masked those differences.
The bottom roughness, which is represented by the ice thickness, shows a de-
crease in mean RMS height of about 30% on scales of 50–1000 m.
Melt pond distributions from Sentinel-2 true color images showed that spring
roughness did not co-vary with summer melt pond pattern. Ice thickness was
about 40 cm lower in pond covered sections of the three-year-old ice in 2019,
while in 2017 this difference was only 20 cm.
The Sentinel-1 backscatter σ0

HH of the ice plug increased from -21 dB in spring
2017 to -13 dB in spring 2019. The incidence angle dependence decreased
over the first melt season from -0.26 dB/1◦ to -0.15 dB/1◦. This increase in
backscatter and the decrease in slope is expected for enhanced contribution of
volume scattering from air bubbles in the surface ice layers of MYI.
From ERA5 Land climate reanalysis data we computed lower mean summer
temperatures, significantly less melting degree-days, and later melt onsets for
the years 2017 and 2018, where the ice plug was stable, compared to 2016 and
2019 where the ice disintegrated in August.
Our results demonstrate the usefulness of studying fast ice for fundamental sea
ice processes and remote sensing.
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1 Introduction

Local and global climate is impacted by the presence of sea ice and by ice-
atmosphere and ice-ocean interactions. The formation of sea ice with a high
albedo results in a larger portion of short-wave solar radiation being reflected
to space. In the presence of sea ice, the sensible and latent heat flux between
atmosphere and ocean are reduced. Furthermore, latent heat for freezing and
thawing of sea ice acts as a thermal reservoir, delaying the seasonal temperature
cycle. Ocean salinity, and thereby density stratification, is altered by expulsion
of brine during freezing and transport of low-salinity ice (Ebert and Curry,
1993).
Sea ice can be classified into several types, the main ones being young ice, first-
year ice (FYI), and multiyear ice (MYI). Young ice is up to 30 cm thick, newly
formed ice. FYI has grown to a thickness of more than 30 cm thickness during
one cold season. MYI has survived at least one melt season and its thickness is
increasing with age (WMO-IOC et al., 2014). Landfast sea ice is "sea ice which
remains fast along the coast, where it is attached to the shore, to an ice wall, to
an ice front, or over shoals, or between grounded icebergs" (Armstrong, 1972).
The semi-permanent ice plug across the northern opening of Nansen Sound in
the Queen Elizabeth Islands (QEI) in the Canadian Arctic Archipelago (CAA)
is a MYI landfast ice feature, and one of two ice plugs that are known to have
existed over the past century in the Arctic. In Copland and Mueller (2017), ice
plugs are defined as small areas of consolidated perennial sea ice that formed
between narrow points. Ice plugs are characterized by their historical longevity
and presence over decades. Land on both sides acted as an anchor for the thick
ice (Copland and Mueller, 2017).
Ice thickness distributions must be known to represent ice dynamics in high-
resolution models accurately, assess the ice mass balance, and evaluate risks
for marine operations. Ice thickness, in contrast to sea ice extent, is difficult
to determine from satellite observations (Haas and Howell, 2015). Different ice
types, and snow cover, cause sea ice density differences, hampering ice draft
estimations from radar altimetry (Kern et al., 2015; Belter et al., 2020). For
validation and intercomparison, ground-based sea ice draft and freeboard, along
with snow depth data, need to be acquired.
Arctic sea ice extent, MYI fraction and thickness are decreasing (Comiso, 2012;
Haas et al., 2008). Momentum and energy transfer between atmosphere-ice
and ice-ocean are shifting, causing larger drift speeds. Leads between floes are
increasing, and hence higher deformation rates from rafting and ridging. Simul-
taneously, MYI which typically has topographic features higher but smoother
than those of FYI (Tschudi et al., 2016), is lost. This implies an increase in
roughness, consequently affecting melt pond distributions and in turn changing
energy balance and roughness characteristics (Beckers et al., 2015).
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Roughness representation of sea ice surface is crucial for modeling and mea-
suring drag, drift, and the vertical transport of water. Hazard assessment for
marine operations requires information about roughness and thickness relations
(Beckers et al., 2015). Ice roughness, as determined by deformation and aging
processes, explains a significant portion of the contrasts in pond coverage and
albedo between ice of different ages, and prediction of melt pond fraction is a
current research subject.
The sea ice surface roughness characteristics, e.g., height and slope, are critical
for electromagnetic scattering. Knowledge of roughness is therefore needed to
improve identification of various ice types, retrieval of ice thickness, surface
temperature and drag coefficient from satellite remote sensing data (Liu et al.,
2014).
Macroscopic roughness includes a range of features on different scales. Pressure
ridges, cracks, leads, ice rubble, rafted ice and hummocks are caused by dy-
namic deformation processes. Additionally, melt features, e.g., ponds, drainage
channels, and slush are present on MYI. Ice roughness is partly obscured and
altered by snow cover with dunes and sastrugis. Melt processes in summer
are expected to smooth pressure ridges, while melt ponds increase the surface
roughness due to the generation of vertical pond walls in former level ice areas
(Von Saldern et al., 2006).
Microwave remote sensing offers the potential to effectively monitor numerous
sea ice properties such as ice extent, concentration, type, and thermodynamic
state, that are of interest to climate research and operational ice monitoring.
C-Band SAR imaging is partially sensitive to ice surface roughness on the
centimeter scale, but also to physical properties of the bulk ice.
From autumn 2016 to summer 2019, Nansen Sound ice plug stayed intact and
provided the opportunity to observe the inter-annual evolution of landfast MYI
throughout three years (two melt seasons). With the EM Bird towed by a
Basler BT-67 three flights were conducted in springs 2017, 2018, and 2019. Ice
thickness and surface height profiles were obtained by airborne electromagnetic
(EM) induction sounding and single-beam laser altimetry. In addition, an
airborne laser scanner (ALS) and a snow radar were employed on the flights
in 2017 and 2019.
The use of laser scanners is motivated by the potential to gain new insights
into 2D anisotropy of the topography of the sea ice/snow surface. Greater
understanding of presumable surface roughness changes resulting from the more
seasonal Arctic sea-ice regime, and improved up-scaling of in-situ to satellite
data were anticipated from the use of ALS over single-beam altimeters (Beckers
et al., 2015).
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Fig. 1.1: Map of the Canadian Arctic Archipelago. Adapted from Dauginis and
Brown (2021).

1.1 Objectives
The dataset of airborne measurements allowed to deduce the evolution of surface
and bottom roughness parameters. The immobile ice enabled studying aspects
of sea ice evolution through consecutive melt pond formation in summer and
ice growth in winter that are poorly represented in climate models (Nasonova
et al., 2018) and difficult to observe on mobile ice.

1.1.1 Comparison of altimeter and ALS derived surface
roughness

We aim to compare the capabilities (as well as their limitations) of 1D surface
profiles with 2D elevation models from ALS as a prerequisite for the subsequent
surface roughness characterization. To achieve this, the altimeter data first
needs to be filtered, which is a secondary objective in this work.

Processing of altimeter data

Two methods for filtering flight altitude variations from the single-beam al-
timeter range signal were implemented and tested with the aim to improve the
method developed by Hibler III (1972).
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1.1.2 Ice thickness and roughness evolution

Different roughness metrics e.g., root mean square (RMS) height, RMS slope,
skewness, and kurtosis were obtained from height profiles from the single-beam
laser altimeter and the laser scanner DEMs. To study the evolution of roughness
over two years, a number of assumptions were tested:
The level ice in 2017 was expected to be smooth as the initial condition. The
macro-scale ice surface roughness was anticipated to increase by melt season
processes, where melt ponds form in topographic depressions and preferential
melting occurs at sites of melt ponds (Landy et al., 2014). The melt pond
distribution on Nansen Sound ice plug was obtained from Sentinel-2 images in
order to discriminate between surfaces with different genesis. The smoothing
of ridges cannot be taken into account since there was no ice with prominent
ridges surveyed in 2017 and 2019; ice with ridges was only surveyed in 2018. It
was expected that enhanced snow accumulation in depressions created by melt
ponds and snow drifts obscures ice surface roughness in spring.
The surface roughness was compared to bottom roughness, derived from the
EM ice thickness measurements. To our knowledge, no specific studies have
been carried out to address the bottom roughness evolution of landfast MYI,
but we assume the bottom roughness to be decreasing. Inter-annual changes
in the ice thickness distribution might be attributed to the interplay between
preferential thinning of pond-covered areas in summer and higher growth rates
for thinner ice in winter.

1.1.3 Sentinel-1 backscatter evolution

Tying in with surface roughness changes over time, we aim to determine and
interpret the C-band SAR backscatter evolution based on surface topography
and the ice’s developmental history. Incidence angle dependence of backscatter
in Sentinel-1 EW product was determined and is expected to decrease after
the first melt season due to altered surface layer properties enhancing volume
scattering. For the same reason we expect the mean backscatter to increase
with ice age.

1.1.4 Role of climatic conditions for stability

In the period from 2005 to 2020, Nansen Sound ice plug has stayed intact for
only four out of the 16 years, compared to 15 out of the 16 years prior to
2005, indicating a change in the regional climate (Copland and Mueller, 2017).
The meteorological conditions during the study period were assessed with the
ERA5 Land reanalysis product. Radiation balance, cumulative melting-degree
days (MDD), melt period duration, and wind directions were computed for 2016
to 2019. We hypothesized that inter-annual differences in summer temperatures
could explain the ice plug breakup in 2016 and 2019, and the stability of the
plug in 2017 and 2018. Comparative information was gathered by Copland and
Mueller (2017).
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2 Scientific background

2.1 The evolution of sea ice

2.1.1 Sea ice growth

Initial formation of sea ice occurs when sea water reaches its salinity-adjusted
freezing point as fine spicules or plates of ice, suspended in water, called frazil
ice (WMO-IOC et al., 2014). With further frazil formation, coagulates termed
grease ice form. Under calm sea conditions, the formation of a thin elastic crust,
the nilas, of up to 10 cm thickness follows. Under rougher conditions the frazil
ice accumulates in pans that collide and thereby thicken at the edges, forming
pancake ice. Eventually all pans freeze together. In WMO terms, all types of
ice of frazil origin are summed up under new ice and are characterized by high
salinity and random crystal orientation (Thomas and Dieckmann, 2008).
Subsequent congelation growth forms a layer of horizontally oriented crystals,
usually 5 to 10 cm thick. Below this layer, further congelation growth has hor-
izontally oriented crystals. Growth of sea ice is determined by the temperature
gradient through the ice cover and the effective thermal conductivity of the ice,
thereby affecting the conductive heat flux through the ice and the oceanic heat
flux into the ice. The conductive heat flux at the bottom is balanced by the
oceanic heat flux and the release of latent heat when ice grows. Snow acts as an
insulator, due to its lower effective heat conductivity. Brine cells in the ice act
as a thermal reservoir. If oceanic heat flux, radiation balance, snow properties,
and turbulent fluxes are treated as constant, freezing degree-day models are the
simplest way to model thermodynamic ice growth, using only air temperature
as input variable (Thomas and Dieckmann, 2008).
Over time, salinity of sea ice undergoes changes. During formation, salt ions are
not incorporated into the crystal lattice and instead accumulate within pores of
the brine cells. The brine remains in thermal equilibrium with the surrounding
ice.
The brine continues to be rejected slowly throughout the entire growing season
of the first-year ice sheet. The primary mechanism is gravity drainage, where
the denser brine is driven out of the seawater-ice interface through a network
of near-vertical drainage channels (Shokr and Sinha, 2015).
Other desalination mechanisms are brine expulsion, where decreasing tempera-
tures increase pressure in the cells, such that the brine gets expelled, downwards
to more porous ice. Temperature gradients in the ice leave the upper end of
brine cells more saline. Diffusion of salt causes the upper end to freeze and
the lower end to thaw, consequently brine cells migrate downwards. During
the beginning of the melt season brine cell flushing results from the vertical
percolation of surface melts (Shokr and Sinha, 2015).
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2.1.2 Sea ice decay

Melting starts when the surface energy balance becomes positive, first causing
wetting and metamorphism of the snowpack. Snow and sea ice temperatures
increase until an isothermal state is reached. At melt onset, the water cannot
be held by the snow and drains to the snow-ice interface. Meltwater pools on
the ice surface and changes the albedo and thereby the energy budget of the sea
ice. Perovich et al. (2002), reported that distinct phases of seasonal albedo are
linked to melting: dry snow cover with albedo between 0.8–0.9, melting snow
(decrease from 0.8 to 0.7), pond formation (decrease from 0.7 to 0.5), pond
evolution (decrease from 0.5 to 0.4), and fall freeze-up (increase from 0.4 to
0.8).
Melt ponds develop over consecutive stages with (1) topographic control, (2)
hydrostatic balance, and (3) ice freeboard control. The spatial distribution of
melt ponds during the first stage is largely defined by premelt ice topography
(on smooth ice also by snow drift pattern). As the pond surface lies above sea
level, drainage is limited. At the end of the first stage, melt pond coverage peaks
(Landy et al., 2014). In the second stage, meltwater production and drainage
are balanced by lateral flow of meltwater and vertical percolation. At the end
of this stage, the hydraulic head reaches zero. During the third stage, changes
in pond coverage are controlled by changes in freeboard. Ponds deepen due to
preferential melting and can expand due to erosion of the walls.

2.1.3 Multiyear ice

At the end of the melt season, the ice that has survived will resume to thicken
by congelation growth. Under constant annual climate cycles, the ice would
reach equilibrium thickness between 2.5 and 5 m for thermodynamically grown
MYI, depending on the climatic regime. Equilibrium would be attained in 10
to 15 years (Maykut and Untersteiner, 1971). MYI has distinctly lower salinity
than FYI, making it mechanically stronger, and has a surface that is shaped by
melt ponds. Deformed FIY is rough and angular. MYI on the other hand, is
described as having a smoother, rolling surface (Shokr and Sinha, 2015).

2.2 Nansen Sound ice plug
Observations by Jeffries et al. (1992) describe the plug as a matrix of different ice
ages and thicknesses which are subject to rearrangement. The Beaufort Gyre
pushes thick, old ice from the central Arctic Basin into the narrow channels
where it can get pinned by land. Intruding MYI floes freeze-in during winter,
and basal freezing and snow accumulation thicken the ice. Historically, melting
and in-situ fracturing were observed, but the Nansen Sound ice plug remained
mostly land-fast between 1961 and 2016 (Copland and Mueller, 2017).
Nansen Sound broke up in 1962, 1971, 1998 and yearly from 2005 to 2012 (with
an incomplete breakup in 2006), and again in 2015 and 2016 (Fig. 2.1). The
breakup events of Sverdrup and Nansen plug were attributed to climate and
synoptic conditions (Copland and Mueller, 2017). The 1998 breakup was linked
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to rapid melting during a warm summer, characterized by mean temperatures
above 5° C at Eureka, an early melt onset, and long warm periods. Strong
surface melting weakened the mechanical strength of the plug structure. Of
further importance were high proportions of open water to the north of the ice
plug, which impaired the protective matrix of the adjacent ice, simultaneous
with strong storm systems moving through the Queen Elizabeth Islands (QEI),
which fractured the weakened ice (Jeffers et al., 2001).

Fig. 2.1: Recorded breakup and fracture events of the Nansen and Sverdrup ice plugs
from 1961–2020. Adapted from Copland and Mueller (2017)

2.2.1 Historical ice thickness measurements

Ice thickness of the Nansen Sound ice plug in 1970–1971 was reported to increase
from 6 m to 10 m southwards (Copland and Mueller, 2017). Before the break-
up in 1971, the plug extended 53 km with hummock heights increasing from
1.5 m to 3 m from northeast to southwest with an average ice thickness of 4 m
(Serson, 1972). The ice was 21 to 39 years old at that time.
The ice plug had regrown to an extent of 26 km by 1979. In 1980 newly added
sections of second-year ice were attached at both ends. Sadler and Serson (1981)
observed the ice plug’s surface height variations qualitatively in March 1980 as
less pronounced compared to 1971, with hummocks of 1–2 m height and the
northeast smoothed by packed snow. When they returned in October they
found hummocks of 1.5–2.5 m height with vertical melt pond walls of 0.5–1 m.



8 Chapter 2. Scientific background

They also conducted ice thickness measurements along a transect in October
1980. The second-year ice strip at the southern edge was on average 3.5 m
thick and the older part had a mean thickness of 5 m (maximum 8.65 m on an
ablated ridge, minimum 0.3 m on a refrozen lead).
With respect to stability of the ice plug, they assessed that the tidal cracks "are
small and do not appear to be working", but tension cracks (from temperature
gradients or between different ice types) exist and seemed to begin at points of
stress with the land (Sadler and Serson, 1981).

2.3 Ice thickness in the CAA
Records of landfast ice thickness provide annual measures of ice growth that
can almost entirely be attributed to atmospheric forcing with negligible deep
ocean influence on local ice formation (Howell et al., 2016). Thus, the seasonal
behavior of landfast ice, such as Nansen Sound ice plug, can provide useful
information for understanding the interannual variability of ice thickness in
both landfast and offshore ice.
Weekly ice thickness and snow thickness measurements of landfast FYI from
1960–2014 at Eureka and Alert station (Fig. 1.1) showed linear ice thick-
ness growth over the winter season, peaking in late May at 2.27±0.23 m and
1.98±0.22 m, respectively. The mean snow thickness is 17.6±5.8 cm at Eureka
and 18.4±6.2 cm at Alert for the period Oct–May. Over the 50-year record, ice
thinning is statistically significant with 0.24 m and 0.26 m at Eureka and Alert,
respectively. The months March–May exhibit a warming trend of 0.32–0.44
◦C/decade, June–August 0.1–0.21 ◦C/decade and Sept–Oct 0.66–0.68◦C/decade
with the largest warming at Eureka (Howell et al., 2016).
Inter-annual variability in ice thickness was largely attributed to differences in
snow thickness. For years where snow thickness reached about 30 cm in April,
e.g. 2005–2006, the ice at Eureka was 70 cm thinner compared to years where
snow depth peaked at 15 cm e.g., winter 1966-1967 (Howell et al., 2016).
The ocean adjacent to the northern opening of Nansen Sound is covered by
the thickest and most heavily ridged sea ice in the world. The ice is typically
older than four years (Maslanik et al., 2007) and regional mean ice thickness
can reach 5 m (Haas and Howell, 2015). Ice adjacent to the QEI circulates
within the anticyclonic Beaufort Gyre that may trap ice for several decades.
High ice pressure and shear along the northwest coast of the QEI result from
this motion, creating the deformed ice floes, which drift into the sounds and
may have characteristics significantly different from locally-formed ice (Melling,
2002).

2.4 Roughness of sea ice
Sea ice has a surface topography that is a superposition of roughness on different
scales. This can be attributed to different physical forcings. Bare ice, snow
grains, and frost flowers with scales less than 10 cm make up the micro-scale
roughness, largely responsible for surface scattering in the microwave regime.
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Measured surface profiles in this work have a resolution of about 25 cm for the
ALS, 50 cm for the single beam altimeter profiles, and 5 m for ice thickness
measurements. Roughness on the micro-scale cannot be resolved.
Macro-scale roughness (mainly snowdrifts, melt pond walls) up to a scale of 100
m become dominant. On larger scales roughness is determined by the type of
ice, namely ridged or level ice (Landy et al., 2015).
Quantifying surface roughness in the natural environment remains a challenge.
For airborne measurement acquisition, footprint-scale uncertainties associated
with sensor position (yaw and pitch angles, and slant range distortion) and
the absence of a level reference surface on MYI complicate the retrieval of
meaningful roughness parameters (Nasonova et al., 2018).
Beckers et al. (2015) compared the traditional method of single-beam laser al-
timetry with airborne laser scanning. They estimated the surface roughness
for the altimeter with the standard deviation of the relative surface elevation
in five-data-point moving windows, then compared this parameter to the stan-
dard deviation of the relative surface elevation from each scan line for the laser
scanner. Off-nadir features (blocks, ridges) were missed by the laser altimeter,
leading to an over- or underestimation of roughness by the altimeter, depen-
dent on feature direction and location. For some flights in the Fram Strait,
subsections at any fraction of the complete profile length did not reproduce the
statistics of the complete flight, indicating strong heterogeneity in roughness.
Their results imply non-stationary characteristics of the statistical properties of
the sea ice surface in the Fram Strait.

2.4.1 Roughness linked to melt season processes

Landy et al. (2014) describe the surface topography evolution linked to melt
ponds on seasonal landfast FYI in the CAA with terrestrial laser scanning and
snow and ice sampling. They found that during Stage 1 melt ponds formed in
local topographic depressions on all but the highest premelt elevations. Melt
ponds were confined within the lowest 0.2 m of premelt surface heights on the
smoother sea ice in 2012, compared to the lowest 0.6 m on the (relatively)
rougher ice in 2011. In both years, the coverage remained high across a wide
range of premelt elevations throughout Stage 2 and 3, indicating that the depth
of those ponds that initially formed at higher elevations must have deepened
to ensure a hydraulic head of zero everywhere. They found melt pond walls
steepening in the late melt season in 2011.
Attempts have been made to quantify relationships between winter sea ice thick-
ness, winter surface roughness, and spring melt pond fraction for an area com-
prising a mixture of landfast FYI and MYI in the CAA (Nasonova et al., 2018).
From RADARSAT-2 Fine Quad-polarization SAR images, objects representing
unique ice floes in Victoria Strait in April 2015 were created. GeoEye image pix-
els were classified as either melt pond or ice. Classified surfaces were overlapped
by the footprint (120 m) of an airborne EM ice thickness and 2D laser scanner
survey conducted in April, resulting in a melt pond fraction per floe within the
footprint and an according estimate of mean ice thickness and roughness.
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Fig. 2.2: Schematic of melt pond formation hypothesis as described by Landy et al.
(2014) and Nasonova et al. (2018). Winter cross-section of pre-melt conditions of thin
smooth sea ice and thick rough sea ice. Corresponding spring cross-section, showing
smooth ice covered extensively by melt ponds. Right panel shows lower melt pond
coverage due to high surface topography variation. Blue and grey bar in the center
illustrates the melt pond extent as seen from above. Adapted from Nasonova et al.

(2018).

A strong negative correlation between mean thickness and melt pond fraction
for FYI and MYI was found and attributed to deformation, as illustrated in Fig.
2.2. FYI with small mean thickness that has not undergone dynamic forcing is
smooth, and hence will experience widespread flooding. Conversely, FYI that
has undergone ridging will constrain melt water into deeper surface depressions.
Furthermore, a moderate negative correlation of surface roughness with melt
pond fraction for FYI was found, however no statistically significant correlation
for melt pond fraction was found for MYI. Differential weathering could explain
the absence of a pond fraction–roughness correlation for MYI. MYI that is rough
on large scales can comprise smooth sections from earlier melting seasons. These
sections can become flooded easily, leading to a higher melt pond fraction than
on uniformly weathered, smoother MYI.
Nasonova et al. (2018) further noted that on the scales of the floes (0.01–0.31
km2), snow roughness masked the ice surface roughness. Using 2.4 km long
moving averages removed the snow redistribution roughness. For the smoothed
surface roughness the correlation strength between FYI roughness and melt
pond fraction increased.

2.5 Roughness characterization
Surface roughness (or simply roughness) describes the interface between two
media. Roughness is quantified by the random height deviation from the quasi-
deterministic plane approximation of a larger region. Plenty of methods exist
to quantify roughness on a mean surface, assuming that only random variations
exist.
Statistical methods can be divided into parametric and functional. Commonly
used parametric estimators for sea ice surface roughness are e.g., RMS height
σ (Segal et al., 2020) along with skewness, and kurtosis (Beckers et al., 2015;
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Von Saldern et al., 2006; Liu et al., 2014). Also RMS of the average local slope
(Liu et al., 2014) can be used as a proxy for roughness.
Functional methods are capable of representing roughness at a large range
of wavelengths. Frequently used are autocorrelation functions, from which
correlation lengths lc are calculated e.g., Von Saldern et al. (2006) and Liu
et al. (2014). Power spectral density functions are also used to describe surface
roughness across different spatial scales (Hibler and LeSchack, 1972; Liu et al.,
2014).
Sea ice surface roughness is highly scale-dependent, ranging from scales of a
specific feature (cm) to whole sea-ice floes (km). In general, roughness of natural
surfaces is only poorly modeled by a stationary random process. Mean height,
standard deviation, standard deviation of the slope, and autocorrelation length
do not represent estimates of the true values in this case. They are not constant,
but depend on the profile length, and thus cannot be used to compare profiles
across different length scales (Von Saldern et al., 2006).

2.5.1 RMS height, RMS slope, skewness, and kurtosis

For sampled profiles, the longest wavelength contributing to the roughness
calculation is inherently limited by the profile length. The shortest measurable
wavelength is twice the sample spacing, according to the Nyquist sampling
theorem. Those bandwidth limits cause errors for a profile with N samples,
given by zn = z(xn), that would not occur for continuous and finite functions.
Therefore, all expressions for numerical values are called estimators, commonly
indicated by a hat over the estimated quantity (Stover, 2012).
The root mean square height of the discrete, random one-dimensional surface
profile with N height measurements zn along xn is estimated by

σ ∼= σ̂ =

[
1

N − 1

N−1∑
n=0

(
z2n − ẑ

)2]1/2 (2.1)

where N is the number of samples and the mean is ẑ = 1
N

∑N−1
n=0 zn and

n = 0, 1, 2, ...N − 1 (Stover, 2012). The root mean square slope m is
estimated by

m ∼= m̂ =

[
1

N − 1

N−1∑
n=1

(
zn − zn−1
xn − xn−1

− ẑ′
)2
]1/2

(2.2)

where

ẑ′ =
1

N − 1

N−1∑
n=1

(
zn − zn−1
xn − xn−1

)
(2.3)

σ is related to the distribution function P (z) of surface heights by the second
central moment
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σ =

[∫ +∞

−∞
z2P (z)dz

]1/2
(2.4)

Higher moments of the distribution function can be used to describe non Gaus-
sian properties of surface roughness. For the discrete case, skewness µ3 and
kurtosis µ4 are estimated by

µ3 =
1

N σ3

N−1∑
n=0

(
zn − ẑ

)3 (2.5)

µ4 =
1

N σ4

N−1∑
n=0

(
zn − ẑ

)4 (2.6)

As the skewness of a normal distribution is zero, any symmetric data should
have a skewness near zero. However, surface heights relative to the local level
height have a lower bound at 0 and are expected to be skewed right, indicated
by positive skewness values. Kurtosis is a measure of how broad a distribution
is i.e., the amplitude of the modal peak in relation to the strength and length
of the tails of the distribution. The kurtosis for a standard normal distribution
is three, thus kurtosis is sometimes expressed as excess kurtosis by µ4 − 3.
The excess kurtosis is used in this thesis and referred to as kurtosis from now
on.
An illustration of skewess and kurtosis along with a surface profile at early and
late melt season can be found in Fig. 2.3. With aging of the ice an increase
in skewness is expected, resulting from the removal of the highest elevations by
melting, compare to the idealized depiction of surface profiles with negative and
positive in Fig. 2.3 A.
A surface shaped by drained melt ponds will have a smaller kurtosis than a
snow covered surface in spring. An example of a surface profile at ears and
late melt stage is shown in 2.3 B. In a simplified view, areas covered by melt
ponds will reach a common low elevation at the end of the melt season, while
ares unaffected by ponds retain their higher premelt surface elevation, hence a
bi-modal component is introduced to the surface height distribution, leading to
a smaller kurtosis.
In principle, all the parameters above can be calculated for two-dimensional
profiles. However, calculating a slope always implies a fixed direction on the
surface.
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(a)
(b)

Fig. 2.3: (A) Illustration of profiles with different skewness and kurtosis, adapted
from Magsipoc et al. (2020). (B) Example of a surface profile at early and late melt

season, adapted from Eicken et al. (2004).

2.5.2 Power spectral density

Power spectral density function (PSD) and autocovariance function (ACF) can
be calculated from the profile and enhance surface characterization beyond the
profile parameters described in the previous section (conversely, they can be
calculated calculated from the PSD). Stover (2012) states that the PSD is
the preferred route because, as it expresses roughness as a function of spatial
frequency, it displays the required bandwidth limits for the sampled profile.
Furthermore, the PSD can be more accurately corrected for known deviations
from ideal instrument response, which mis used to compare how well the flight
altitude was filtered from the recorded altimeter heights.
Before generating the PSD estimator, the assumption that sample profile values
represent the constant-mean surface microtopography only must be valid and
the ACF depends on the lag distance only, which is that the process must
fulfill weak-sense stationarity (see Florescu (2014), p. 299, for a definition of
weak-sense stationarity).
The PSD of a continuous profile z(x) of finite length L is calculated taking its
Fourier transform

Z(fx, L) =

∫ L/2

−L/2
z(x) e−j2πfxx dx (2.7)

where fx denotes spatial frequency (in x direction) (Stover, 2012). The PSD
function in one dimension, denoted as S1(fx), is given by

PSD = S1(fx) = lim
L→∞

1

L
|Z(fx, L)|2 (2.8)

Various surface statistics can be found by calculating the even moments of the
PSD. The odd moments evaluate to zero because of symmetry. Bandwidth-
limited values of the RMS roughness and RMS slope are the zeroth and second
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order moment

σ2 = 2

∫ fmax

fmin

(2πfx)
0 S1(fx) dfx (2.9)

m2 = 2

∫ fmax

fmin

(2πfx)
2 S1(fx) dfx (2.10)

The factor 2 accounts for the integration over only the positive side of the
symmetrical spectrum and fmin and fmax define the spatial bandwidth over
which σ and m are defined (Stover, 2012).

Welch’s method

Welch’s method (Welch, 1967) is commonly used to estimate the PSD by
sectioning the discrete profile z(l), (l = 0, ..., N − 1) into K segments of length
L covering the entire record of length N . The expression for the PSD estimator
for these sequences of L samples z(l) is then

Sk(fn) =
L

U

∣∣∣∣∣
L−1∑
l=0

zk(l)W (l) exp

(
−j2πk l

L

)∣∣∣∣∣
2

k = 1, 2, ..., K (2.11)

where fn = n/L for n = 0, ..., L/2 and

U =
1

L

L−1∑
l=0

W 2(l) (2.12)

W (j) is a window function to reduce "ringing" from the sudden on- and off-set
at l = 0 and L − 1 (Welch, 1967). The PSD estimate ˆS(fn) is the average of
the PSDs of the K sequences

Ŝ(fn) =
1

K

K∑
k=1

Sk(fn) (2.13)

PSD of a sea ice surface profile

Hibler and LeSchack (1972) calculated power spectra of surface ice profiles from
both young and multi-year ice laser profiles as observed during the winter in
the central Polar Basin (fig. 2.4).
The Young Ice profile has a greater amplitude for all wavelengths shorter than
20 m, while for spatial periods longer than 20 m the Multiyear Ice has greater
amplitude. Hibler and LeSchack (1972) interpret this as an effect of weathering,
which smooths small scale roughness but adds undulations on longer spatial
scales. They note that this was indeed observed in the field.
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Fig. 2.4: Power spectra of two sea ice surface profiles, from Hibler and LeSchack
(1972)

2.5.3 Autocorrelation function and correlation length

The autocovariance function C(τ) for discrete detrended profiles with constant
mean µ and lag τ is

cov [z(x), z(x+ τ)] =
〈
{z(x)− µ}{z(x+ τ)− µ}

〉
(2.14)

=
〈
{z(x)}{z(x+ τ)} − µ2

〉
(2.15)

= C(τ) (2.16)

The autocovariance can be made dimensionless by normalizing by C(0) which
is the "a priori" variance of the process: C(0) = 〈(z(x)− µ)2 = σ2〉 to arrive at
the autocorrelation ρ(τ)

ρ(τ) = C(τ)/C(0) = C(τ)/σ2 (2.17)

The auto-correlation provides the same information as the PSD, but in slip
space (units of distance) instead of spatial frequency space (units of inverse
distance) because the autocorrelation function C(τ) and the power spectrum
S(fx) are a Fourier transform pair

C(τ) =

∫ ∞
−∞

S(fx) ej2πfxx dx (2.18)

The lag length lc where the auto-correlation function has dropped to 1/e rep-
resents the lateral dimension of surface structure (Stover, 2012). Alternative
definitions for correlation length exist to account for the fact that natural sur-
faces are not modeled by a stationary random process resulting in an exponential
ACF. At some length scales natural surfaces exhibit inverse power law behavior
between roughness amplitude and spatial frequency. Autocorrelation length can
also defined as the integral (or sum in the discrete case) of the squared ACF,
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or in the same manner from the PSD, according to

lc =
2

σ4

∫ ∞
0

C2(τ)dτ =
2

σ4

∫ ∞
0

S2
1(fx)dfx (2.19)

2.5.4 Semivariogram

Semivariograms are widely used in geostatistics, and are appealing because they
relieve the constraint on wide-sense stationarity. For this purpose one assumes
that if the mean is not constant everywhere, it would be for small lags |h|, so
that the expected differences would be zero〈

z(x)− z(x+ τ)
〉

= 0 (2.20)

The second concept is to replace the ACF by the variances of differences as
measures of spatial relation, which, like the ACF, depended on the lag and not
on absolute position.

var [z(x)− z(x+ τ)] =
〈
{z(x)− z(x+ τ)}2

〉
(2.21)

= 2γ(τ) (2.22)

The quantity γ(τ) is known as the semivariance at lag τ . For wide-sense station-
ary processes the variogram and the covariance are equivalent, and from their
definitions in equations 2.16 and 2.22: γ(τ) = C(0) − C(τ). The semivariance
can be estimated wider range of circumstances, which has made it much mor
useful than the covariance (Webster and Oliver, 2007).
Semivariograms can be modeled by a negative exponential model (Fig. 2.5).

γ(τ) = b+ C0 ·
(
1− e−

τ
a

)
(2.23)

where b, the nugget, is set to zero, and a is the range parameter. The sill
is C0. In most of these models the variance has a maximum, which is the
a priori variance of the process, known in geostatistics as the sill variance.
The exponential variogram approaches the sill asymptotically. For practical
purposes the distance at which γ equals 95% of the sill variance is the effective
range. Above this range the variable is said to be uncorrelated (Webster and
Oliver, 2007).

Fig. 2.5: Exponential semivariogram model with nugget b = 0, sill C0 = 1 and range
a = 0.333.
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2.5.5 Fractal dimension

In the context of 1D profiles, a fractal is a mathematical description of the
scaling properties of an irregular geometry. A parameter to describe non-
stationary ice surfaces is the fractal dimension.
PSDs in the form of S1(k) = C · k−α, where k = 2π/λ is the wavenumber along
the profile, are modeled by self-affine fractals. The scaling is described by the
fractal dimension D. It can be shown that D is the slope of the PSD on a
log-log plot by

D = 2.5− α/2 (2.24)

(Brown, 1987). D is between the topological dimension (1 for a profile, 2 for an
area) and the Euclidean dimension (2 for a profile, 3 for an area). Higher values
of D indicate rougher surfaces. Natural surfaces often display fractal properties
only over a specific length scale or exhibit distinct scaling regimes at different
length scales. On scales larger than a certain cut-off, the surface may still be
characterized as a realization of a stationary random process (Von Saldern et
al., 2006).
The fractal dimension’s usefulness is that within the known fractal dimension,
one can simulate the rough surface according to certain functions of fractal
characteristics and calculate other related parameters. For sea ice surfaces Von
Saldern et al. (2006) report fractal dimensions of 1.3–1.9 from altimeter data.
For sea ice draft Gneiting et al. (2012) determined fractal dimensions of 1.2–1.5
from upward looking sonar.

2.6 Microwave remote sensing of sea ice
The scattering of microwaves by sea ice and the overlying snow cover is sensitive
to minor variations in its geophysical properties and can be obtained from
remote sensing by synthetic aperture radar (SAR). Sentinel-1 (S1) is an ongoing
SAR mission providing nearly complete coverage of the Arctic sea ice every six
days (Torres et al., 2012). The two spacecraft operate at a center frequency
of 5.405 GHz at C-band. C-band is located at frequencies of 4–8 GHz, with
corresponding wavelengths of 7.5–3.75 cm. The two satellites, S1A and S1B,
share the same near-polar orbital plane with a 180° orbital phase difference.
The quantity of interest is the backscattering coefficient σ0 of sea ice. σ0

can be imagined as the strength of reflection by a conducting sphere. The
backscattering coefficient is related to the radar equation for the measured power
Pr of an echo received at a microwave antenna according to

Pr = Pt
G2λ2σ

(4π)3R4
⇐⇒ σ = Pr

(4π)3R4

PtG2λ2
(2.25)

σ0 =
σ

A
(2.26)

where Pt is the transmitted power, G is the antenna gain, λ is the transmitted
wavelength, and R is the range of the target from the radar antenna. Those
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parameters are known through instrument calibration. The only property de-
pendent on the target properties is the target’s radar cross-section σ. σ0 is
the area-normalized radar cross-section (or backscattering coefficient) normally
expressed in decibels. σ0 varies significantly with incidence angle, wavelength,
polarization, and with changing properties of the scattering surface (Ulaby and
Long, 2015).
In general, backscatter from a medium is a function of its geometric and di-
electric properties. Dielectric behavior is quantified by the relative dielectric
permittivity εr = ε′+ jε′′, where the loss factor is the complex part. At a given
frequency, the loss factor determines the decrease of signal power density p with
depth z according to

p(z) = p(z = 0) · exp
2π
λ

ε′√
ε′′
z (2.27)

The penetration depth δ is conventionally the depth z where p has decreased
to 1/e of the incident power at the surface with

δ =
λ

2π

√
ε′′

ε′
(2.28)

The penetration depth of sea ice increases with decreasing temperature and
decreasing ice salinity, which determines the contribution of backscatter orig-
inating from multiple scattering in the ice interior, the so called volume scat-
tering. For snow-covered sea ice, volume scattering from the bulk, and surface
scattering at the snow-ice interface both contribute to the returned signal.
Sentinel-1 can receive and transmit waves in horizontal (H) and vertical (V)
polarization. Surface scattering will cause phase shifts of 180◦ or 0◦ (0◦ for
odd bounce scattering, 180◦ for double bouncing at two right-angled surfaces)
and therefore not depolarize the wave. Surface scattering largely depends on
orientation and roughness of the surface (Ulaby and Long, 2015). Volume
scattering (many scattering events) phase shifts can take any value between 0◦
and 180◦, but usually vary around 45◦, causing a depolarization of the incident
wave, recorded in the HV signal (Shokr and Sinha, 2015).

2.6.1 Backscatter and sea ice evolution

FYI has a high loss factor due to high salinity, and respectively low penetration
depths, which prevents most volume scattering. The penetration depths for
FYI in C-band are in the order of 5–20 cm. Thus, the energy reflected to the
radar is low, except for sharply angular pressure ridges. The loss factor of dry
snow is so low that the snow has little effect on sea-ice radar measurements
made in winter.
Typical penetration depths for MYI are in the decimeter range, due to lower
salinity. Pockets that were occupied by brine in the FYI are now small air
bubbles that contribute significantly to volume scattering. The supposedly
rougher, melt pond-shaped surface additionally enhances scattering. However,
MYI pressure ridges tend to be more rounded, have fewer large voids, and are
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not as steep-sloped. Their scattering cross sections are not as distinct from the
surrounding MYI as for FYI ridges (Ulaby and Long, 2015).

2.6.2 Backscatter and roughness

Sophisticated surface scattering models allowed to address the dependence of the
backscattering coefficient σ0 on surface roughness. In practice, one characterizes
the surfaces by only their centimeter-scale roughness statistics, because larger
scale roughness does not contribute to incoherent scattering and can be treated
as a mean surface (Ulaby and Long, 2015).
The shape of the surface height correlation function, RMS height, and corre-
lation length all influence the backscatter depending on incidence angles. To
illustrate the influence of surface roughness, the simulated backscatter of sur-
faces with exponential correlation functions and RMS height values of 1.5 cm
and 0.5 cm is shown in Fig. 2.6, right panel. The surface with larger RMS height
has a larger backscatter than the surface with lower RMS height. For HH po-
larization, the incidence angle dependence for the rougher surface is weaker,
while HV incidence angle dependence does not change with variations in RMS
height. For otherwise constant parameters, a Gaussian ACF causes a steeper in-
cidence angle dependence for both polarizations than an exponential correlation
function, as illustrated in Fig. 2.6, left panel.

(a) (b)

Fig. 2.6: Backscatter response to two surfaces with (A) different correlation functions
and (B) different RMS heights at 3 GHz, modeled with I2EM. (Ulaby and Long, 2015)

Segal et al. (2020) provide an analysis of the correlation between roughness and
HH backcatter. RMS height from gridded ALS points with a resolution of 1
m x 1 m (swath width 400 m, vertical accuracy 10 cm or better) is used as a
roughness estimate for FYI and MYI in the CAA. The HH backscatter has a
significant positive linear correlation with RMS roughness for FYI (R2 = 0.58),
but not for MYI.
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2.6.3 Incidence angle dependence of backscatter

It is known that the incidence angle of a radar signal onto a surface influences
the intensity of the backscatter signal (Carsey, 1992). In SAR images like
Sentinel-1 extra wide-swath (EW) images, this effect is visible as a trend of
image brightness in range direction, with generally higher backscatter values for
small incidence angles and lower backscatter values for large incidence angles
θ. Different surface types show varying rates of decrease in backscatter with θ.
For SAR geometry refer to Fig. 2.7.

Fig. 2.7: SAR geometry, with antenna length l, incidence angle θ, slant range R,
pulse length τ , speed of light c, horizontal beamwidth βh, vertical beamwidth βv.

Adapted from Ulaby and Long (2015).

Aldenhoff et al. (2020) studied the incidence angle dependence of smooth and
deformed FYI, and MYI (divided into predominantly second year ice and ice
older than 3 years). Manual classification of the ice in pairwise Sentinel-1 EW
images (different time, same location) resulted in 240 FYI samples and 320
MYI samples. Linear regression was done on the sample-wise HH and HV
backscatter change vs incidence angle change. The R2 values for all cases, as
well as the analysis of the residuals of the model, indicate that a linear model is
a valid choice, confirming previous work, showing that a linear approximation
is a good approximation for the relationship for angles between 20–50◦. The
highest incidence angle dependence was found for smooth FYI with -0.24 and
-0.16 dB/1◦ for HH and HV polarization, respectively. Deformed FYI shows
slightly lower slopes (-0.20 and -0.11 dB/1◦, for HH and HV). The old MYI has
the lowest slopes (-0.10 and -0.04 dB/1◦, for HH and HV), followed by MYI
(-0.15 and -0.07 dB/1◦, for HH and HV). The slopes are constant over time and
are deemed representative for winter conditions in the Beaufort Sea.
For FYI, surface scattering is the dominant mechanism, which is more affected
by incidence angle changes than volume and multiple scattering, which gets
more important the older the ice becomes. Furthermore, the cross-polarization
backscatter signal originates from multiple scattering events (volume scattering)
and therefore shows a lower dependence on incidence angle compared to the co-
polarization channel (Aldenhoff et al., 2020). They note that is likely that the
incidence angle distribution for smooth FYI follows the noise floor ( -28 dB)
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rather than the real incidence angle dependence at cross-polarization, because
backscatter intensities for this ice type are at or below that noise floor.
The dependence of RADARSAT-2 σ0

HH and σ0
HV of snow covered on smooth

FYI at the end of winter on incidence angles between 26–37◦ is studied by Gill et
al. (2015). Thin (7.7 cm), medium (20.5 cm) and thick (36.4 cm) snow covers
exhibits similar slopes for HH and higher slopes for HV compared to those
reported by Aldenhoff et al. (2020): The slopes for HH and HV polarisation
are -0.27 and -0.24 dB/1◦ for thin snow, -0.25 and -0.25 dB/1◦ for medium
snow, and -0.33 and -0.25 dB/1◦ for thick snow, respectively. They observed
an increase in σ0

HH and σ0
HV with an increase in snow thickness, which they

attributed to the elevated brine volume in the basal layer, forming larger brine
coated snowgrains, presenting an additional volume scattering component to
the total scattering.



22

3 Materials and Methods

Airborne ice thickness surveys over Nansen Sound ice plug were carried out
on 30 March 2017, 6 May 2018, and 2 April 2019. In 2017 and 2019, an
additional laser scanner (ALS) was installed in the aircraft, which provides two-
dimensional roughness information. Snow depth from snow radar is available
for 2017 and 2019. The first section of this chapter is dedicated to the airborne
survey data acquisition and processing.
This dataset is complemented by MODIS true color images and Sentinel-2 true
color images to assess the formation, evolution, and breakup of the ice on Nansen
Sound. Annual minimum ice plug extent, approximate start and end of surface
melt, and classification of the surface at maximum melt pond coverage are
extracted to help interpret ice thickness and roughness evolution.
Sentinel-1 radar backscatter scenes around the dates of the flights for various
incidence angles are used to address evolution of backscatter and incidence angle
dependence.
Radiation balance, mean summer and winter temperatures, cumulative melting
and freezing degree days, total precipitation, and wind speeds are extracted
from ERA5 Land climate reanalysis for the years 2016–2019.

3.1 EM ice thickness
Ice thickness measurements were carried out by EM induction sounding with a
sensor system, the EM Bird, towed under a Basler BT-67 at a height of 10–20 m
above the surface. The distance between instrument and surface was measured
with a single-beam laser altimeter.

3.1.1 EM measurement principle

The primary components for induction sounding are the transmitter and re-
ceiver coils. A primary field HP

z is generated at the transmitter coil with a
frequency of 4060 Hz. Ice has a very low conductivity of 0–50 mS/m and is
penetrated without creating any significant secondary field. In contrast, sea-
water has high conductivity of 2400–2700 mS/m, leading to eddy currents, and
consequently to a secondary magnetic field HS

z , whose amplitude and phase is
measured with the receiving coil (Haas et al., 2009).
The normalized secondary magnetic field is Z = HS

z /H
P
z . Z is complex and is

usually described as in-phase component I and quadrature component Q.
For sea ice thickness mapping, the EM Bird altitude hEM over the conductive
sea surface is the parameter of interest. The presence of sea ice increases hEM
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Fig. 3.1: Sketch of the EM Bird with transmitter coil (Tx) and receiver coil (Rx),
not shown are bucking coil, calibration coil, computer, Differential Global Positioning
System (DGPS), and wireless network antenna. Distance hEM as inferred from the
EM fields and hL distance between snow/ice surface measured by laser altimeter.

Figure is not drawn to scale.

for a known bird height hL above the surface by the ice plus snow thickness zi

zi = hEM − hL (3.1)

hL is measured by the single-beam altimeter. Further assumptions are negligible
ice conductivity, known seawater conductivity, and horizontal layering (Haas et
al., 2009). A negative exponential function of the distance hEM between bird
and sea surface models the normalized secondary magnetic field Z(hEM)

Z(hEM) = B0 +B1 · exp(−C · hEM) (3.2)

This is a first approximation to the layered half-space response and is justified in
the vast majority of common situations in sea ice thickness mapping (Pfaffling
et al., 2007). The coefficients B0, B1 and C are found by fitting the measured
curve to the synthetic half-space model curve for open water with a conductivity
of 2500 mS/m within a height range given by the variations of bird altitude (10–
25 m). The resulting ice plus snow thickness (hereafter ice thickness) is given
by Equ. 3.1.
Following Haas et al. (2009), only the Inphase component is inverted, because
the Quadrature signal is weaker, more affected by noise and has a larger drift.
Gain and Phase are also adjusted according to Haas et al. (2009).
When flown at 10–20 m above the surface, the EM Bird has a footprint of 45–60
m. Therefore, ice thicknesses are representative of the mean thickness in this
area. Signal processing at 10 Hz and a speed of 50 m/s results in an average
point spacing of about 5 m.
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If existent, open leads with an ice thickness of 0 m are used to calibrate the
ice thickness retrievals, providing an accuracy of EM measurements of ±0.1 m
over level ice. However, over the fast ice in the CAA, leads of sufficient width in
winter are seldom and none were present in vicinity of the ice plug in the three
surveys. Therefore, thickness retrievals can be more sensitive to uncertainties
in drift and calibration, amounting to an accuracy of ±0.15 m over level ice
(Haas and Howell, 2015). The uncertainties of level ice thickness retrievals most
strongly affect the accuracy of the modal thickness. Over ridges, ice thickness
can be underestimated by 50% or more due to conducting channels in ridge
keels. Consequently, uncertainties over ridges affect the magnitude and length
of the tails of ice thickness distributions and by that the mean ice thickness
(Haas and Howell, 2015).

3.2 Processing of altimeter data
The employed Riegl LD 90 altimeter has a measurement rate of 10 Hz and a
wavelength of 905 nm. The recorded altimeter ranges represent the distance
between surface and instrument and therefore depend on flight altitude. Infor-
mation about the absolute height of the EM Bird with respect to a fixed refer-
ence system e.g., from Differential GPS (DGPS), is missing for most flights. The
altimeter profiles show a high-frequency signal, superimposed on the mostly low-
frequency aircraft altitude variations. Filtering is necessary to obtain surface
roughness information. The goal is to describe all roughness on scale smaller
than a certain cut-off wavelength as a deviation from a "local level surface
height".
Hibler III (1972) describes a three-step method for filtering the altitude varia-
tions caused by the aircraft motion: First, a high pass filter is applied to the
profile, which comes with the problem of depressing ridges. This arises from the
non-Gaussian properties of the ice-air interface. The surface height statistics
rather follow a Log-Normal distribution. Second, a set of minimum points, each
next minimum 12.7–139.7 m ahead of the previous minimum is recorded. The
data point spacing is 1.27 m. In the third step, a low pass filter is applied. The
transition band of wavelengths for this step must be specified accurately and de-
pends on the aircraft, which makes automatizing impossible (Hibler III, 1972).
The shortcomings of this process are motivation to search for an alternative,
more flexible approach.
Here, the x-axis is the cumulative distance between the geographical locations
of the data points, spaced about 50–70 cm. The y-axis is the recorded single-
beam laser altimeter height. Two modifications of the method by Hibler III
(1972) are developed and tested.

3.2.1 Iterative fit

I have implemented a method where I fit a spline to the raw range profile and
subsequently weigh all points that fall above the spline1 higher than those that
fall below, as illustrated in see the first panel in Fig. 3.2. Since the measured
ranges are the distance between EM Bird and surface, the largest ranges are
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representative of the local level surface. A new spline is fitted to the weighted
data points. This process is repeated until the change between subsequent
iterations gets small.
The outlined procedure would result in a good approximation for the concave
part of the curve, but not for the convex part; see the first panel in Fig. 3.2 for
an example. Two things can help navigate this problem: Placing knots more
densely in the convex part, but that would imply a change of wavelengths that
get filtered between convex and concave sections. A second approach, which
was tested here, is weighting data in convex sections of the spline higher than
data in concave sections. The filtering uses the following steps:

1. An initial spline B0(x) is fitted to hL (Spline 1 in Fig. 3.2, panel B). The
spacing of knots is chosen to be 100 m, which corresponds to every 200th
data point.

2. The second derivative of spline B0(x) is evaluated for concavity and con-
vexity, this is passed onto the weights w by weighing points above the
spline with w = 1 and points below with wbelow, convex = 5wbelow, concave =
5 · 0.01 = 0.05.

3. With those weights, a new spline Bi(x) is fitted. This process is repeated
N times, until subsequent splines have a mean deviation of y values of
less than 1 mm, which was achieved after 5 iterations (see Spline N in
Fig. 3.2, panel B). The resulting surface heights above local level surface
height are hN = BN(x)− hL (Fig. 3.2, panel C).

Fig. 3.2: Iterative fitting procedure. (A) Fit with equal weights for all data points.
(B) Fit with higher weights in convex sections. (C) Resulting surface heights hN .

1The Python package "rpy2" provides the interface "robjects" to facilitate the use of R
by Python programmers. We use the function "smooth.spline" to fit a cubic spline to the
given data. When specifying only the number of knots (results in equally spaced knots) or
the x positions of the knots to be used, the smoothing parameter of the ridge regression is
determined by leave-one-out cross-validation.
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3.2.2 Modified version of Hibler’s method

The second approach implements Hibler’s process with a modification in the
third step (Fig. 3.3):

1. Again, an initial spline B0(x) with knots spaced by about 100 m is fitted
to hL.

2. Subtract the spline B0(x) from hL and find the local maxima in intervals
defined by the roots of the second derivative ofB0(x) so that one maximum
is recorded after each change in curvature. All these local maxima get
connected linearly.

3. The linear interpolation is smoothed, by evaluating it at all x values and
choosing 100 m as knot spacing again, the smoothed curve is Bmax(x).
The resulting surface heights are hH = B0(x) +Bmax(x)− hL

Fig. 3.3: Modified version of Hibler’s method. (A) Step 1: Initial spline. (B) Step 2
and 3: Fit to local maxima. (C) Resulting surface heights hH .

3.2.3 Validation of filtering methods

Available IceBird DGPS data

For 2018, the fit results can be evaluated against the DGPS heights of the
EM Bird, which represent the height with respect to the reference ellipsoid.
Fig. 3.4 A, shows the DGPS height profile hDGPS alongside the laser altimeter
ranges hL. The mean DGPS height is expected to show a near constant offset
from the mean altimeter ranges, corresponding to the local offset between
mean reference ellipsoid WGS84 and mean the surface height. "NGA EGM96
Geoid Calculator" gives an offset between 9.94–11.33 m (National Geospatial
Intelligence Agency, 2021). The value determined for the offset is hoffset =
hDGPS − hL = 10.36 m. After correcting the altimeter ranges by subtracting
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the DGPS heights and the offset (Fig. 3.4 B) a trend in the signal can be
seen, which is accounted for by further subtracting a polynomial of third degree
C(x). Fig. 3.4, panel C shows the obtained heights hcorrected by DGPS = hDGPS −
hL − hoffset − C(x), where large oscillations are still present. They could be
explained by a combination of GPS errors, and pitch and roll of the Bird.
Those large-scale height oscillations are not present in the filtered profiles in
Fig. 3.4, panela D and E, respectively. Enlarged views of the results from
hcorrected by DGPS compared to hN and hH are given in Fig. 3.5.
A simple correction of altimeter heights by the DGPS signal is not useful,
however the DGPS signal contains information on the wavelength range where
aircraft altitude variations dominate the altimeter signal. This will be used in
the following to evaluate the filtering methods.

Fig. 3.4: Overview of the surface height profiles for 2018. (A) Offset between DGPS
heights HDGPS and altimeter ranges hL. (B) Correction of DGPS profile with a spline
C(x). (C) Result of the subtraction of the DGPS heights from the altimeter profiles.
(D) Profile of filtered altimeter heights hN from iterative fit. (E) Profile of filtered

altimeter heights hH from the modified Hibler method.

From the histogram of obtained surface profiles from both fitting procedures,
and the correction by the DGPS signal in Fig. 3.6 it becomes apparent how
fitting will influence the modal thickness, and essential for roughness, the tail
of the height distributions. The quality of both fit results depends on the knot
spacing for the initial splines, which was a guess, but will be justified with the
signal coherence in the following section.
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(a) Surface height profiles for a section with small height variations. The large scale low-
frequency variations in hcorrected by dGPS are visible and indicate insufficient correction,

due to pitch and roll.

(b) Surface height profiles for a section with large height variations. Note that the
variability height at 115.75–116.0 km is underestimated by both fits and the variability

at around 116.4 km might be overestimated by hN .

Fig. 3.5: Subsections of the obtained surface height profiles. Altimeter ranges after
subtracting the DGPS heights hcorrected by dGPS (red), height profiles from the iterative

method hN (blue) and from the modified Hibler method hH (black).

Fig. 3.6: Histogram of retrieved surface heights for the entire flight in 2018.
hcorrected by DGPS (red), hH from the modified Hibler method (black), and hN height

from the iterative method (blue).
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Signal coherence

We use Welch’s method to estimate the PSD of altimeter ranges hL and DGPS
height hDGPS after resampling both profiles to a continuous time axis with
intervals of 0.01 s (corresponding to 100 Hz). The magnitude-squared coherence
is a measure that estimates the extent to which one real- or complex-valued
signal can be predicted from another real- or complex-valued signal using a
linear model. It is also used as a measure of the similarities in the frequency
content of two signals (Bendat and Piersol, 1986). The coherence Ca,b of two
signals a and b is given by

Ca,b =
|Pa,b|2

Pa,a · Pb,b
(3.3)

where Pa,b is the cross-spectral density of a and b.
The coherence ChDGPS,hL is around 1 for frequencies lower than 10−1 Hz, with
a rapid decline for higher frequencies (Fig. 3.7). This transition band from
0.1–0.5 Hz corresponds to length between 500–100 m. The low coherence at
short length scales can be attributed to the dominance of surface roughness,
influencing hL but not hDGPS. The fitted surface elevations should be coherent
with the altimeter ranges at those small length scales, i.e. the coherence of hH
with the altimeter signal hL should ideally be ChH ,hL = 1− ChDGPS,hL .
The middle and right panels in Fig. 3.7 show the respective coherence estimates
for the fitting methods described above, together with the desired coherence
function. The transition from low to high coherence is between 0.2–0.5 Hz (250–
100 m). The coherence function of the modified Hibler fit resembles the desired
curve from the left panel reasonably well. The rougher surface is captured better
than the smooth surface.

Fig. 3.7: Left: Coherence of DGPS signal hDGPS and altimeter signal hL. Cen-
ter/Right: Coherence of altimeter signal hL and surface heights hH/ hN . The curves

for rough and smooth ice are obtained from the sections highlighted in Fig. 3.4.
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Comparison with Hibler’s original algorithm

Fig. 3.8 shows the same information as the right graph in Fig. 3.7, but for the
fitted heights hHoriginal with the original Hibler method. The transition band is
wider than for the modified Hibler method, where the transition is sharper.

Fig. 3.8: Coherence of the DGPS signal hDGPS and surface height signal hHoriginal
after filtering with the original Hibler method.

3.3 Digital elevation models from ALS
A laser scanner was mounted on the Polar5/6 aircraft in 2017 and 2019. Its near-
infrared laser is measuring surface elevation with accuracy and precision of 25
mm. It was operating with a pulse repetition frequency of 50 kHz, measuring the
surface elevation in cross-track aperture angle of ±30°. The data were calibrated
and georeferenced to the WGS84 datum and interpolated to a regular 0.25 m
× 0.25 m grid to obtain a digital elevation model (DEM) of the sea ice surface
(Ricker et al., 2014).
The heights at the coordinates of the EM measurements are extracted and will
be referred to as ALS nadir heights. Fig. 3.9 illustrates the EM measurements’
spacing and footprint on the gridded ALS data.
Larger jumps in elevation occur in 2017 e.g., around 92 km in Fig. 3.10, refer
to Fig. A.1 in the Appendix for more details. This section is excluded for
further analysis. The anomalies are attributed to gaps in the GPS height (V.
Helm, personal communication, June 10, 2021). Missing GPS data also lead to
incorrect referencing to ellipsoidal height, as the extracted ALS nadir heights
in 2017 have an implausible mean height of -2.13 m above the ellipsoid.
For the MYI section in 2019, only data for the flight at high altitude is available,
where the grid cells have a resolution of 50 cm instead of 25 cm. Additionally,
this DEM has a tilt perpendicular to the flight direction, see A.2 in the Ap-
pendix. This tilt does not seem to affect the elevations within the footprint
of the EM measurements notably. For reasons of data quality, we restrict the
roughness analysis to the calculation of parameters within the footprint of the
EM measurements, where the absolute values of the elevation, and the tilt are
not impacting the results.
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Fig. 3.9: Examples of ALS DEM with EM measurement locations (black markers),
and approximate EM footprint (white circles). Skewness and kurtosis for each data

point are calculated from the DEM pixels within each footprint.

The respective mean nadir elevation is subtracted from the nadir elevations for a
qualitative comparison of the coincident ALS and altimeter profiles in Fig. 3.10.
Several prominent peaks in surface height are visible in the fitted heights from
the single-beam altimeter and the ALS nadir elevations, increasing confidence
in the altimeter height filtering. In contrast, the larger-scale undulations most
prominent in 2017 are removed in the single-beam profile.

Fig. 3.10: Fitted single-beam surface heights hH (black) and ALS nadir elevations
(blue).

3.4 Snow depth from snow radar
The snow radar is an airborne, ultra-wideband 2–18 GHz, frequency modu-
lated continuous-wave, quad-polarized microwave radar, i.e., SnowRadar ver-
sion Snow5, developed at the University of Kansas, KS, USA. Snow depth is



32 Chapter 3. Materials and Methods

estimated according to detected air-snow and snow-ice interfaces, assuming a
constant climatological snow density of 300 kg/m3. The instrument and re-
trieval algorithm are not suitable for deformed ice. Altitudes larger than 100
m, high pitch and roll values, and retrieved snow depths above 1.5 m are as-
signed to NaN to snow depth values. The uncertainty is 4.2 cm and the mean
bias is 0.64 cm. The instrument footprint at flight altitude is about 2 m in
diameter (Jutila et al., 2021).

3.5 Calculation of roughness parameters

3.5.1 RMS height, RMS slope, skewness, and kurtosis

The equations for RMS height σ (Equ. 2.1), RMS slope m (Equ. 2.3), skewness
and excess kurtosis (Equ. 2.6) from Chapter 2 are used with a sliding window
of a length of approximately 50 m (for bottom roughness also 500 m) for the 1D
profiles of surface height and ice thickness. Circles of 50 m diameter centered
on the EM measurement locations for the ALS DEMs are used as windows to
estimate those parameters for the ALS data, except the RMS slope.

3.5.2 PSD and fractal dimension

The power spectral densities for the altimeter profile of hH for the different
regions and years are estimated with Welch’s method as described in Chapter
2 and implemented in Python package "scipy". The bandwidth limited RMS
values (see Equ. 2.10) are calculated by integration from fmin = 1/100 m−1
to fmax = 2/d. The lower limit of 1/100 m−1 represents the wavelength of
about 100 m above which the aircraft motion filtering becomes effective. d is
the sampling distance of about 0.5 m.
The fractal dimension D is determined as the slope of the PSD on the log-log
plot with the same limits of fmin and fmax as for the RMS height estimation
according to Equ. 2.24. The estimated correlation lengths are calculated with
the discrete version of Equ. 2.19.
In a similar manner, the PSD for ice thickness and all derived parameters are
calculated, with fmin = 1/1000 m−1 and fmax = 1/50 m−1 where the upper limit
is chosen to be the footprint diameter of the EM method, at higher frequencies
the PSD would be a function of the smoothing from the overlapping footprints.

3.5.3 Semivariogram

Semivariograms are calculated for 1000 m sections of the profile, starting every
250 m. The maximum lag distance is set to 500 m. The resulting family of
experimental variograms for surface heights and ice thickness for the different
years and regions are fitted with an exponential model (Equ. 2.23). One mean
semivariogram and model for each year and region is calculated, from where the
mean range and sill are determined.
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3.6 MODIS images
Corrected Reflectance images from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) in GeoTIFF format is available from the Worldview website
from February 2000 to present (NASA, 2021b). Band 1 (Red) has a sensor res-
olution of 250 m, Band 4 (Blue) and Band 3 (Green) have sensor resolutions of
500 m. Hence, Band 1 is used to sharpen the other bands. Imagery resolution
is 250 m, and the temporal resolution is daily for high latitudes. The MODIS
Corrected Reflectance algorithm utilizes the calibrated, geolocated radiances
(MODIS Level 1B data) and is not a standard, science quality product. The al-
gorithm is designed to provide natural-looking images by removing atmospheric
effects, such as Rayleigh scattering (NASA, 2021a).
Images of Nansen Sound are inspected for cloud coverage; cloud-free images from
spring 2016 to autumn 2019 are downloaded. The images serve as reference
for approximate annual start and end dates of the melt season, melt pond
distributions, and annual minimum ice plug extent.

3.6.1 Selecting survey sections for inter-annual compari-
son

The selection of profile sections suitable for comparison is based on the avail-
ability and spatial proximity of EM data in the three years. Unfortunately,
flight tracks were not ideally located, i.e., they are not in close proximity.
The chosen sections for comparison of the landfast MYI are Regions A and B in
Fig. 3.11. Region A comprises 11.6 km of data. Region B is a 2.6 km long subset
of region A. Region A can be used to compare conditions in 2017 to 2019, while
only the subset B is used to include the 2018 profile in comparisons. This is
done to assure similar ice types, as the survey in 2018 was off to the east, where
the considerably thicker and more rugged Old MYI was present. Region C (12.2
km) was selected to compare the MYI evolution with the seasonal landfast ice
on the Nansen Sound, hereafter simply called FYI.
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Fig. 3.11: Ice thickness for the surveys in 2017, 2018, and 2019. Regions A, B, and
C are the sections which will be used for inter-annual comparison throughout this

document.

3.7 Sentinel-2 images
Sentinel-2 is a multispectral satellite operated by the European Space Agency
which acquires 13 spectral bands. The Level-1C products have radiometric and
geometric corrections including ortho-rectification and spatial registration on a
global reference system.
Level-1C scenes are downloaded and processed with the Semi-Automatic Clas-
sification Plugin (SCP) 7.8.6 in QGIS (Congedo, 2016). Cloud masks allow to
filter scenes for low cloud cover (ESA, 2015b). True color images are created
from Band 2 (Blue, central wavelength 0.490 µm), Band 3 (Green, central wave-
length 0.560 µm), and Band 4 (Red, central wavelength 0.665 µm). All bands
have a resolution of 10 m.
One image with the largest melt pond coverage and simultaneously low cloud
cover is selected for summer 2017 and one for summer 2018. Those images were
acquired on 17 July 2017 and 4 July 2018.

3.7.1 K-means clustering for surface classification

Clustering is the grouping of pixels based on spectral similarity for a multi-
spectral image. The classes produced by clustering (i.e., the clusters) have no
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surface type definition, consequently the user must assign a label to each class.
The following K-means algorithm provided in SCP will be used:
At first, the user defines the number of clusters k expected in the image. Starting
spectral signatures (seeds) are selected randomly.
Each pixel represents a d-dimensional vector x, where d is the number of bands.
An image with n pixels is a set of observations (x1, x2, ... , xn). For k clusters,
the n observations are partitioned in sets S = {S1, S2, ...Sk}. The average
spectral signature µi is calculated for each cluster of pixels Si. The objective is
to minimize the within-cluster sum of squared deviations

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖
2 (3.4)

The K-means algorithm works in two steps: The assignment step, where each
observation is assigned to the cluster with the nearest mean; and the update
steps where the means for each cluster are recalculated. This process is repeated
until the maximum number of iterations is reached. The algorithm does not
guarantee convergence to the global optimum. The result may depend on the
initial clusters (Wikipedia, 2021).
The algorithm is run for the RGB bandsets of the two images with k = 10
clusters. The maximum number of iterations is set to 10. After the last
iteration, a GeoTIFF is produced (Fig. 3.12 and 3.13). The surface types were
assigned to the clusters by visual comparison with the true color representation
of the bands. The resulting classes are listed below.

Table 3.1: Class numbers of the 10 clusters, and assigned surface type

Class No. Surface types

0 unclassified
1 land
2 dark melt pond
3 melt pond
4 grey ice
5 white ice
6 bright white ice
7-10 land

All pixels below the EM tracks were assigned a class from 2–6. Class 2 and 3 will
later be compiled as "pond" class and class 4–6 as "ice" class. The classes of the
pixels coincident with the EM survey tracks are extracted from the GeoTIFFs.
We call the fraction of pixels classified as "pond" melt pond fraction fp.
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(a) RGB true color image (b) Clustering results

Fig. 3.12: Subsets of S2 scenes for the ice plug region acquired on 17 July 2017

(a) RGB true color image (b) Clustering results

Fig. 3.13: Subsets of S2 scenes for the ice plug region acquired on 4 July 2018

3.8 Sentinel-1 backscatter

3.8.1 Data selection

Sentinel-1 Level 1 C-Band scenes for early spring 2017, 2018, and 2019, as well
as for autumn 2016, 2017, and 2018 were obtained through Copernicus Open
Access Hub (ESA, 2021). Level-1 product in Extra Wide (EW) swath mode
comprises five subswaths of georeferenced and ground range detected SAR data
at a swath of 400 km and 20 m by 40 m range by azimuth resolution. The
product was downloaded in dual-polarization (horizontal transmit and receive
polarization + horizontal transmit and vertical receive polarization, HH + HV)
(ESA, 2015a).
For each spring and each autumn, five images are used to determine the inci-
dence angle dependence of backscatter. The time periods of image acquisition
for early spring are 2017-03-29 to 04-03, 2018-03-28 to 04-06, and 2019-04-01
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to 04-03. For autumn, times after freezing were selected: 2017-09-01 to 09-05
and 2018-09-01 to 09-05. A list of all products used can be found in B.1 in the
Appendix.

3.8.2 Processing with SNAP

The products are processed using the Sentinel Application Platform (SNAP).
The processing steps in SNAP are:

• Radiometric calibration for output of σ0. The calibration is reversing
the scaling factor applied during Level 1 product generation. A constant
offset, and a range dependent gain, which includes the absolute calibration
constant, is applied. The information needed is included as an annotation
in the Sentinel-1 product (Filipponi, 2019).

• Creation of a spatial subset

• A Geometric Ellipsoid correction, the Average Height Range-Doppler is
applied. Range-Doppler correction uses the orbit state vector information
to correct the geometric distortion caused by the side-looking geometry
(Filipponi, 2019). Stereographic North Pole is selected as target Coor-
dinate Reference System. An additional band with incidence angles θ is
created.

• Export to GeoTIFF format for visualization in QGIS

The σ0 and incidence angle values of the pixels coincident with the EM measure-
ments are extracted and used in the further analysis of backscatter evolution.

3.8.3 Backscatter dependence on incidence angle

For each season, the mean incidence angle θ and the mean backscatter σ0 over
all five scenes is calculated for the FYI region and ice plug (see Tab. B.2). The
mean incidence angles fall between 30–37◦, so the mean backscatter is indeed
comparable across seasons.
The slope σ0/θ for each season is obtained through linear regression of the
scatter plot. R2 values for all cases indicate that a linear model is a valid choice
for the incidence angle range of Sentinel-1. The obtained slopes are tabulated
in Tab. B.3 in the Appendix.

3.9 ERA5 climate reanalysis data
ERA5 is made available by the European Centre for Medium-Range Weather
Forecasts (ECMWF) as the latest reanalysis product. The ERA5 data set
extends back to 1950, has global coverage, with a horizontal resolution of 31
km. ERA5 includes various newly reprocessed data sets and recent instruments
that could not be ingested in ERA-Interim, the predecessor (Hersbach et al.,
2020). ERA5 Land provides hourly analysis and forecast fields with a higher
resolution of 9 km for the land component of Earth’s surface.
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ERA5 Land data for the surface level was downloaded through the Climate
Data Store website (ECMWF, 2021) for January 2016 to December 2019 with
a temporal resolution of 12 h. For the location of Nansen Sound the spatial
resolution corresponds to grid cells with dimensions of 1.6 km in longitudinal
direction and and 11.1 km in latitudinal direction. An overview of the down-
loaded variables can be found in the Appendix in Tab. B.4.
A subset of the data around the coast of the ice plug is used to obtain field
means (Fig. 3.14). Grid cells with no contact to the coastline are removed to
minimize the influence of mountain topography on the climate parameters. The
temperature field in Fig. 3.14 illustrates the effect of cooler temperatures in the
adjacent mountainous areas compared to cells with lower elevation at the coast.
For each variable, the average and standard deviation over the selected grid cells
is calculated. The standard deviation serves an estimator for the variability of
the respective variable within the region.

Fig. 3.14: ERA5 Land grid cell subset around the Nansen Sound ice plug. Only
pixels with a coast are used to avoid cells with higher elevation above sea level.

3.9.1 Surface energy budget

The net surface energy budget is calculated as the sum of surface net solar
radiation ssr, surface net thermal radiation str, surface latent heat flux slhf and
surface sensible heat flux sshf. All heat fluxes at 0:00 UTC for a certain date
are the accumulated fluxes of the previous 24 h. To convert from J s−1 m−2 to
W m−2 we divide by 86400 s, which gives the net surface energy budget

net surface energy budget = (ssr + str + sshf + slhf)/86400s (3.5)

Seasonal means of the total radiation for the summer seasons (June–August)
and the remainder of the year (September–May) are calculated, along with
total precipitation and mean temperature. The values are given in Tab. 4.6 in
Chapter 4.
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3.9.2 Mean temperatures and melt season onset and du-
ration

To account for the daily temperature cycle, the 2-m temperature field was
downloaded for 3 h intervals (instead of the 12 h used for all other variables) from
which the daily mean temperature is obtained. Due to the freezing temperature
of salt water being the important value for sea ice formation, we define the melt
period as the period with daily mean temperatures above -1.80◦C. The melt
onset and offset dates, the melt period duration, and the mean temperatures
during the respective melting seasons are computed. The same quantities are
calculated analogously for the freezing season.

3.9.3 Melting and freezing degree day sums

The melting degree day sum MDD is the sum of daily average temperatures
above -1.80◦C over one year. Analogously, the freezing degree day sum FDD
as the sum of daily average temperatures below -1.80◦C over one year is used
to address potential for ice growth in winter.

MDD =
∑
365d

T≥−1.8◦C (3.6)

FDD =
∑
365d

T<−1.8◦C (3.7)

The obtained values are tabulated in Chapter 4, Tab 4.7 and Tab. 4.8.

3.9.4 Wind speed

The 10-m wind speed v in m s−1 is calculated from the u- and v-wind compo-
nents according to

v =
√
u210 + v210 (3.8)

The wind speed is assessed for anomalously strong winds and wind directions
during the breakup periods in 2016 and 2019, the values are listed in the
Appendix, Tab. B.6 and B.5. In this course, striking differences in surface
pressure and in precipitation are also investigated.

3.9.5 Estimation of summer ablation

The relative importance of the summer net surface radiation and the MDDs
are compared by their estimated contribution to summer ablation. Assuming
that the entire net radiation Qnet

A
is consumed by latent heat for thawing ice

and snow, the total melt water mass per square meter mtotal
A

is given by

Qnet

A
=
mtotal

A
· L (3.9)
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where L = 334 kJ/kg is the standard latent heat of fusion for water. It is
reasonable to assume that all snow of depth dsnow was melted each summer
before ice ablation started. Treating snow density as constant with ρsnow = 300
kg/m3, and ice density also as constant with ρice = 900 kg/m3 we get the ice
ablation ∆dice

∆dice =
mtotal
A
− dsnow · ρsnowA

ρice
(3.10)

For the snow depths in 2017 and 2019, the available mean snow depth obtained
by the snow radar will be used. For 2016 and 2018 we assume a snow depth of
20 cm.
For the influence of MDDs on ablation, it is necessary to know the positive
degree-day factor k. For ablation on the Greenland ice sheet these values range
from kice = 8 mm water equivalent (w.e) per MDD to 12 mm w.e per MDD, for
albedo between 0.5 and 0.3 (Braithwaite, 1995). The value for snow is ksnow =
3 mm w.e per MDD. The ice ablation is then

∆dice = kice ·MDD − dsnow
ksnow

(3.11)

A lower and an upper bound for the ablation is calculated for the lower and
upper bound of kice. The ablation estimate from the MDD model is neglecting
the heat needed to warm the ice and snow to the melting point, and the heat
flux from the ocean.
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4 Results

4.1 Ice plug formation, evolution, and breakup

(a) 2016-09-16 (b) 2017-09-04 (c) 2018-09-11 (d) 2019-08-09

Fig. 4.1: MODIS images of the yearly minimum extents and the breakup of the plug
in 2019.

For interpretation of the data collected in March 2017, the ice types after the
freeze-up in 2016 must be known. The inspection of MODIS images starts in
2016 on 5 August after the ice plug broke up. In August, most of the plug ice
appears to drift southward and is, at least to some degree, replaced by sea ice
intruding from the Arctic Ocean. In September, the western shore is ice-free,
while the ice consolidates at the eastern half of the former plug, see Fig. 4.2,
first panel. This eastern section is referred to as Old MYI from now on. From
14 September onward, this ice cover appears continuous and does not change
much in extent until 3 October, the last date with daylight. Ice is drifting into
the fjord throughout autumn. From SAR images it could be confirmed that the
Old MYI is still in place during freeze up, as well as some sparse drifting floes
on Nansen Sound.
In 2017, the ice plug surface changes appearance from white to blueish between
23–26 June. The first cloud-free image from 5 July shows a variable melt pond
cover, with the western second-year ice part interspersed with ponds, and fewer
ponds in the eastern region of Old MYI, which is evident in the MODIS image
in Fig. 4.2a. Also, the melt pond fraction seems larger on the second-year
ice than on the landfast FYI. The color turns from bluish to grayish at the
end of July, possibly indicating drainage of melt ponds. Fresh snow covers
the plug from 17 August onward, and the surface appears more uniform and
whiter. On 19 August, the southern fjord ice fractured and is subsequently
drifting southward. The minimum southern extent is reached on 29 August.
Open water to the north exists for short periods in July and the end of August
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only, most of the time dense pack ice fringes the northern edge. New ice on the
sound forms in September, and at the end of the month, the ice cover appears
non-uniform with leads.
In 2018, melt ponds appear on the FYI to the south, in the bays, and the western
shore of the plug area around 14 June, spreading over the plug shortly before 22
June. Melting intensifies with a similar spatial pattern as that in 2017. As in
the year before, the surface changes from a blue to a grey appearance, but earlier
than in 2018, around the end of June. On 30 July, the southern edge fractures,
and the ice gets removed during the next week. Throughout August, the edge
advances northward. Open ocean conditions prevail throughout the month, and
the northern edge advances to the south. The approximate minimum extent is
at the beginning of September. The southern margin has lost 12 km compared
to the minimum extent in the previous year, while the northern margin lost
about 3 km. Between 19–24 September, a thin layer of grey ice forms to the
south of the plug, which seems to thicken.
In 2019, the first hint of blue on the plug appears on 16 June and intensifies
till July. In July, parts of the northern edge break off. Starting from 24 July,
fractures advance northward until the barrier breaks up someday between 2–5
August. In contrast to the breakup in 2016, the sound is cleared of old ice
completely during August.

(a) 2017-07-17 (b) 2018-07-04 (c) 2019-17-07

Fig. 4.2: MODIS images at the yearly dates of apparent maximum melt pond
coverage.

Tab. 4.1 gives the last date where the surface appears white, and the first date
where the surface has turned blueish as the onset dates of melt pond formation.

Table 4.1: Earliest and latest date for appearance of melt ponds

Year Earliest date Latest date

2016 06-04 06-10
2017 06-23 06-28
2018 06-20 06-26
2019 06-13 06-17



4.2. Processing of altimeter data 43

4.2 Processing of altimeter data
Based on the signal coherence described in the previous chapter, I decided to use
the surface height profiles obtained by filtering with the modified Hibler method.
Because of the large coherence between altimeter ranges and the filtered heights,
together with the low coherence between altimeter ranges and DGPS heights,
it is reasonable to expect that the determined roughness parameters in 50-m
sliding windows capture the magnitude of surface roughness accurately at least
in 2018. For 2017 and 2019 the goodness of fit cannot be assessed.

4.3 Comparison of altimeter and ALS derived
surface roughness

The RMS height, skewness, and excess kurtosis in 50-m windows is calculated
for the filtered altimeter heights and from the ALS DEMs. The mean values
for the regions of ice plug (A and B) and FYI (C) are listed in Tab. 4.2. The
mean RMS heights for the altimeter deviate by no more than 2 cm from the
ALS RMS heights. The sign and magnitude of skewness is consistent between
altimeter and ALS. Skewness is positive, indicating a distribution with a slightly
heavier tail of highest elevations. The average kurtosis for altimeter is below
zero, indicating surface height distributions that are broader than the normal
distribution, while the ALS kurtosis is positive throughout.
Histograms of the roughness parameters show distributions of RMS height
and skewness for the altimeter heights that are generally broader than the
distributions for the ALS DEM (see Fig. A.3 and A.4 in the appendix). The
number of measurements which are used to compute the altimeter parameters
in 50-m windows is smaller than the number for ALS roughness in the footprint
of the EM Bird, therefore outliers will have a higher impact, explaining the
broader distributions. Depending on the orientation of surface features, the
roughness from the altimeter will over- or underestimate the true variability
of surface heights within the EM footprint. That the profiles of the respective
roughness measures for ALS and altimeter have similar magnitudes and means
is illustrated in Fig. 4.6 and 4.7.
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Table 4.2: Mean values of roughness parameters for ALS (50-m footprint) and
altimeter (50-m sliding windows) for the respective profile sections and years.

Year 2017 2019 2018
ALS Altimeter ALS Altimeter Altimeter

RMS height [cm]

MYI (A) 8.9 9.3 8.6 7.5 9.6
MYI (B) 9.0 11.0 9.0 7.6 5.5
FYI (C) 7.5 6.5 7.2 5.8 9.4
Skewness

MYI (A) 0.66 0.39 0.34 0.34 0.31
MYI (B) 0.67 0.31 0.35 0.40 0.15
FYI (C) 0.78 0.42 0.53 0.53 0.47
Kurtosis

MYI (A) 0.34 -0.13 0.04 -0.25 -0.24
MYI (B) 0.43 -0.22 0.06 -0.18 -0.34
FYI (C) 0.90 0.11 0.21 -0.36 -0.04

4.4 Ice thickness and roughness evolution

4.4.1 Ice thickness evolution

The mean ice thickness of the plug is 1.7 m in 2017, 2.3 m in 2018, and 2.6 m in
2019 for region B. The mean ice thickness of the FYI (region C) in 2017, 2018,
2019 was 2.0 m, 2.3 m, and 1.9 m, respectively.

Table 4.3: Mean and modal ice thickness by year and section.

Region Year Mean Mode
[m] [m]

MYI (A) 2017 1.9 1.8
2018 3.7 2.2
2019 2.4 2.3

MYI (B) 2017 1.7 1.5
2018 2.3 2.2
2019 2.6 2.5

FYI (C) 2017 2.0 1.9
2018 2.3 2.1
2019 1.9 1.8

The ice thickness profile for the ice plug in Fig. 4.3 shows undulations at
wavelengths of several hundred meters in 2017. The thickness in 2017 has
a range of 1.7 m. Qualitatively, the aged ice in 2019 has less pronounced
undulations compared to 2017, reflected in the ice thickness range that decreased
to 1.3 m. The ice thickness distributions (Fig. 4.5) are symmetrical in 2017
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and 2019 for MYI and FYI; the modes deviate downwards from the mean by
0.1–0.2 m for those years.
For 2019, the thickness distribution of section B has a second mode at the
thickness of 2.8 m. This mode could be explained by spatial variation in summer
ablation, caused by the melt pond pattern. We expect to see this difference in
the mean ice thickness after the classification of surfaces in S2 summer images.
The Old MYI has the overall largest ice thickness and the largest thickness
range of 8.8 m. This ice has undergone strong deformation, evident in skewed
distribution and a significantly higher mean than modal thickness.
The ice thickness profiles for the FYI display similar characteristics in 2017
and 2019, while variations in thickness are larger and of shorter scale in 2018,
indicating that the mode of sea ice formation could have been different in that
year. This difference is also notable in the longer, heavier tail in the FYI
thickness histogram.

Fig. 4.3: MYI profiles (regions A and B) of altimeter surface height, snow depth,
and negative ice thickness.
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Fig. 4.4: FYI profiles (region C) of altimeter surface height, snow depth, and negative
ice thickness.

Fig. 4.5: Normalized ice thickness histograms.

4.4.2 Snow thickness

The average snow thickness on the ice plug is 0.20 m in 2017 and 0.42–0.48 m
(averages of two different flights at different altitudes) in 2019. The mean snow
thickness on the FYI is 0.18 m and 0.14 m in 2017 and 2019, respectively.

4.4.3 Surface and bottom roughness

The bottom RMS heights and slopes were calculated from the ice thickness in
50-m sliding windows and 500-m sliding windows. The bottom roughness is
likely underestimated on the 50-m scale, because is within the diameter of the
EM footprint. For the 500-m windows, the RMS height of ice thickness across
all regions and years is higher by a factor of 3.1–5.7 than the RMS height in
50-m windows. The largest factor of 5.7 was found for the Old MYI in 2018.
This scale-dependency of roughness and is further motivation to use the PSD
and semivariogram approaches.
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In order to compare the evolution of surface roughness to the evolution of
bottom roughness, we asses that the decrease of bottom RMS height on the 50-
m scale is 30% from 2017 to 2019, and 34% on a scale of 500 m. Building upon
the result that the ALS topography shows no change in RMS height, the bottom
roughness decreased more than the surface roughness. In 2018, sections with a
larger mean surface roughness had a larger mean bottom roughness e.g., the Old
MYI with largest bottom roughness has also the largest surface roughness. Such
a behavior is not evident in the remaining years, where differences in roughness
between the regions were smaller. The RMS slopes of the bottom roughness
does not change from 2017–2019 while the surface RMS slope increases from
4.7 cm/m to 6.6 cm/m.

Table 4.4: Means of roughness parameters for ice thickness (Bottom, B) and single-
beam altimeter (Surface, S).

2017 2018 2019
RMS height B S B S B S
50 m [cm]

MYI (A) 7.6 9.3 24.3 9.6 5.3 7.5
MYI (B) 6.7 11.0 3.1 5.5 5.2 7.6
FYI (C) 4.6 6.5 10.2 9.4 4.1 5.8
Old MYI 27.6 10.1
RMS height B S B S B S
500 m [cm]

MYI (A) 28.5 138.6 18.8
MYI (B) 22.0 9.7 22.7
FYI (C) 20.4 39.1 15.1
Old MYI 143.3
RMS slope B S B S B S
50 m [cm/m]

MYI (A) 0.6 4.7 1.4 5.8 0.5 6.6
MYI (B) 0.5 4.8 0.3 5.1 0.5 6.6
FYI (C) 0.3 3.8 0.7 4.4 0.4 7.0
Old MYI 1.5 5 .2

4.4.4 Melt pond fraction influence on thickness and rough-
ness

The melt pond coverage of pixels coincident with the airborne measurement
locations was extracted from S2 scenes after K-means clustering and classifica-
tion. Refer to the profiles in Fig. 4.6 and 4.7 for thickness profiles color coded
according to melt pond cover.
For the ice plug (section A) in 2017, the pond class has a mean thickness that
is 18 cm larger than the mean thickness of the ice class. In contrast, the SYI
(section B) in 2018 has a 10 cm larger thickness for the ice class, and the region
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of Old MYI has a 1.27 m larger thickness for the ice classes. In 2019, the ice
class is 36 cm thicker than the pond class.
The differences in mean thickness between the classes for the FYI in 2017 and
2019 is negligible (absolute values below 5 cm). The rougher FYI in 2018 has a
13 cm difference between mean thickness of pond and ice class.
The RMS heights for the pond and ice class are similar, except for region A in
2018, which is a mix of SYI and Old MYI, where the pond class (predominately
SYI) has half the RMS height of the ice class (predominately Old MYI).

Table 4.5: Regional means of ice thickness, melt pond fraction fp, and altimeter
RMS heights (50-m windows)

Year 2017 2018 2019
Ice thickness [m] pond ice fp pond ice fp pond ice fp

MYI (A) 1.81 2.00 63 2.81 4.47 48 2.42 2.72 91
MYI (B) 1.73 1.57 93 2.29 2.38 99.6 2.57 2.93 82
FYI (C) 2.03 2.06 69 2.25 2.38 46 1.89 1.85 62
Old Ice 3.18 4.45 38

RMS height [cm] pond ice pond ice pond ice

MYI (A) 9.9 8.3 6.4 12.6 7.5 7.4
MYI (B) 10.8 14.3 5.5 5.8 7.6 7.9
FYI (C) 6.4 6.8 8.6 9.1 6.1 5.6
Old Ice 7.6 11.6

(a) 2017
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(b) 2018

(c) 2019

Fig. 4.6: MYI profiles of various surface roughness parameters. Minus signs are used
for all profiles of bottom roughness. The color scale of the ice thickness profile in
the uppermost panel ranges from dark blue to white for the pond to ice class from
clustered S2 images. The lowermost panel shows the backscatter profiles extracted

from the S1 scenes with different incidence angles.
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(a) 2017

(b) 2018
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(c) 2019

Fig. 4.7: FYI profiles of various surface roughness parameters. Refer to Fig. 4.6 for
a description. The brown color of the ice thickness profile in the uppermost panel is

used for the section outside the S2 scenes i.e., the surface type is not classified.
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4.4.5 Roughness estimation from PSD and semivariogram

Power spectral density

Fig. 4.8: PSD of surface height with estimates for RMS height σ, RMS slope m,
correlation length lc and fractal dimension D.

In the previous section, the RMS roughness for the surface was estimated on
a scale of 50 m. By means of the PSD we can assess whether these estimates
hold for the spatial scales of 0.5–100 m by calculating the zeroth moment of the
PSD.
The PSDs for the surface heights in Fig. 4.8 have RMS heights of 11 cm for
the ice plug in 2017 and 2019 (the corresponding RMS heights for the 50-m
windows in Tab. 4.4 of the previous section were 9 cm and 8 cm). In 2018,
the PSD estimate is 8 cm for the ice plug SYI (section B) and 17 cm for the
Old MYI, while the 50-m windowing gave RMS heights of 6 cm and 10 cm.
To summarize, the roughness estimates for the 0.5–100 m scale are consistently
higher, but in the same order of magnitude as the roughness on a 50 m scale.
While the estimated RMS height in 2017 and 2019 is identical, the RMS slope
increased slightly from 8 cm/m in 2017 to 12 cm/m in 2019. The respective
50-m-window estimates (Tab. 4.4) were 5 cm/m and 7 cm/m.
The correlation lengths range from 5.2 m to 13.8 m. In 2017 and 2019, the
correlation lengths of the ice plug surface are similar with 8.6 m and 7.9 m,
respectively. The FYI RMS heights, RMS slopes and correlation lengths fall in
the same range as the respective parameters for the ice plug.
The slopes of the PSD on the log-log plot exhibit linear behavior on spatial
scales from 100 m down to nearly 1 m, apart from the PSD of surface heights
for 2019, which flattens out for scales smaller than 5 m. The fractal dimension
D is estimated from a linear fit to the slopes. D covaries for MYI and FYI
between the years, suggesting that the filtering of flight altitude variations could
be responsible for the variability. The Old MYI and the FYI in 2018 have the
lowest fractal dimensions. These sections had the highest RMS roughness.
The PSD of ice thickness (Fig. 4.9) has a steepening slope for wavelengths
shorter than 50 m, where smoothing from overlapping footprint is expected to
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Fig. 4.9: PSD of ice thickness with estimates for RMS height σ, RMS slope m,
correlation length lc and fractal dimension D.

influence the signal. The RMS height from the PSD of ice thickness in region A
halved from 29 cm in 2017 to 14 cm in 2019, while it is lower and more stable
for the FYI, with 21 cm and 17 cm, respectively. The PSD estimate of RMS
height is higher than that for the 50-m-windows. Instead, the PSD roughness
estimates (29 cm in 2017, 14 cm in 2019 for region A) are in the same range
as the RMS estimates for the 500-m-windows (29 cm in 2017, 19 cm in 2019,
region A). The PSD method supports that the observed decrease in roughness
on scales of 50 m and 500 m can be extrapolated to the spatial scale from
50–1000 m.
The correlation length lc is shortest for the Old MYI and the FYI in 2018. lc
increases only slightly from 2017 to 2019. The estimation of fractal dimension
largely depends on the choice of the frequency interval for fitting of a linear
model, the absolute values should not be taken at face value. The rough Old
MYI in 2018 has the lowest fractal dimension. An increase from 2017 to 2019
in fractal dimension is seen, but an increase is also observed for the landfast
FYI, so a higher fractal dimension cannot be unambiguously attributed to MYI
evolution.

Semivariance

The mean variograms of surface heights for the ice plug in Fig. 4.10 show
a decrease in range over time (74 m in 2017, 42 m in 2018, and 38 m in
2019), indicating that the surface heights are spatially uncorrelated after shorter
distances. The semivariogram for the Old Ice in 2018 can be found in Fig. A.5
in the Appendix. The Old ice has a range of 56 m. The sill value in 2017 of
0.021 m2 corresponds to a standard deviation of

√
0.021 m = 14 cm. In 2019,

the sill of 0.009 m2 corresponds to a standard deviation of 9 cm, which is of
similar magnitude as the RMS heights in the previous section and show a slight
decrease. The Old MYI in 2018 has the highest sill of 0.024 m2 (15 cm).
All semivariograms show a "hole effect", where the variogram decreases from a
local maximum located between 50–100 m to a local minimum located between
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Fig. 4.10: Surface height semivariograms for MYI. For an overview of the mean
variograms for each year drawn the the same scale, see the Appendix.

Fig. 4.11: Surface height semivariograms for FYI.

100–150 m and then increases again. This form arises from regular repetition
in the process. A variogram that continues to fluctuate with a wave-like form
with increasing lag distance indicates periodicity (Webster and Oliver, 2007).
The hole effect is most pronounced in 2017 (see Fig. A.6 in the appendix for a
plot of the semivariograms to the same scale).
For comparison, the semivariograms of the FYI can be found in Fig. 4.11.
Ice thickness variograms in Fig. 4.12 show a decrease in range from 2017 to
2019 in the MYI region B, together with a decrease in sill values, however, a
similar variability of sill and range can be seen for the thickness profiles of the
FYI in Fig. 4.13, therefore the observed decrease of the spatial scale where the
ice thicknesses become spatially uncorrelated, and the decrease in roughness
must not be a direct cause of the evolution of the MYI. It is not so clear
weather the exponential model captures the ice thickness semivariograms well
e.g., the modeled variogram for 2017 in Fig. 4.12 deviates from the experimental
variograms for short lags.
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Fig. 4.12: Ice thickness semivariograms for MYI. For an overview of the mean
variograms for each year drawn the same scale, see the Appendix.

Fig. 4.13: Ice thickness semivariograms for FYI.

4.5 Sentinel-1 backscatter evolution
Fig. 4.14 shows Sentinel-1 images of σ0

HH for October 2016, and the dates
around the airborne surveys. The selected images have similar incidence angles.
Enlarged views of the MYI regions A and B, and FYI (region C) are depicted
in Fig. 4.15. In October 2016, the Old MYI in the east shows highly variable
backscatter, which appears similar in pattern and intensity to the pack ice on
the Arctic Ocean. Distinct areas of low backscatter within the consolidated
pack ice could be heavily snow-covered ice or sub-surface melt ponds (refer to
p. 97 in Carsey, 1992 for a case study of MYI floe backscatter). Until March
2017, the backscatter variability within the Old MYI ice remains high, but by
2018 the backscatter of this region became more uniform, a continuing until
2019.
The landfast ice which formed in situ in 2016 has a homogeneous backscatter
with only small regions of higher return, where old floes were present during
freeze-up in 2016. The backscatter contrast between the eastern Old MYI and
the younger ice of the western part of the ice plug decreases over the years. The
minimum extent of the plug in 2017 is clearly visible in 2018 through a higher
backscatter of the SYI compared to the adjacent FYI. The same statement is
valid for 2019, where the minimum extent from 2018 is distinguishable. In 2018,
backscatter of the plug appears to be slightly higher where melt water pooled
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excessively in 2017, and where the sparse MYI floes were incorporated in 2016.
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(a) 2016-10-31 (b) 2017-03-29, θ = 41◦

(c) 2018-04-06, θ = 44◦ (d) 2019-04-01, θ = 43◦

Fig. 4.14: Sentinel-1 backscatter σ0HH for autumn 2016 and the dates around the
airborne surveys. θ is the mean incidence angle for pixels coincident with the survey

tracks over the ice plug.
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(a) 2017-03-29

(b) 2018-04-06

(c) 2019-04-01

Fig. 4.15: Sentinel 1 backscatter σ0HH . Enlarged sections of the scenes in Fig. 4.14.
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σ0
HH of the ice plug increased from -20.8 dB to -13.9 dB, and -13.0 dB throughout

the years. The FYI ice had a mean σ0
HH of -19.8 dB, -17.1 dB, and -20.7 dB

around the dates of airborne surveys in 2017, 2018, and 2019, respectively.
For the ice plug, the mean σ0

HV increased from -29.0 dB in 2017 to -25.3 dB in
2018, and -23.2 dB in 2019. This increase in backscatter is typical for MYI as
a result from desalination and increasing porosity (Carsey, 1992). σ0

HV of the
seasonal landfast FYI was constant with -28.3 dB in 2017, -26.1 dB in 2018,
and -29.5 dB in 2019.

4.5.1 Dependence of backscatter on incidence angle

Fig. 4.16: Linear regression scatter plots for σ0(θ) of the ice plug. Error bars are 1
standard deviation of σ0.

Fig. 4.17: Linear regression scatter plots for σ0(θ) of FYI.
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Fig. 4.16 shows the linear regression σ0(θ) = a · θ + b of the backscatter versus
incidence angle for the ice plug (region B) and Fig. 4.17 gives the result for the
seasonal landfast FYI for HH and HV polarization.
For the ice plug, the slope a decreased from -0.26 dB/1◦ in spring 2017 to -0.15
dB/1◦ in spring 2018. a remained constant from spring 2018 to spring 2019.
The slope in September 2017 (-0.12 dB/1◦) is already smaller than the slope in
spring 2017. The slope of σ0

HV (θ) decreased from spring 2017 to autumn 2017,
and remains between -0.11 to -0.17 dB after this first melt season.
The landfast FYI shows no trend in slopes for σ0

HH or σ0
HV , and the slopes are

consistently higher than the MYI slopes. The highest recorded slopes are those
for σ0

HH in autumn 2017 and 2018, however the correlation is weaker, with R2

= 0.7. For all other regressions R2 is above 0.9 and the slopes range from -0.21
to -0.29 dB/1◦ (Tab. B.3).
In order to address the scattering evolution of the Old MYI overflown in 2018, we
repeated the determination of incidence angle dependence and mean backscatter
for the pixels below the track flown in 2018 (Fig. 4.18). The Old MYI has a near
constant mean σ0 and incidence angle dependence throughout 2016–2019. The
part of the ice plug that formed in 2016 shows an increasing mean HH and HV
backscatter, approaching the backscatter of the Old MYI in 2019, consistent
with the visual impression of decreasing contrast of the ice types in Fig. 4.15.

Fig. 4.18: Linear regression scatter plots for σ0(θ) of pixels below the survey track
from 2018 for the western section of the ice plug formed in 2016 (dashed lines), and

the eastern section of the ice plug (Old MYI, solid lines).

4.6 Role of climatic conditions for stability

4.6.1 Surface energy budget

The seasonal evolution of the radiation budget in Fig. 4.19 exhibits the expected
positive summer radiation balance and a negative balance in winter.
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The surface energy budget (Tab. 4.6) for the summer seasons was highest in
2019, and lowest in 2018. The percentage difference between 2019 and 2018
is 114%. September–May radiation balance for 2016–2017, and 2018–2019 was
similar, but the balance was lower for winter 2017–2018.

Table 4.6: Seasonal means of net surface radiation, and cumulative total precipita-
tion

Season Start date End date Radiation balance Total precipitation
[W/m2] [cm]

summer 2016-06-01 2016-08-31 16.7 28.2
summer 2017-06-01 2017-08-31 16.3 30.4
summer 2018-06-01 2018-08-31 15.7 24.4
summer 2019-06-01 2019-08-31 18.0 21.4

winter 2016-09-01 2017-05-31 -2.9 30.7
winter 2017-09-01 2018-05-31 -3.5 20.6
winter 2018-09-01 2019-05-31 -2.6 22.6

Fig. 4.19: ERA5 2 m air temperature and radiation balance (7-day moving averages).
Grey lines are the standard deviation of the respective variable in the region. High-
lighted in Orange: Seasons with daily mean temperatures above -1.8◦C. Highlighted
Blue: Onset of melt pond formation from MODIS images. Highlighted Red: Breakup

events.

4.6.2 MDDs, mean temperatures, and melt periods

In every summer season, the radiation balance became positive 2–4 weeks earlier
than the date where temperatures rose above -1.8◦, as can be seen from the
radiation and temperature cycles in Fig. 4.19.
The cumulative MDDs in 2018 and 2016 were in the order of 35% the MDDs
in 2016 and 2019. The melt onset (Tab. 4.7) in the years 2016 and 2019 was
6 and 11 days earlier than in the years with a stable ice plug. Accompanying
this, the start of melt pond formation on the ice plug from MODIS images
indicates a later onset in the years where the ice plug remained intact. Melt
season duration anomalies in the Canadian Arctic Archipelago from 1979–2018
are reported in Howell and Brady (2019). The melt onset was 10 days earlier
than normal in 2016, 2 days earlier in 2017, but 10 days later in 2018.
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The mean summer air temperatures in 2017 and 2018 were about 1.5◦C colder
than in 2016 and 2019. 2016 had a positive temperature anomaly, while 2017
and 2018 had negative anomalies according to the 1997–2018 temperature anoma-
lies reported for June, July, and August, for the Canadian Arctic Archipelago
(Dauginis and Brown, 2021).

Table 4.7: Melt season onset, offset, duration, average temperature, and MDDs.

Year Melt onset date Melt offset date Duration [d] T2m [◦C] MDD

2016 06-06 08-31 86 2.4 183.0
2017 06-12 08-26 75 0.9 68.3
2018 06-12 09-02 82 0.9 72.3
2019 06-01 08-27 87 2.6 216.0

The start of the winter freezing season with temperatures below -1.8◦C, the
mean winter temperatures, and the FDDs exhibit no notable differences between
the years.

Table 4.8: Freezing season onset, offset, duration, average temperature, and FDDs.

Onset date Offset date Duration [d] T2m [◦C] FDD

2016-08-31 2017-06-12 285 -20.7 -5846.0
2017-08-26 2018-06-12 290 -21.2 -6128.4
2018-09-02 2019-06-01 272 -21.6 -5914.6

4.6.3 Wind speeds

Fig. 4.20 shows the time evolution of the wind vector, wind speed, surface pres-
sure, and total precipitation. The 10-m wind speed is assessed for anomalously
strong winds or wind directions in the time period where the plug disintegrated
in 2016 and in 2019. No extreme wind conditions were found (Tab. B.6 and
Tab. B.5 in the Appendix). The surface pressure and total precipitation at the
times of the break-ups do also not show any abnormal values.

4.6.4 Estimates of summer ablation

The positive surface radiation balance contributes 0.3–0.4 m of ice ablation, the
variability between the years is small. The influence on the ablation from the
snow cover, which is assumed to melt completely before the ice melts, is small.
If no snow were melted, the ablation would be 0.1–0.2 m higher in each season.
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Fig. 4.20: ERA5 wind direction, wind speed, surface pressure, and total precipitation
(7-day moving averages), grey lines are the standard deviation of the respective

variable in the region.

Table 4.9: Summer ablation from mean net surface radiation.

Season Net radiation Total mass melted Snow depth Ice melted
[W/m2] [kg/m2] [m] [m]

Summer 2016 16.7 397 0.2 0.4
Summer 2017 16.3 388 0.2 0.4
Summer 2018 15.7 374 0.2 0.3
Summer 2019 18.0 428 0.4 0.3

The annual ablation from the MDDmodel varies greatly. While the contribution
to ablation in 2017 and 2018 is negligible, the summer melt in years with
breakup is in the order of 0.7–1.4 m. This is certainly an overestimation of the
melt rate, but illustrates that the effect of the increase in summer temperatures
from 0.9◦C to 2.5◦C is an important factor to the instability of the ice plug.

Table 4.10: Minimum and maximum summer ablation for minimum degree day
factor and maximum degree day factor.

Season MDD Snow depth Ice melted (min) Ice melted (max)
[m] [m] [m]

Summer 2016 183 0.2 0.9 1.4
Summer 2017 68 0.2 0.01 0.02
Summer 2018 72 0.2 0.05 0.07
Summer 2019 216 0.4 0.7 1.0
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5 Discussion

5.1 Processing of altimeter data
Two filtering methods of flight altitude variations from the single-beam altimeter
heights were implemented. The assessment of the performance of the methods is
based on the coherence of the DGPS signal with the raw altimeter signal for the
survey in 2018. The coherence of the DGPS heights with the altimeter ranges
demonstrates that for frequencies below 0.1 Hz (corresponding to a spatial scale
of 500 m and longer) the flight altitude variations dominate the altimeter range
signal. A sharp decrease in coherence is found between 0.1–0.5 Hz. Above
0.5 Hz, corresponding to distances shorter than 100 m, the surface altitude
variations are responsible for about 90% of the signal power.
The first method fits a spline to the maximum ranges, which represent the local
level surface height, by adjusting the weights of the data points in an iterative
process. This method is inappropriate, because the coherence function does not
follow the expected curve.
The second method represents a modification to Hibler’s method in that it uses
the curvature of an initial spline to find local maxima. This method is sensible
to the spacing of knots for the initial spline. The spacing was chosen to be about
100 m, which leads to a coherence of raw range signal and filtered heights which
closely follows the desired coherence behavior. The transition region is smaller
than for the original Hibler method, which is a minor improvement for the flight
in 2018, at least. The coherence for smooth ice is 0.7 and for rough ice is 0.9 on
scales shorter than 50 m. For smooth surfaces, the aircraft altitude variations
contribute proportionately more variability than for rougher surfaces, explaining
the weaker performance over level ice. This might lead to larger percentage
errors for surface roughness estimates over level ice. Prospectively, the analysis
of coherence could precede the filtering in order to determine a suitable cut-off
frequency for the high pass filter, at least for flights where DGPS data from the
EM Bird is available.
Furthermore, I attempted to use the Bird DGPS heights directly to correct
for the aircraft altitude variations, which left large low frequency oscillations,
that could be explained by pitch and roll of the bird, which could be improved
upon by employing an INS in the Bird. If one decides to use the combined
DGPS and INS data to correct for the flight height variations, absolute surface
heights above the ellipsoid can be obtained. This would enable surface profile
characterization on spatial scales longer than the cut-off length in the high pass
of the (modified) Hibler method.
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5.2 Comparison of altimeter and ALS derived
surface roughness

In 2017, the ALS data is compromised due to gaps in the GPS data, and in
2019 the ALS DEM suffers from drift in along-flight direction and tilt in across-
flight direction. This makes the use of directional roughness parameters, and
roughness determination on larger scales impossible, which would have been the
added value of ALS compared to the single-beam altimeter.
Nevertheless, we can compare the regional mean values of the ALS roughness
parameters within the EM footprints and the altimeter roughness parameters
for 50-m moving windows. The RMS height and the skewness agree between
the instruments, while the kurtosis is negative for the ALS but positive for the
altimeter in three out of four cases.
The laser scanner mean RMS height was found to be stable for the ice plug (8.9
cm in 2017, 8.6 cm in 2019) and for the seasonal landfast ice on Nansen Sound
(7.5 cm in 2017, 7.2 cm in 2019). The altimeter RMS height exhibits more
variability between the years and suggest a decrease in surface roughness for
the ice plug from 9.3 cm in 2017 to 7.5 cm in 2019. The broader distributions of
roughness parameters from the altimeter indicate that the amount of extremely
smooth ice and extremely rough ice is overestimated from the altimeter profiles,
and the variability in skewness.
The EM ice thickness retrieval could benefit from the ALS, because a more accu-
rate mean surface height within the footprint could be obtained. Furthermore,
the DEMs could be used to determine a topography-dependent measurement
uncertainty. If large off-nadir features e.g., leads or ridges are detected, the ice
thickness is more likely to be underestimated, and hence should be attributed
a larger uncertainty. Those benefits come with more complex data processing
compared to an altimeter, thus the worth of a scanner compared to an altimeter
is dependent on the survey objectives, the sampled surface, and the measure-
ment platform (Beckers et al., 2015).

5.3 Ice thickness and roughness evolution
For tracking of the inter-annual evolution of the ice plug, it would have been
preferential to have the tracks in proximity, which was not accounted for when
planning the surveys. The spacing of the flight tracks is such that only short
subsections are close enough, and therefore suitable to describe the ice evolu-
tion. Only the survey of 2018 covers the eastern cluster of old and rough MYI.
Identifying the time evolution of this matrix of floes would have been an appro-
priate research goal, as it offers a target that is typical for MYI in the Arctic
Ocean, but stationary and not subjected to deformation. It is suggested that
in future campaigns, more attention should be paid to special features.
Landfast FYI thickness in the CAA was reported to be 2.0–2.3 m on average
(Howell et al., 2016). The measured mean ice thickness of the landfast FYI south
of Nansen Sound ice plug is 1.9–2.3 m, which coincides with the literature value
within the limits of accuracy of the measurements (±15 cm). In 2017, the mean
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thickness of the ice that will remain in place as the ice plug is 1.9 m. After the
second winter, this ice has thickened to a mean of 2.3 m. The two ice types
that make up the ice plug were surveyed in 2018, evident in the multi-modal ice
thickness distribution with the strongest mode at 2.2 m representing the locally
formed SYI, and modes around 3 m and 4 m representing the old, deformed
MYI. The values of the higher modes are a typical thickness for the pack ice at
the Arctic Ocean north of the ice plug.

Historical excursus
Serson (1972) used a simple FDD model with a constant of 6000 FDDs,
together with a summer ablation of 40 cm to arrive at 2.6 m and 3.1
m for SYI and third year ice thickness. ERA5 2-m temperatures for
2017–2019 show that the FDDs have not changes significantly, but
the ablation rate in summer or the oceanic heat flux might well have
changed. Sadler and Serson (1981) reported 3.5 m thick ice for the SYI
of the Ice plug. This historic SYI thickness far exceeds the thickness in
2018, and also the thickness in 2019, indicating that climatic conditions
must have been different.

The snow thickness in 2017 was 20 cm in the area that will remain landfast
for the next two years, but the data is sparse, because measurements with
high pitch or roll angles are excluded in the processing, and the flight was very
turbulent (S. Hendricks, personal communication, April 30, 2021).
The snow in 2019 was 42 cm deep on the ice plug, compared to only 14 cm
on the seasonal landfast FYI. This remarkable difference might have several
reasons:
Snow can accumulate on the ice plug before FYI forms. From MODIS images
and ice charts, the period between first snow fall and freeze-up of the sound is
16 September–1 October. At Eureka weather station, 5 of 23 mm of the whole
winter precipitation were recorded in this period. Alert recorded 2 of 85 mm in
the same period. Thus, it is unlikely that earlier accumulation on the ice plug
alone accounts for the 28 cm difference in snow thickness at the end of winter.
Very likely the decayed MYI of the plug with depressions from drained melt
ponds, catches the snow better, compared to the level FYI. An indication of
preferential snow accumulation in drained melt ponds is the brighter appearance
of the surface in areas where melt ponds prevailed (Sentinel-2 image, Fig. 5.1).
Regional differences in snow redistribution due to different topography of the
adjacent mountains could also contribute to dissimilar snow depths between ice
plug and landfast FYI.
In 2017, those ice plug sections covered by melt ponds in summer were 18 cm
thinner in spring than those sections without melt ponds, if we look at the 11
km section A, however in the subsection B, the melt pond covered ice even had
a 19 cm larger mean thickness. Similarly, Landy et al. (2014) observed for an
in situ study of a 100 m x 100 m landfast FYI area that throughout the entire
melt season, ponds were present on nearly the full range of premelt elevations.
This is what we also observe on the FYI: Even the rougher FYI in 2018 has
only a 13 cm difference between mean thickness for surfaces with differing melt
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Fig. 5.1: Brightness and contrast enhanced Sentinel-2 scene from 2018-09-09. After
snow fall, the areas which were covered by melt ponds appear brighter, indicating

thicker snow.

pond cover in summer. The EM footprint might also be to large to resolve
small-scale surface topography relevant for melt pond pattern.
In contrast to 2017, in 2019 the ice plug had a 36 cm larger mean thickness in
areas where no melt ponds resided at the peak pond coverage of the previous
melt season. This indicates that preferential melting below ponds over two
melt seasons with similar pond patterns has had a detectable influence on the
ice thickness. The higher summer ablation below ponds is not balanced by
higher freezing rates of the thinned ice in winter.
Surface roughness obtained from the ALS DEMs exhibits no trend in the RMS
heights. The mean skewness from ALS is decreasing from 0.7 to 0.3, indicat-
ing that the distribution of surface elevations became more symmetrical, hence
losing the highest portion of elevations, which could be expected from weath-
ering of peaks. The ALS kurtosis is also decreasing. However, the changes of
skewness and kurtosis might not be attributed to the weathering and evolution
of MYI. Because the FYI skewness and kurtosis values span have similar vari-
ability, the change in values for the ice plug is within the statistical fluctuation
range. The consistency of surface roughness over two years can be attributed to
snow smoothing out contrasts between areas of high and low summer ablation.
This is supported by Nasonova et al. (2018) finding that snow masks surface
roughness on the scales that we have considered.
For the undeformed ice, which is all regions except the Old MYI, the mean
RMS heights in spring do not vary between pond covered ice and bare ice at
the maximum melt pond extent in the following summer seasons. The Old MYI
is the exception, where RMS height is about half for sections covered by ponds
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compared to sections with no ponds.
On the scale of 50 m, the ice thickness RMS height decreases from 7.6 cm to 5.3
cm, which is a 30% decrease. For the 500-m scale, this decrease is 34%, from
29 cm in 2017 to 19 cm in 2019. This difference of roughness on the two spatial
scales is the combined effect of the smoothing of the ice thickness variations
be the large footprint of the EM method and the rather large-scale variation
in ice thickness for the undeformed sea ice. The decrease in ice roughness is
either a result from the differing flight tracks or it reflects the basic principle,
that thinner ice will grow faster, and hence differences in ice thickness should
decrease over time, if forcing and physical properties are spatially uniform.
The PSD method was used to assessed roughness changes across spatial scales.
The surface RMS height estimated from the PSDs stayed about constant from
2017 to 2019, in agreement with the ALS-derived RMS heights. In contrast
to the surface, the ice thickness RMS height decreased from 28 cm to 14 cm,
supporting the findings from the moving average method. The rougher FYI
thickness profile in 2018 has the shortest correlation length, followed by the
Old MYI. Interestingly, the shorter ice thickness correlation length of this old,
rough ice comes with the longest surface height correlation length of all ice
types.
Von Saldern et al. (2006) found 1.3–1.9 for the fractal dimension D for altimeter
surface height profiles. In this study, the values of D for the surface heights
are within this range. The range of D for ice thickness is slightly larger than
that of Gneiting et al. (2012) from upward looking sonar (1.2–1.5). For both,
surface and thickness fractal dimension, the roughness apparent from looking at
the profiles does not seem to be reflected in the fractal dimension, as we would
expect the rough Old MYI in 2018 to have a higher fractal dimension, where in
fact it has the lowest D value of all profile sections, followed by the also notably
rougher FYI in 2018.
The added value of the variogram method is not so clear, as the range and sill
parameters depend on the choice of a valid model and should reflect the same
inter-annual variability as the estimates of RMS height and correlation length
from the PSD. The origin of the wave-like fluctuations with a spacing of about
100 m in the semivariograms of surface heights needs to be looked at closer. A
possible explanation is offered by Iacozza and Barber (1999), who investigated
snow depths over various types of sea-ice and found that the regular smooth ice
topography of FYI produced a periodicity in the snow drifts. The most suitable
variogram for this surface type was a combination of a wave (hole-effect) model
with a Gaussian model. The more uneven ice topographies of the MYI sites
were characterized by hummock-melt pond features that survived multiple melt
seasons. These topographies produced a more irregular snow drift pattern, best
modeled by a combination of the spherical and Gaussian variogram models
(Iacozza and Barber, 1999). For studies with reliable ALS data, an effort could
be made to calculate variograms in different directions, in order to address
periodic surface structures and expected anisotropies in the topography e.g.,
from prevailing wind directions.
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5.4 Sentinel-1 backscatter evolution
The angular dependence obtained for HH backscatter of MYI in this study is
in agreement with -0.15 dB/1◦ reported by Aldenhoff et al. (2020) for MYI,
but the slope for HV in this study (-0.14 to -0-17 dB/1◦) is higher than the
literature value of 0.07 dB/1◦.
The backscatter dependence of the ice plug halved from spring 2017 (-0.26
dB/1◦) to autumn 2017 (-0.12 dB/1◦) and stays relatively constant after that,
indicating that the processes during the first melt season are responsible for the
shift in scattering behavior. The Old MYI at the eastern section has also the
lowest slope (-0.12 to -0.14 dB/1◦), which is not changing in 2017–2019. These
findings for HH can be explained by the dominant scattering mechanisms for
each ice type and polarization: Strongly angle-dependent surface scattering
dominates for the smooth FYI in spring 2017, while volume scattering which is
less impacted by different incidence angles, is characteristic for MYI, because
desalination and percolation of melt water increases the fraction of air in the
upper layers of ice, causing an increase in multiple scattering.
In this study, the incidence angle dependence of FYI HH backscatter ranges
from -0.21 to -0.29 dB/1◦, in agreement with the value of -0.24 dB/1◦ reported
by Aldenhoff et al. (2020). The HV backscatter slope for FYI found in this study
(-0.27 to -0.42 dB/1◦) is much steeper than the value reported by Aldenhoff et
al. (2020), but only slightly steeper than in other studies e.g., -0.24 dB/1◦ from
Mäynen and Karvonen (2017) as summarized by Aldenhoff et al. (2020). The
slope for HV in this study might be unreliable because the HV backscatter of
the FYI is in the same order of magnitude as the noise floor at -28 dB. Aldenhoff
et al. (2020) state that for low σ0

HV the angular dependence could have been
buried in the noise floor.
The mean HH backscatter values for FYI are lower than these of the MYI,
explained by increasing volume scattering as the ice ages. The increase of
scattering occurs over the first melt season in 2017, after which the winter
backscatter remains stable. The higher mean values in autumn 2017 and
autumn 2018 (-10.5 dB and -11.1 dB) compared to end of winter in the following
years (-13.9 dB and -13.0 dB) is opposed to observations of increasing σ0 with
snow thickness made by (Gill et al., 2015), but they limited their study to FYI,
where the brine volume is higher and can contribute to the wetting of the snow at
the snow-ice interface. For MYI the influence of temperature might dominate;
the snow cover will increase the temperature of the ice surface, potentially
accounting for 2–3 dB lower scattering in springs than autumns. Another
possible mechanism to decrease the backscatter throughout winter could be
a decrease in the small-scale roughness of the surface ice layer.
Attempts have been made to predict summer melt pond fraction from winter
backscatter over FYI and MYI, e.g., Scharien et al. (2017) found a significant
negative correlation between pond fraction and backscatter. Here, in spring
2019, the smoother ice of the western section of the ice plug has similar mean
backscatter, and similar incidence angle dependence as the much rougher Old
MYI, while the two ice types experienced very different melt pond fractions
in summer 2018. Predictions of summer melt pond fractions from backscatter
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would lead to be inaccurate estimates for this MYI case, exemplifying that
information on ice type and roughness needs to be considered.

5.5 Role of climatic conditions for stability
Surface energy balance and weather conditions extracted from climate data from
the ERA5 reanalysis product indicate that the inter-annual differences between
2016 and 2019 with ice plug breakups, and 2017 and 2018 with stable ice plug
are higher summer temperatures, accompanied by earlier melt-onset in years
with break-up. Differences in radiation balance, precipitation and wind speeds
played only a secondary role in breakups.
This is opposed to Copland and Mueller (2017) who found that daily mean tem-
peratures from Eureka show very little difference between years which featured
complete plug breakups (e.g., 2005, 2007, 2008) and years with no breakups or
with single plug fractures (e.g. 2004, 2006). To extend this into 2016–2019, we
compare ERA5 temperatures at the ice plug to those at recorded by Eureka
weather station (Fig. 5.2). While the mean daily summer temperatures mea-
sured at the station exceed the reanalysis temperatures for Eureka by 0.9–1.8◦C,
they also show much larger temperatures for years with breakup (4.9◦C in 2016,
6.2◦C in 2019) than for years with stable ice plug (2.7◦C in 2017, 3.5◦C in 2018;
see Tab. B.7 in the Appendix).

Fig. 5.2: 7-day moving averages of daily mean air temperatures recorded by Eureka
weather station, and 2-m temperatures from ERA5 at Nansen Sound ice plug and

Eureka.

In the past two decades, ice plug breakup events have occurred in young MYI
(2005 and 2007) or in FYI (2008–2012, 2016). The breakups in 2005 and 2007
occurred in mid to late August, whereas in 2008 the breakup occurred at the
beginning of August. Copland and Mueller (2017) attribute the difference in
the timing to a correlation between sea ice age and thickness, which in turn
determines the ice plug’s ability to withstand melt and mechanical forcing. The
timing of the breakups in this study do not support their hypothesis. The date
of breakup was the beginning of August in 2016 and 2019 alike, whereas the
plug in 2016 consisted of FYI and the plug in 2019 was thicker MYI.
Copland and Mueller (2017) add that an important variable associated with
these recent simultaneous breakup events of Nansen and Sverdrup ice plug is
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"the presence of a lead of low sea ice concentration along the northern edges of
the plugs, occurring as the pack ice is pushed away from the land" (p. 337). To
verify this, we look at MODIS images of the ice concentration on about 20 km
of ocean adjacent to the north of the ice plug. The ice concentration is classified
as dense pack ice for days where the ice concentration exceeded 7/10. Ice cover
is classified as sparse otherwise. The summer season (June–August) had 2 days
of sparse ice cover in 2016, 12 days in 2017, 13 days in 2018, and 38 days in
2019. Notable is the long period of open water in July 2019, the month before
the plug broke apart. This does not seem to be a necessary precondition for
breakup, since in 2016 the northern ocean adjacent to the plug had a very low
amount of open water days, but it might explain the similar timing of breakup
in 2016 and 2019, despite thicker ice in 2019 and similar summer temperatures.
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6 Summary

The roughness of sea ice is a key factor for modeling and measuring the in-
teractions between ice, atmosphere, and ocean. MYI roughness evolution and
melt season processes are interrelated, and sea ice roughness is sensitive to
changing Arctic climatic conditions. This study evaluates sea ice thickness,
surface and bottom roughness, and C-band SAR backscatter evolution of the
semi-permanent landfast Nansen Sound ice plug throughout two melt season
by airborne EM surveys carried out in springs 2017, 2018, and 2019 and dual
polarization Sentinel-1 scenes.
For 2017 and 2019, 2D surface topography in the form of DEMs obtained with
airborne laser scanning is available, complementing the single-beam altimeter
surface profiles. The contribution of ALS to sea ice surface mapping in combi-
nation with EM measurements is evaluated. After adapting the filtering method
for the altimeter profiles, a comparison between roughness parameters obtained
from both instruments is undertaken and showed similar values for RMS height
and skewness between the two instruments in both surveys on a scale of 50 m.
About the evolution of surface roughness on a scale of 50 m can be summarized
that the RMS height decreased slightly for the altimeter profiles while it stayed
constant when using the ALS. The PSD method supports the ALS results of
constant surface roughness, extending the spatial scale on which roughness was
constant to 1–100 m. The unaltered topography, despite expected roughening
from non-uniform summer ablation, was attributed to the snow cover, which
masked those differences.
The mean thickness of the ice that formed in-situ in winter 2016/17 increased
in thickness from 1.9 m in 2017, which is a typical value for landfast FYI in the
CAA, to 2.4 m in 2019. Old MYI that originated from the arctic ocean and
got incorporated into the ice plug upon freeze-up in 2016 had a mean thickness
of 3.7 m. Melt pond distributions from summer Sentinel-2 true color images
showed that spring RMS roughness did not co-vary with summer melt pond
pattern. Furthermore, ice thickness was about 40 cm lower in pond covered
sections of the three year old ice in 2019, while this difference was only 20 cm
for the FYI of the ice plug in 2017. This is indicative of a non-uniform summer
ablation influencing the evolution of ice thickness. Thinning in summer might
not have been compensated by faster growth in winter.
The ice thickness was further used as a proxy for the bottom roughness. The
percentage decrease in mean RMS height of the ice thickness profiles was about
30%, and therefore exceeds the change of surface roughness. The decrease in
ice roughness is either a result from the differing flight tracks or an effect of
slowing growth rates the thicker the ice gets.
The Sentinel-1 C-band backscatter is partly sensible to changes in surface
topography, but also to bulk properties of the surface ice layers. For springs
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2017, 2018, and 2019, as well as for autumns 2017 and 2019 we analyzed five
EW scenes each by averaging the backscatter of the pixels coincident with the
EM surveys. Average σ0

HH of the ice plug increased from -21 to -13 dB and
σ0
HV increased from -29 to -23 dB. The angular dependence of HH backscatter

decreased over the first melt season in 2017 from -0.26 dB/1◦ to -0.15 dB/1◦,
and remained the same from autumn 2017 to spring 2019. This decreasing
angular dependence and the increasing backscatter is expected for enhanced
volume scattering from the surface ice layers when porosity an air content
increased after the first summer season. The HV backscatter is close to the
noise floor therefore, angular dependence is unreliable. The seasonal landfast
FYI on Nansen Sound has stable mean backscatter around -20 dB.
This work extends the documentation of Nansen Sound ice plug events, span-
ning 1962–2016 in Copland and Mueller (2017), to 2019. ERA5 Land climate
reanalysis data was consulted to find reasons for the stability of the ice plug in
2017 and 2018, which is an exception in the past two decade. The survival of
the ice plug was attributed to lower mean summer temperatures and thereby
less MDDs, with significantly reduced ablation. Also, the later onset of surface
melting, and shortened time periods of open water might have contributed to
the stability of the ice plug in 2017 and 2018.
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A Appendix Figures

Fig. A.1: Section of the MYI ALS DEM and ice thicknesses (2017). The location
corresponds to 92 km on the reference line shown in Fig. 3.10, where nadir elevations

jump to a 1 m higher level. This was later attributed to incomplete GPS data.
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Fig. A.2: Section of the MYI ALS DEM (2017). x-axis shows the x coordinate of
projection [m], y-axis the y coordinate of projection [m]. The are given in elevations
[m]. The DEM is titled in across-track direction, which does not notably influence

the DEM within the footprint of the EM measurements (white circles).
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Fig. A.3: Histograms of ALS- and altimeter-derived surface roughness parameters
for 2017.

Fig. A.4: Histograms of ALS- and altimeter-derived surface roughness parameters
for 2019.
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Variogram of surface height Variogram of ice thickness

Fig. A.5: Semivariograms of the Old Ice in 2018

MYI FYI

Fig. A.6: Mean semivariograms of surface heights

MYI FYI

Fig. A.7: Mean semivariograms of ice thickness
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B Appendix Tables

B.1 Additional tables for Chapter 3

Table B.1: List of the S1 products used

Product name Acquisition date

S1B_EW_GRDM_1SDH_20170329T132933_20170329T133033_004924_0089B7_AEC1 2017-03-29
S1B_EW_GRDM_1SDH_20170330T141051_20170330T141151_004939_008A23_DA68 2017-03-30
S1B_EW_GRDM_1SDH_20170331T145115_20170331T145215_004954_008A93_3063 2017-03-31
S1B_EW_GRDM_1SDH_20170402T143523_20170402T143623_004983_008B67_76FC 2017-04-02
S1B_EW_GRDM_1SDH_20170403T133742_20170403T133842_004997_008BD2_9886 2017-04-03
S1B_EW_GRDM_1SDH_20170905T143531_20170905T143631_007258_00CCC0_D410 2017-09-05
S1B_EW_GRDM_1SDH_20170904T135425_20170904T135525_007243_00CC4D_435F 2017-09-04
S1B_EW_GRDM_1SDH_20170902T141100_20170902T141200_007214_00CB75_E96C 2017-09-02
S1B_EW_GRDM_1SDH_20170901T132956_20170901T133056_007199_00CB0C_CC00 2017-09-01
S1A_EW_GRDM_1SDH_20170902T132236_20170902T132341_018197_01E94C_8F86 2017-09-02
S1B_EW_GRDM_1SDH_20180403T134627_20180403T134727_010320_012C80_6497 2018-04-03
S1B_EW_GRDM_1SDH_20180401T140247_20180401T140341_010291_012B77_1135 2018-04-01
S1B_EW_GRDM_1SDH_20180328T143529_20180328T143629_010233_01298F_59A8 2018-03-28
S1B_EW_GRDM_1SDH_20180406T141058_20180406T141153_010364_012DE3_E446 2018-04-06
S1A_EW_GRDM_1SDH_20180406T132235_20180406T132339_021347_024BD6_EFD3 2018-04-06
S1B_EW_GRDM_1SDH_20180904T140255_20180904T140350_012566_0172EF_C5BC 2018-09-04
S1B_EW_GRDM_1SDH_20180903T132152_20180903T132252_012551_01727C_EC92 2018-09-03
S1B_EW_GRDM_1SDH_20180902T141918_20180902T142018_012537_01720D_91E8 2018-09-02
S1B_EW_GRDM_1SDH_20180901T133811_20180901T133911_012522_017193_E91A 2018-09-01
S1B_EW_GRDM_1SDH_20180905T144346_20180905T144447_012581_017369_1F5D 2018-09-05
S1A_EW_GRDM_1SDH_20190401T132241_20190401T132345_026597_02FB88_B44A 2019-04-01
S1B_EW_GRDM_1SDH_20190402T131341_20190402T131441_015628_01D4DD_9BBA 2019-04-02
S1B_EW_GRDM_1SDH_20190403T135430_20190403T135530_015643_01D55E_6DD3 2019-04-03
S1B_EW_GRDM_1SDH_20190402T145141_20190402T145241_015629_01D4E6_DD64 2019-04-02
S1B_EW_GRDM_1SDH_20190401T141105_20190401T141205_015614_01D465_4CC6 2019-04-01
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Table B.2: Mean incidence angle θ and mean backscatter σ0 for each season and
region for pixels coincident with the EM survey in the respective year.

Polarisation Year Region Month θ σ0

[◦] [dB]

HH 2017 FYI April 30.39 -19.76
September 34.04 -20.07

ice plug April 33.35 -20.78
September 36.82 -10.54

2018 FYI April 32.94 -17.14
September 32.49 -18.02

ice plug April 35.62 -13.95
September 35.20 -11.13

2019 FYI April 34.05 -20.66
ice plug April 36.73 -13.00

HV 2017 FYI April 30.39 -28.32
September 34.04 -29.28

ice plug April 33.35 -28.95
September 36.82 -22.15

2018 FYI April 32.94 -26.14
September 32.49 -28.00

ice plug April 35.62 -25.26
September 35.20 -21.67

2019 FYI April 34.05 -29.51
ice plug April 36.73 -23.20
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Table B.3: Slopes and correlation coefficients of the linear regression for backscatter
dependence on incidence angle σ0pq(θ).

Polarisation Year Region Month slope R2

[dB/1◦]

HH 2017 FYI April -0.29 -0.99
September -0.48 -0.70

ice plug April -0.26 -0.99
September -0.12 -0.96

2018 FYI April -0.21 -0.90
September -0.63 -0.68

ice plug April -0.15 -0.92
September -0.17 -0.99

2019 FYI April -0.24 -1.00
ice plug April -0.14 -0.98

HV 2017 FYI April -0.41 -0.88
September -0.37 -0.84

ice plug April -0.42 -0.94
September -0.11 -0.85

2018 FYI April -0.27 -0.81
September -0.24 -0.60

ice plug April -0.17 -0.93
September -0.16 -0.94

2019 FYI April -0.30 -0.94
ice plug April -0.14 -0.99

Table B.4: ERA5 variables and their units

name units old name short name

10 metre U wind component m s−1 u10

10 metre V wind component m s−1 v10
2 metre temperature K - T2m
Surface pressure P surface_air_pressure sp
Total precipitation m - tp
Surface latent heat flux J m−2 surface_upward_latent_heat_flux slhf
Surface net solar radiation J m−2 surface_net_downward_shortwave_flux ssr
Surface net thermal radiation J m−2 surface_net_upward_longwave_flux str
Surface sensible heat flux J m−2 surface_upward_sensible_heat_flux sshf

Table B.5: Wind speed during break up period in August 2016

Date Wind speed [m s−1]

0 2016-08-04 00:00:00 4.1
1 2016-08-04 12:00:00 1.7
2 2016-08-05 00:00:00 4.2
3 2016-08-05 12:00:00 3.2
4 2016-08-06 00:00:00 4.6
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Table B.6: Wind speed during break up period in August 2019

Date Wind speed [m s−1]

0 2019-08-01 00:00:00 5.5
1 2019-08-01 12:00:00 4.8
2 2019-08-02 00:00:00 5.2
3 2019-08-02 12:00:00 1.9
4 2019-08-03 00:00:00 3.6
5 2019-08-03 12:00:00 6.3
6 2019-08-04 00:00:00 3.1
7 2019-08-04 12:00:00 1.1
8 2019-08-05 00:00:00 1.6
9 2019-08-05 12:00:00 2.0
10 2019-08-06 00:00:00 2.5
11 2019-08-06 12:00:00 3.1
12 2019-08-07 00:00:00 2.6

B.2 Additional tables for Chapter 5

Table B.7: Seasonal mean ERA5 temperatures at Nansen Sound ice plug, Eureka
and mean temperatures from daily weather station data for Eureka. Weather station

data was downloaded via Environment and Canada (2021).

Period ERA 5 Weather station TEERA5 − TEWS

Start End Ice plug Eureka Eureka
T IPERA5 TEERA5 TEWS

s 2016-06-01 2016-08-31 1.6 6.6 4.9 1.7
s 2017-06-01 2017-08-31 0.2 3.8 2.7 1.1
s 2018-06-01 2018-08-31 0.4 4.4 3.5 0.9
s 2019-06-01 2019-08-31 2.2 8.0 6.2 1.8
w 2016-09-01 2017-05-31 -21.3 -23.4 -24.5 1.2
w 2017-09-01 2018-05-31 -22.3 -24.6 -26.4 1.8
w 2018-09-01 2019-05-31 -21.7 -23.6 -25.3 1.8
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