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1 Abstract

This study aimed at assessing the impact on air quality of natural dust in densely

populated cities of the Mediterranean basin. In particular, we aimed at estimating the

natural dust fractional contribution to daily exceedances of the EU PM10 limit, which

is set to 50 µg/m3 for 24h-averaged values of PM10 concentration..

In this study, we assessed the performance of a new model-based approach to determine

the contribution of natural dust to the total PM load. The model of interest is the

TM4-ECPL chemical transport model, which is available in two versions with di�erent

dust emissions schemes, one online and one o�ine. We propose the use of online

emissions to make this method independent from measuring campaigns, which limit

the time-range of study and rises the costs, bottom-up estimates, which inevitably

lead to inaccuracies, and back-trajectory calculations.

Both versions of the TM4-ECPL have been succesfully validated for surface dust

concentrations. A model weakness at modelling the surface PM10 concentration in the

Mediterranean basin has been highlighted by this study. A surface PM10 concentration

validation has been perfomed for the Mediterranenan area, revealing a general bad

correspondance between the modelled and measured PM10 �eld along the basin.

The proposed method was used to calculate the number of exceedances and the

corresponding fractional dust contribution in 6 Mediterranean cities, obtaining reasonable

results. However, a further analysis would be needed to understand which atmospheric

processes are at the basis of the PM10 overastimation in the basin, for example by

validating the dust depostion �uxes, or by performing a second global validation with

AOD �elds to better understand the goodness of the modelled dust emissions.
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2 Introduction

The world's large arid and semi-arid regions emit every year in the atmosphere great

quantities of particulate matter in the form of natural dust, which, entrained by

the winds, can travel thousands of kilometres far from their sources before being

removed[1]. The major dust emissions sites of the planet are located in the Northern

Hemisphere along the so-called Dust Belt, which extends from North Africa, across

the Arabic peninsula to South and Central Asia [2] (see �g.1). The annual global

dust emission is estimated to be around 1000-2150 Tg, accounting for the 45% of

global aerosol emissions, most dust emissions coming from the Sahara-Sahel region

(50-75 % of the total [1]). The annual cycle of dust in the atmosphere shows seasonal

patterns: in the Sahara region dust emissions peak in Summer, while Asian deserts

show a maximum in Spring[3]. From North Africa, the main transport routes follow

the westerly winds towards Americas' coasts, carrying dust in the Caribbean and USA

in Summer and in South America in winter [4], but intruding also in the Eastern

Mediterranean basin during Spring [5],[6],[7] and in the Western part of the basin in

Summer [8]. Asian dust travels eastwards, crossing the Paci�c Ocean and reaching

North America[1] (see �g. 2).

Figure 1: Major natural dust sources: (1) Sahara, (2) Arabia, (3) Asia, (4) North

America, (5) South America, (6) Southern Africa, and (7) Australia represented in

terms of the average TOMS Aerosol Index values. Natural dust main transport routes

are indicated with light blue arrows. Red arrows depict emissions in Mt (= 1 Tg) from

di�erent areas and blue arrows deposition to the ocean. Taken from [2]
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Figure 2: Seasonality of the North African and Asian dust transport routes. Sahara-

Sahel dust is carried to the Caribbean and USA from May to November, while between

December and April the transport shifts to South America. Saharan dust transport in

the Mediterranean basin peaks in Summer in its western region and in Spring in its

eastern region. The Asian dust outbreak peaks between February and May. Taken and

modi�ed from [13]

Mineral dust has signi�cant e�ects on the Earth system, the climate and human health.

It is reported to impact on the global radiation balance [9], on rain and droughts

patterns [4], on the marine plankton population [10], the decline of coral reefs[11]

and on the terrestrial primary productivity [12],[13]. Sand and dust storms can cause

high concentrations of PM in the air over long periods, posing a hazard not only for

the residents of the world's dryland but also for regions located downwind of the dust

transport [2] (see �g.3). Suspended particulate matter (PM) was found to be correlated

with an increase in the risk of respiratory diseases, cardiovascular complications and

premature death [14],[15],[1]. In the African region dust and meningitis epidemics might

be linked[18]. It has been shown [6] that during dust events the amount of deposited PM

in the human lungs can be comparable to that experienced in heavily polluted urban

areas. Natural dust was also proved to be a carrier for pathogenic microorganisms,

such as fungi and bacteria [16][1],[2].
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Figure 3: (a) "Godzilla" dust storm reaching the Caribbean from North Africa on

22nd June 2020 as registered by NASA satellites. (b), (c), (d) Visibility conditions

dramatically worsen with respect to normal conditions due to the high atmospheric

dust load at di�erent Caribbean locations.

Dust emissions are highly sensitive to climate change and its emissions have rised

considerably in the last decades after several centuries of constant trend [4], probably

because of the unprecedented periods of droughts experienced in North Africa [17] and

central Asia[1]. The ongoing deserti�cation in many areas of the world will increase

the future atmospheric dust load[16], making a better understanding of desert dust

emissions and transport an issue of relevant importance today.

In the past years several studies have underlined the relevance of Saharan dust for air

quality and air PM levels have raised concerns for public health. The World Health

Organization in its guidelines for air quality has set limits for PM concentration, along

with the European Union and the USA (see table 1 for values). African countries,

which are between the most a�ected by natural dust, often have neither air quality

legislation, nor infrastructures to monitor PM[22]. The study of natural dust transport
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and its contribution to the total PM load has been particularly wide in Europe.

The Mediterranean basin, which with its dry climate favours long residence times

of suspended particles in the atmosphere, is particularly susceptible to dust events.

Dust episodes were shown to regularly lead to peaks in PM10, occasionally causing the

exceedance of the daily legal PM10 level �xed by the EU Ambient Air Quality Directives

[8],[5],[7],[6],[23],[24], and in some case causing the 100% of the registered exceedances [5].

An exceedance can be exempted by the State Member if it is scienti�cally proved to be

caused by natural events, such as volcanic emissions, seismic or geothermal activity,

wild �res, strong winds or resuspension or transport of natural particles from dry

regions. Thus, the study of the transport of natural dust from the world's dry regions

and the estimate of its contribution to the total PM10 is nowadays of particular interest

for policymakers and scientists.

institution pollutant concentration averaging period max. exc./year

EU
PM10

50 µg/m3 24 hours 35

40 µg/m3 1 year n/a

PM2.5 25 µg/m3 1 year n/a

USA

PM10 150 µg/m3 1 year* 1

PM2.5

35 µg/m3 24 hours n/a

12** µg/m3 1 year* n/a

WHO

PM10

50 µg/m3 24 hours n/a

20 µg/m3 1 year n/a

PM2.5

25 µg/m3 24 hours n/a

10 µg/m3 1 year n/a

Table 1: Air quality standards for health protection according to the EU, USA, and

WHO. *over a 3 years average, **primary standards for public health. For reference

see [19] [20] [21]

Various approaches have been used to estimate the contribution of dust to PM10.

Many studies make use of satellite images and back-trajectories to track the transport

of natural dust [25],[5],[24],[15]. Nevertheless, the total atmospheric dust cycle cannot be

fully captured by these methods [26] and the transit of an air mass transporting mineral
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dust does not necessarily lead to an increase of PM10 at ground level [23],[27]. Querol

et. all in [8] proposed a statistical method [25] to quantify the daily African-dust PM10

load by subtracting the PM10 regional background from the PM10 measured on a dust-

day at a rural station. This method cannot be automatically applied to other areas

of the world without a chemical validation with local data [23], but in some country

it is not trivial to dispose of a proper network of rural stations which are far enough

from urbanized areas to guarantee the absence of anthropogenic contributions to the

measured PM10
[23]. Other methods signi�cantly rely on the chemical analysis �lter

samples collected during measuring campaigns [5],[23], making the method applicable to

a limited time periods and costly. In Gerasopolous et. all.[5] strong time correlations

are shown between high PM10 load measured at both urban and remote locations

and dust-enriched southerlies coming from North Africa. In the same study, the

chemical characterization of PM10 collected during several exceedance days showed

the signi�cant presence of crustal aerosols of dust origin.

A model-based approach was used by Mitsakou et. al in [6], in which the impact of

mineral dust transport on the air quality of Greek urban areas was quanti�ed using

the SKYRON weather forecasting system coupled with an algorithm for the online

calculation of atmospheric dust cycle [28],[26]. The simulated dust concentrations were

compared with the PM10 measured at several monitoring stations. Fitting a linear

correlation between the simulated dust concentration and the total PM10 measured at

a station location, the percentage of dust in the total PM10 concentration is given by

the trend line's slope. However, a source of error in this method is that di�erent sources

of PM can alter the correlation factor, particularly in urban areas. Additionally, in

this area of the basin the dust-rich southwester winds were shown to be correlated with

temperature changes, which are proved to enhance urban pollution and thus a�ect the

air PM concentration. [29],[7].

In this study, we propose a new model-based approach to determine the contribution

of natural dust to the total PM load. The model used is the TM4-ECPL chemical

transport model, in which a routine for online dust emissions calculation has been

implemented by Tagen et al. in [30]. We propose the use of online emissions to

make this method independent from measuring campaigns, which limit the time-

range of study and rises the costs, and bottom-up estimates, which inevitably lead to

8



inaccuracies. This method also does not need the use of back-trajectories to identify

dust-days. As the di�erent PM10 components, natural dust included, are treated

individually by the model, it is possible to use the model output to do a speciation of

the total PM10 load. In this way, the fractional dust contribution to the total PM10

can be directly computed for any location from the model output. The same applies

to any other PM10 specie modelled by the TM4-ECPL.

2.1 Current scienti�c questions related to dust

Natural dust is today a widely discussed topic in atmospheric science due to the great

uncertainties of its e�ects on the Earth climate and its global budget. For example,

the uncertainties on dust direct and indirect radiative forcing are so large that the very

same sign of the forcing is still unclear[35], and understanding its contribution to the

Earth global energy budget might be a challenge for future climate predictions. [34].

On the modelling side, global models which simulate the dust cycle show large di�erences

between them, particularly when it comes to the simulation of dust depostion �uxes[60]

and surface concentrations[36], which models usually reproduce within a factor of 10.

Vertically integrated parameters, such as AOD, are generally better captured (usually

within a factor of 2). Models also often fail at capturing the temporal and spatial

distribution of the dust transport, capturing better the transport towards downwinds

locations than remote ones[60]. A recent study[55] suggested that coarse-resolution

models might be intrinsically inadequate to simulate the global dust cycle.
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3 An overview on particulate matter

3.1 PM e�ects on human health

The term "particulate matter" (abbreviated PM) refers to the mixture of solid particles

and liquid droplets which are suspended in the air. Particles with a diameter smaller

than 10 µm are referred to as PM10, and when inhaled can penetrate deep into the

lungs. As �gure 4 shows, particles in the diameter range between 2.5 and 10 µm, such

as coarse dust, can reach the bronchial regions of the lung, and accumulates mainly at

pulmonary bifurcations of the bronchus. Particles whose diameter is smaller than 2.5

µm (PM2.5) can penetrate into the alveolar regions and get into the bloodstream [37].

Figure 4: PM10 and PM2.5 enters the respiratory system through the mouth and the

nose (1), travel down into the thrachea (2) and penetrates the lungs. PM10 accumulates

in the bronchus area (3), while PM2.5 can penetrate deeper into the alveolar region and

get into the blood (4).

The inhalation of PM has thus shown to be correlated with cardiovascular, cerebrovascular,

respiratory diseases and, for long exposure time, cancer. High levels of PM10 in urban

air has been shown to correlate positevily with an increase in hospital admissions and
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natural mortality for cardio-respiratory complications [38]. Desert dust, being one of

the major components of atmospheric PM10, poses a serious threat to health: the

statistical association between PM10 and mortality has shown to be equally strong

for desert-PM10 and non-desert PM10[38],[39]. Dust events can thus raise concerns of

national authorithies of the a�ected countries, and protective measures need to taken

to garantee the safeguard of public health on days a�ected by natural dust transport,

for example by limiting anthropogenic PM10 emissions and adopting measures which

limit the population exposure. Figure 5 shows an example of a national alert issued

by the Trinidad y Tobago Weather Center during a sever dust outbreak in June 2020,

attributing to this metereological event the maximum level of public health concern.

Figure 5: Trinidad y Tobago Weather Center alert to the population during an

unprecedented Saharan dust outbreak in June 2020.

Source: https://ttweathercenter.com/an-unprecedented-saharan-dust-outbreak-for-tt/

3.2 Dust size distribution

The diameter of atmospheric aerosols extends over four orders of magnitude, from

a few nm to tens of µm. Their mass and volume distribution is characterized by

two dominant modes: the accumulation mode in the ∼ 0.1 - 2 µm range and the

coarse mode in the ∼ 2 - 50 µm range. Aerosols are classi�ed between �ne and coarse

according to their diameter, the threshold diameter being 2.5 µm (fine if d < 2.5µm,

coarse if d > 2.5µm). Coarse particles are usually produced via mechanical processes,

such as wind entrainment and erosion in the case of natural dust. In terms of volume

distribution, desert dust falls mainly in the coarse mode, with a small overlapping with

the accumulation mode, while its number distribution shows a wide maximum around
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0.03 µm. This means that, in terms of number, most dust particles fall in the �ne and

ultra�ne regime, but most of their mass belongs to the coarse regime. As can be seen

in �gure 6, in terms of number distribution, a signi�cant fraction of desert dust falls

in a range which is hazardous to human health.

Figure 6: Common desert dust number, surface and volume distribution[40]

3.3 Emission, transport and deposition of natural dust

The movement of dust happens in three phases: entrainment from the surface (emission),

transport and deposition [41](see �gure 7).

Emissions are produced by erosion of the surface and wind entrainment. The

forces acting on a dust particle at rest are its weight and the interparticle cohesion

forces, which depends on the grain size, and the shear stress exterted by the wind

on the surface, which depends on the surface properties and the wind speed [31].

In general, the amount of wind erosion is a function of di�erent climatic factors,

among which the soil erodibility, the surface roughness, the vegetation cover, and the

e�ective precipitation, which is the amount of precipitation that remains in the soil

after evaporation [41]. The wind speed is by convention measured at 10 m from the

surface and the threshold value of minimum wind speed is often set to 6.5 m·s−1 [40].

The vertical movement of dust can happen through di�erent processes depending on
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Figure 7: Dust transport schematic: emission, long range transport by wind

entrainment, dry and wet depositon. Taken from [44]

the grain size: creep, saltation and suspension (see �gure 8). The smallest particles (<

60 µm [31]) are brought upward by turbulent eddies ("suspension") and if they reach

the boundary layer can be transported over a long-range. The "saltation" process

refers to the ballistic motion of particles in the 70 - 500 µm range, which falling back

on the surface cause the disintegration of soil aggregates and the emission of �ner

particles ("sandblasting"). The biggest and heaviest particles, which can not be lifted

by the wind (∼ 500 µm [43]), roll along the surface in a motion called "creeping" [31].

After dust is entrained by the wind, the �nest particles (typically ≤ 10 µm) can travel

over long distances (often ∼ 5000 km or more [40]), while bigger particles tend to

deposit near the source region. On average, the lifetime of a dust particle in the

atmosphere is two weeks.

Dust deposition happens through dry or wet deposition. Dry deposition refers to the

gravitational settling of aerosol particles over surfaces without precipitation processes

being involved. Wet deposition comprises all removal processes which happens with

the aid of precipitation. It can be divided in in-cloud scavenging, during which the

aerosol falls to the ground with a rain droplet or ice crystal (weather because it served

as a CCN or because it was dissolved in it), and below-cloud scavenging, in which the

aerosol is mechanically brought to the surface by a falling rain drop.
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Figure 8: Schematics of the main dust vertical trajectories due to wind shear stress.

Taken from [43]
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4 Methods

4.1 Chemistry and transport models (CTM)

In this study, the state of the atmosphere is simulated using a Chemistry and transport

models (CTMs). CTMs are a powerful tool to investigate the chemical compostion of

the Earth's atmosphere. They can simulate the 3D chemical and dynamical processes

that control the atmosphere evolution. Transport and chemistry of the modelled

atmopsheric species are usually determined by solving a coupled system of continuity

equations., which express the mass conservation of all n chemical species. If the

equations are solved in a geographically �xed frame of reference, the model is called

Eularian, and the continuity equation can be written in its general form as:

∂Ci

∂t
= −v · Ci + Pi(C)− Li(C) (1)

where v is the velocity �eld, which comes from the 3D metereological wind �eld,

and C = (C1, ... , Cn) is the vector contaning the concentrations of the n modelled

atmospheric species. This equation expresses that the local change of the concentration

of an atmospheric specie Ci with time comes from three processes: the advective

�ux v· Ci, the total production rate of the i-specie Pi and its total loss rate Li.

The advective �ux is equal to the total amount of the i-specie transported into an

atmospheric volume by the winds minus the total amount of the i-specie transported

out. The production and loss terms P and L depends on the C vector because

production and loss can be produced, for example, by chemical reactions of Ci with

the others n−1 species. The production term P also includes emissions, which can be

read by the model as an input from an external inventory or can be calculated by the

model itself (in this case we speak of online emissions). The loss term includes all the

processes that decrease the specie concentration, such as scavenging by precipitation

and deposition.

4.1.1 Online and o�ine CTMs

CTMs can be divided between online and o�ine depending on whether the meterological

�elds are generated by the model itself or if they are imported into the model as an

input, for example from an external metereological model. In the online approach, a
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meteorological model is initially run, independently of the chemistry. The resulting

meteorological �elds are then used to calculate the chemistry and atmospheric transport.

On the contrary, in the online approach, both chemistry and meteorology are computed

at each model time step, and the chemical continuity equations are coupled with the

conservation equations of metereological variables such as air mass, momentum, heat,

and water[45]. In an online model, the chemistry can thus a�ect the meteorology and

viceversa. Some information about atmospheric processes is lost when choosing an

o�ine approach over an online one. In general, the choice of an online model allows

a better characterization of atmospheric processes happening on a smaller timescale

than the meteorology time step, as they reduces the time-averaging errors that arises

when using an offline metereology.

In this work, we di�erenciate between online and o�ine emissions schemes. Analogously

to the metereology, online emissions refers to the fact that model can generate by itself

the emissions of a certain specie, while we talk of o�ine emissions when the emissions

are imported into the model as in input from external inventories. A substantial part

of this work is the comparison between the use of an online and o�ine dust emission

scheme.

The TM4-ECPL is an o�ine model because the meteorological data are read from the

ECMWF model. However, we might sometimes refer in this document to an online

version of the TM4-ECPL model, referring to the version of the TM4-ECPL which

uses an online dust emissions scheme. In order to avoid ambiguity, in this work the

terms online and o�ine always refer to the used dust emission scheme.

4.2 The TM4-ECPL model

The TM4-ECPL is a 3D eulerian global CTM (see �gure 9). It simulates the emissions,

the chemistry, the transport and removal processes of 146 atmospheric tracers in the

o�ine version, and 220 in the online one [46]. The atmosphere is compartimentalized

in boxes and the tracers transport between adjacent cells is calculated in a �xed frame

of reference. The horizontal gridding is done along the meridians and parallels. TM4-

ECPL allows the user to decide between a coarse resolution of 6◦ × 4◦ and a �ner

resolution of 3◦ × 2◦. In the vertical direction the discretization is given by 34 hybrid
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pressure levels calculated as:

p(φ, θ, z) = at(z) + bt(z) ∗ psurf (φ, θ) (2)

where at and bt are constants and psurf (φ; θ) is the surface pressure at the location

with latitude φ and longitude θ, between the surface and the top level set at 0.1hPa.

All chemical reactions are calculated at equilibrium inside the boxes, and the boxes are

connected between them through the air mass transport. Fast-reacting species (e.g,

OH radicals) are not transported between boxes, but react with the species which

are transported into the box and their concentration in each cell varies according to

thermodynamic equilibrium calculations.

Figure 9: Representation of how the TM4-ECPL model divides the atmosphere, the

horizontal and vertical gridding speci�cations and some of the main model timesteps.

4.2.1 The metereology

The metereology is imported as a model input from the ERAInterim meteorological

data of the European Centre for Medium-Range Weather Forecasts (ECMRF). The

metereology �elds include wind speed and wind direction, surface pressure, temperature,

humidity, height of clouds, and rainfall. The metereological input is imported every

3 hours and assimilated where observations are not available. As a consequence, the

model cannot capture rapidily changing events, such as rapid dust outbreaks.
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4.2.2 The emissions

The TM4-ECPL reads anthropogenic and natural emissions from di�erent inventories,

with various spatial and temporal resolutions, ranging from daily to monthly depending

on the dataset. In the case of o�ine dust emissions, the emissions are imported from

the AEROCOM dataset with a daily temporal resolution [60].

In the case of online dust emissions, emissions are calculated by the model according

to an online dust emissions scheme as explained in the section "The online emissions

scheme".

4.2.3 The model steps

At the beginning of the simulation, a previously calculated state of the atmosphere

is read by the model to set the atmosphere initial conditions. The model then reads

the meteorology input. Each time a new meteorology is read, the model performs the

following steps:

1. update the tropopause height

2. calculate tracers rainout

3. calculate NOx emissions from lightening

4. determine the new convection matrix

5. calculation of vertical air �uxes between cells

This preliminary part is not dependent on the tracer properties. The simulation then

proceeds in the following order:

1. Emissions: Emissions are imported from pre-existing inventories

2. Advection: only long-lived tracers are subjected to advection

3. Chemistry

4. Wet deposition: the model calculate both in-cloud and below cloud scavenging

according to the tracer type. All aerosols, including dust, belong to a one unique

type.
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5. Dry deposition: it applies to transported species only. The model calculate

the surface resistance according to the tracer type.

The model gives as output the monthly averaged concentration of each of the simulated

tracers in each grid cell. At the end of each month, the �nal concentrations are saved

and used as initial condition for the successive month. Figure 10 shows a �owchart of

the TM4-ECPL model.

Figure 10: Simpli�ed schematics of the physical and chemical processes as modelled in

TM4-ECPL
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4.2.4 The PM10 speciation

An element of novelty in our approach to �nd dust exceedance is the PM10 speciation.

In the TM4-ECPL model, the di�erent components contributing to the total PM10

load are simulated individually. The total PM10 concentration in each gridbox can

thus be calculated by summing up the single atmospheric species belonging to this size

range. Natural dust, divided in �ne and coarse mode, is included in the summation,

so that its fractional contribution to the PM10 can directly be calculated from the

model output. In table 2 we report the species contributing to PM10 in the version

od the model using online dust emissions. The species are regrouped in 5 categories:

inorganic aersols, organic aerosols, biogenic aerosols, natural dust and sea salt.

Atmospheric tracers Category

Sulfate(SO4), Ferrihydrite(FeOH3), Ammonium (NH4),

Nitrate(NO3), Inorganinc Phosphorus from biomass-

burning and forest �res, Iron from biomass-burning and

forest �res

Inorganic aerosols

Methanesulfonate (CH3O3S−), Marine Amines, Black

Carbon, Organic Phosphorus from sea-salt, biomass-

burning, primary biogenic particles and volcanic eruption,

Alpha-Pinene, Beta-Pinene, Toluene, Xylene, Isoprene,

Glyoxylic acid, Oxalic Acid, Marine Primary Organic

Carbon

Organic aerosols

Bacteria, Fungal Spores, Pollen Biogenic aerosols

Dust (coarse and acc. mode) Natural dust

Sea Salt (coarse and acc. mode) Sea Salt

Table 2: Atmospheric tracers modelled by the TM4-ECPL which participate in the

PM10 load

4.3 The online emissions scheme

In thi section we explain throughly the functioning of the online dust emission scheme

used by the TM4-ECPL.
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The used online dust emissions scheme was developped by Tagen et al. [30] based on

the work of Marticorena and Bergametti [31], improved by Heinhold at al. [32] and

adapted to read the ECMWF �elds by E. Vignati.

New dust emissions are calculated for each surface gridbox at each metereology timestep

(3 hours). Dust emissions are calculated based on semi-empirical relationships which

take into account surface parameters and the meteteorology.

The emission of dust depends on the particle size distribution of the soil and is limited

by vegetation, shrubs, snow cover and soil moisture. If these parameters are known

for each gridbox and the metereology is taken into account, the dust emission from

each gridbox can be calculated at each model timestep.

4.3.1 The vegetation type and snow cover

The distribution of vegetation types and cover is imported from the equilibrium

terrestrial biogeography model BIOME4 [47] (see �gure 11). BIOME4 can assess the

biome type over a 0.5◦ gridbox depending on the monthly mean temperature, the

precipitation, the net radiation, and the soil type. The world's biomes are schematized

in 27 types. Seasonal and annual change of vegetation cover is estimated from monthly

satellite observations as the fraction of absorbed photosynthetically active radiation

(FPAR). Empirically, the dust source area of a gridbox is considered to depend linearly

on the FPAR, being maximum when FPAR = 0 and zero if FPAR > 0.25. Girdcells

with FPAR > 0.25 are considered as grass-dominated biomes, which do not produce

dust.

In the model, the e�ective area Aeff which produces dust emissions is calculated as:

Aeff = 1− 1

25
· [FPAR(maxann) · fshrub + FPAR(month) · fgrass] (3)

Where fshrub and fgrass are the fractional contribution of shrubs and grass for each

biome type, and FPAR(maxann) is the maximum observed value of FPAR throughout

the year. Thus the presence of shrubs and grass limit the dust production, lowerig

it to zero when the the gridbox is totally covered with vegetation (corresponding to

FPAR= 0.25).

Daily snow cover is imported from the European Centre for Medium Range Weather
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Forecast (ECMWF) reanalysis (ERA) data. Snow-covered and wet areas are excluded

in the dust emissions calculation.The soil moisture is also calculated by BIOME4.

Figure 11: BIOME4 reproduction of the distribution of the world potential natural

vegetation for modern climate condition. Image from the Paleoclimate Modelling

Intercomparison Project Phase II.

4.3.2 The soil texture and size distribution

The soil texture class global estimated is taken from the United Nations Educational,

Scienti�c, and Cultural Organization soil map of the World of the Food and Agriculture

Organization [48], which categorize the super�cial dominant soil texture with 0.5◦x0.5◦

resolution. For dust emission, in the used scheme four populations of soils are considered:

clay, silt, medium/�ne sand and coarse sand. The soil size categories are �ne, medium,

coarse, or mixtures of these. In the emission scheme 12 sub-categories are included,

given by coarse, medium, �ne, and mixtures of these. For each type is de�ned a typical

particle size distribution and the saltation e�ciency α. The size distribution in the

model is calculated over 4 bins lognormally distributed between 0.1, 0.3, 0.9, 2.7, 8,

24 µm. In this model, particles whose radius is bigger than 24 µm are neglected, as
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Figure 12: A detail of the FAO soil map over the world "dust belt". Areas with white

background and black pattern are dunes and sand. Available on the FAO soils portal:

http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/en/

it was shown that their contribution to long-range transport is insigni�cant[32]. The

dust emissions �uxes calculated by the scheme are then grouped in two log-normal

modes (accumulation mode and coarse mode).

4.3.3 The wind speed

The wind �elds are imported as part of the ERAInterim metereological data. Dust

emissions are calculated based on the wind speed at 10 m from surface.

Aeolian erososion can happen when the wind reaches a certain threshold velocity,

which varies depending on the particle size and density. Theorethically, the dust wind

entrainment is reached when the aerodynamic forces surpasses those of gravity and

inter-particle cohesion. From this condition, the theoretical threshold wind speed U∗
t

is given by[31]:

U∗
t = A ·

(
ρP g DP

ρA

) 1
2

(4)
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Where ρP andDp are, respectively, the particle density and diameter, g is the gravitational

acceleration, ρA is the air density and A an empirical parameter depending on the

friction Reynolds number. In reality, the calculation of U∗
t has to take into account

cohesive forces (neglected in eq- 4) and changes for di�erent regimes of the Raynolds

number. In the online scheme, the parametrization of U∗
t is given by the semi-empirical

expressions proposed by Marticorena and Bergametti [1995][31]. The overall observed

dependency of U∗
t over the particle diameter is represented in �gure 13. It can be

noticed that the optimal diameter for mobilization lies between 60 and 100 µm. These

particles play a key role to mobilize smaller particles by saltation processes.

Figure 13: Relationship between the wind threshold velocity U∗
t and the particle

diameter

The friction velocity U∗ is calculated using a formulation based on the concept of

roughness lenght z0 [32],[33]. The roughness lenght z0 is the typical lenght scale

characterizing the loss of wind momentum due to roughness elements[31]. The vertical

pro�le of the wind-speed U(z), U∗ and z0 are related under adiabatic conditions by

the equation:

U(z) =
U∗

k
· ln
(
z

z0

)
(5)

where k is the Karman constant. In the TM4-ECPL emission scheme, 5 becomes,

rearranged for U∗:

U∗ = U1st k · ln
(
z0
z1st

)
(6)

where U1st is the wind speed in the �rst model layer and z1st is the layer mid-height.
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The model calculates the z0 �eld as an input from remote seinsing data. The roughness

of the surface is calculated as a function of the surface re�ectance measured by the

Polarization and Directionality of the Earth Re�ectance (POLDER-1) sensor[32].

The wind with speed U∗ exerts on the surface an overall shear stress of[31]:

τ = ρA · U∗2 (7)

The shear stress is partitoned between roughness elements (such as shurbs and vegetation)

and the bare surface[31]:

τ =
WR

S
+
SB

S
τs (8)

where SB is the bare surface and S the total surface, WR is the force excerted over the

roughness elements and τS is the residual stress acting on the bare surface. We thus

see that the presence of the roughness elements protects the surface from the wind

shear, and reduces dust emissions.

4.3.4 The dust production

If the friction velocity U∗ reaches the threshold value U∗
t , a dust �ux is produced and

transported vertically by the winds. Experimentally, the mass of particles M mobilized

by the wind stress is proportional to the di�erence between U∗ and U∗
t

[31]:

M ≈ ρa(U
∗ − U∗

t ) (9)

From �gure 13 we see that particles between 60 -100 µm are the more easibly mobilized,

but due to their size they tend to rapidily gravitatonally settle. The intermidiate

process of saltation is essential for dust production: larger particles, falling down on the

surface in ballistic motion cause the disintegration of soil aggregates and the emission

of �ner particles ("sandblasting"), or break down themselves in smaller fragments.

The typical mean pathlenght of the mobilized particles is [31]:

L ∝ (U ∗+U∗
t )2

g
(10)

The smallest particles (< 60 µm) are then brought upward by turbulent eddies ("suspension")

and if they reach the boundary layer can be transported over a long-range [31]. The

25



Figure 14: Schematics of the main dust vertical trajectories due to wind shear stress[42]

processes leading to dust production are schematized in �gure 14. In the calculation of

the dust �uxes the vertical �ux of dust Fv, made of �ne particles produced by saltation,

is calculated as a fraction of the horizontal �ux Fh of creeping and saltating bigger

particles. The horizontal �ux can be estimated as:

Fh = M · L (11)

which putting toghether 9 and 10 leads to:

Fh = C
ρa
g
U∗3

(
1 +

U∗
t

U∗

)(
1− U2

t

U∗2

)
(12)

Where C is an experimental constant. In the model, this equation is approximated

with:

Fh =
ρa
g
U∗3 ·

∑
i

[(
1 +

U∗
t (Dpi)

U∗

)(
1− U∗

t (Dpi)
2

U∗2

)]
∆si (13)

where the index i runs over the particle size bins, (Dpi is the particle diameter

corresponding to the bin i, and ∆si is the relative surface area covered with particles

belonging to the size bin. The vertical �ux Fv is considered proportional to the

horizontal one:

Fv = αFh (14)

where α is the saltation e�ciency, which depends on the soil texture.
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4.4 Online - o�ine dust emission scheme comparison

In this section we present the raw comparison between the dust concentration �eld

produced by the two dust emissions schemes. The TM4-ECPL was run in 3◦x2◦ for

the years 2000 - 2017, once using the o�ine dust emissions scheme and once using

the online dust emissions scheme. In �gure 15 it is shown the relative change of the

simulated super�cial dust concentration C when changing from the o�ine to the online

emission scheme, calculated as:

change =
Conline − Coffline

Coffline

· 100 (15)

Figure 15: Change in super�cial dust concentration calculated as in 15, averaged for

the period 2000-2017

Figure 15 shows that the use of online emissions leads to signi�cant changes in the

super�cial conecentrations of dust near the sources. We can observe a general decrease

in the dust concentration in central Sahara and the Arabian peninsula, but also a

signi�cant increase in the Sahel area, Australia, central Asia, South Africa and South

America.
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5 Validation of the dust emission schemes

Both versions of the model, TM4-o�ine and TM4-online, have been validated against a

dataset of dust observations performed between the years 2000 and 2017. We chose to

exclude observations previous to the year 2000 because the process of dust emissions

depends on characteristics of the surface, such as the vegetation cover and the soil

erodibility, which varies over time and which can change considerabily over a decade.

For this reason, the fact that a model performs well in reproducing the dust emission

and tranport of 30 years ago is not representative of how the model would perform

today.

However, the largest datasests of surface dust concentration measurements available

remounts to the decade between 1980 and the mid-1990, during which 20 sites managed

by the Rosenstiel School of Marine and Atmospheric Science at the University of Miami

were active measuring monthly dust concentration [50],[51]. This datasets have been

largely used in literature to validate model-simulated dust-concentrations[60],[55],[52].

Nevertheless, we decided to exclude most of these measurments in our validation and

rely only on more recent observations.

To perform the validation, we run the models with spatial resolution 3◦x2◦ and with

a monthly output. This means that for each model grid, the model gives as output

the monthly average of the dust concentration within the grid. We compared the

observed monthly measurement of dust concentration (or the monthly average of

the observations, where the observations had a �ner temporal resolution), with the

modelled dust concentration at the location of the station.

5.1 Description of the datasets

Our dataset is composed of 8 ground-based stations. The position of all stations

is plotted in �gure 16. Figure 16 reports also the average dust concentration �eld

simulated by the online version of the TM4-ECPL model for summer 2006 (June,

July, August), to make easier to viasualize the position of the stations with respect

to the main dust emission regions and transport routes. All stations are located in

key positions to study Saharan dust emissions and trasnport: the four african stations

(M'Bour, Bambey, Cinzana, and Banizoumbou) are located on the edge of the major
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natural emission region in the Sahel area, the american stations (Miami, Barbados

and Cayenne) are situated downwind the atlantic transport, and Agia Marina is on

the transport route crossing the Mediterranenan.

Figure 16: 8 stations used for the model validation, plotted over the dust concentration

�eld simulated by the online version of the TM4-ECPL model for the summer

2006. Note that the two stations M'Bour and Bambey are so closed that they result

superimposed on the map. The black grid corresposponds to the model gridding in 3◦x2◦

resultion

5.1.1 Miami and Barbados

The stations of Miami (25◦ 45'N, 80◦ 15'W) and Barbados (13◦ 6' N, 59◦37 W) are part

of the dust monitoring network of the Rosenstiel School of Marine and Atmospheric

Science. They are both located downwind the dust transport pathway across the

Atlantic Ocean from the Sahara-Sahel region. At both station the air masses coming

from the open sea to the east are drawn into �lters with high e�ciency for dust [53].

Filter are then burned and the mineral dust load can be inferred from the ash residue

weight, the multiplicative factor accounting for losses being 1.3. These measures have

a standard error of 1 ± 0.1 µg/m3 for concentrations below µg/m3, and of ± 10 %

for higher concentrations. These data are made publicly available by the Univeristy

of Miami (see

https://scholarship.miami.edu/discovery/fulldisplay/alma991031447546702976/

01UOML_INST:ResearchRepository)
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5.1.2 Cayenne

The station of Cayenne (4.95◦ N, 52.31 ◦ E) is located on the shores of the French

Guyana, also downwind of the Atlantic dust transport pathway. For this location,

we used the dust concentration timeserie calculated by J. M. Prospero&all (2020) in

their paper "Characterizing and Quantifying African Dust Transport and Deposition

to South America: Implications for the Phosphorus Budget in the Amazon Basin"[58].

In this study, the dust load is calculated by substracting a regional background from

the PM10 concentrations measured by the ATMO-Guyane nonpro�t organization. The

obtained dust concentration timeserie was successfully validated with the MERRA-2

model. Data can be obtained by personal correspondance with Prof. J. M. Prospero.

5.1.3 Agia Marina

The station of Agia Marina (35 ◦N, 33.06 ◦ W) is located on the island of Cyprus, in a

strategic position to measure the dust transport in the East Mediterranean basin. In

this dataset, the dust concentration is calculated from measures of PM load using the

the methodology developed by Escudero & all[25]. The dataset was made available by

Prof. Mihalis Vrekoussiss.

5.1.4 M'Bour, Bambey, Cinzana, and Banizoumbou

The stations of M'Bour, Bambey, Cinzana, and Banizoumbou belong to the Sahelian

Dust Transect monitoring network [54] and are located in the semi-arid region of

western Sahel, on the edge of one of the major dust emission regions. These stations,

which are almost latitudinally aligned around 13◦-14◦ N, lie along the transport route

of African dust across the Atlantic Ocean to the American coasts. These stations

record concentrations of aerodynamic PM10
[55] and meterological parameters, such

as wind speed and direction, every 5 minutes. Even if the quantity measured is not

directly dust concentration, a good-enough estimate of it can be inferred from these

measurements. To get a value from dust concentration from these observations, the

original data were postprocessed in three steps: they were �ltered for wind direction,

selecting only those measurements taken when the wind was coming from dust-rich

regions [57], the aerodynamic diameter was corrected for geometric diameter[55], and a

rolling mean was applied to exclude outliers. These postprocessing steps are described
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in the following section.

5.1.5 Data postprocessing of African stations

The �rst postoprocessing step was to �lter the data for wind direction, selecting only

those measurements taken when the wind was coming from dust-rich regions [57]. For

observations taken in M'Bour (Senegal, 14.39◦ N, 16.96◦ W) and Bambey (Senegal,

14.70◦ , 16.47◦ W), we retained data corresponding to the wind direction spanning

from 30◦ to 150◦ to exclude air masses rich of sea-salt and pollutant from the sea and

the city. For the stations of Banizoumbou (Niger, 13.54◦ N, 2.66◦ E) and Cinzana

(Mali, 13.28◦ N, 5.93◦ W), we �ltered out southerly air masses coming from the sector

90◦-270◦ during the dry season (October to April), to avoid the interference of biomass

burning aerosols.

The correction to aerodynamic to geometric diameter was performed following the

method develloped by J. F. Kok & all.[55]. As calculated by Huang et al., 2020[56], a

geometric diameter of 10 µm corresponds to an aerodynamic diameter of 6.8 µm. To

compare the output concentration �eld of our simulation, in which PM10 is calculated

with respect to geometric diameter, with the oservations, only the fraction of our

model output corresponding to PM6.8 (geometric) should be taken into account. Since

the TM4 for dust divides only between �ne mode (PM2.5) and coarse mode (PM10),

only the coarse mode bin is a�ected by the correction. Following J. F. Kok & all, the

fractional contribution of the modelled dust concentration in the coarse mode to the

aerodynamic PM10 FCaeroPM10 can be calculated as:

FCaeroPM10 =
ln
(

DaeroPM10

D+

)
ln
(
D+
D−

) (16)

Where DaeroPM10 stands for the geomtetric diameter corresponding to aerodynamic

PM10 (for dust DaeroPM10 = 6.8 µm), and D+ and D− correspond to the upper and

lower limit of the model size bin straddling over DaeroPM10 (in the TM4 case, D+ =

10 µm and D− = 2.5 µm ).

As the stations are located very close to the emission regions, we can expect some

unusual peak in the observations. In order to exclude unwanted outliers from the

datasets, we apply a rolling mean of 3 hours, which coincide with the metereology
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timestep of the online version of the model. Applying a rolling mean is a way to

dampen the higher frequency components of the signal, smoothing out fast �uctuations

and point up the general trend.

As noted by Jasper&all in [55], the obervations might overall overestimate the true

values, as we cannot exclude the contribution of other tracers to total PM10, and

because �ltering the concentration according to wind direction leads means to restrict

our datset to the most dust-rich air masses.

5.2 Validation method

For each station, we initially plotted the superimposed timeseries of the dust concentration

measurements, the o�ine model output and the online one (see �gures 17 - 24).

These graphs allow to easily understand the overall model performance, and they are

particularly suitable to qualitatively evualuate the model performance in reproducing

the seasonality of the dust emission and transport paths.

For a more quantitative analysis, we did a scatter plot of the models monthly outputs

against the corresponding measurements and �tted it to a linear relationship:

observation = α + β ·model (17)

In fact, in the ideal case, the relationship between modelled and measured concentrations

would be a line passing through the origin of the axes (α = 0) and with the slope β

equal to 1. The deviation of the linear �t from this line provides us with quantitative

information about the model performance:

α > 1 and β > 0: the model overestimates the observations at all scales

α > 1 and β < 0 : the model overestimates the observations at large scale

and underestimate them at small scale

α < 1 and β > 0: the model overestimates the observations at small scale

and underestimate them at large scale

α < 1 and β < 0: the model underestimates the observations at all scales

For each linear �t, we additionally calculated the following parameters: the Pearson

correlation coe�cient, the root mean squared di�erence, the mean bias, and the
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standard deviation. The meaning and the mathematical formulation of each parameter

is explained as follow (Oi always refers to an observation and Mi to the corresponding

modelled value):

Pearson correlation coe�cient r =
∑N

i=1(Mi−M)(Oi−O)√
[
∑N

i=1(Mi−M)]·[
∑N

i=1(Oi−O)]

This is a unitless parameter that quanti�es the strenght of the linear correlation

between the observed and the modelled quantity, or in other words how well the

modelled pattern matches the observed pattern. The better the �utuations of the

modelled dust follow the �uctuations of the observed one, the higher will be the

correlation coe�cient. In the ideal case, r = 1 and the relationship between the

two quantities is linear.

However, this coe�cient provides information only about the relative behavoir of the

two quantities, and it is not useful to quantify the discrepancy between the two. For

this purpose, we calculate the root mean square di�erence and the mean bias.

Root mean squared di�erence RMSD:
√∑N

i=1[Mi−Oi]2

N

The RMSD quanti�es the amplitude of the �uctuation between the model and the

observations. In the ideal case in which the model and the observations coincide in

each point, the RMSD would be equal to zero. As a general rule, the higher the

RMSD, the worse is the model performance. As the di�erence between modelled and

observed value appears squared in the formula, this parameter is particularly sensitive

to the outliers. The RMSD has the same unit as the observed quantity (in our case

µgrams/m3).

mean BIAS: 1
N

∑N
i=1(Mi −Oi) = M −O

the mean BIAS represents the average di�erence between the model and the observations.

As for the RMSD, the mean bias has the same unit as the observed quantity: in our

case, it will represent the average di�erence in µgrams/m3 between the modelled dust

load and the observed dust load.

standard deviation σ:
√∑N

i=1(xi−x)2

N

where xi is an element of a dataset and x its average. The standard deviation measures
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the dispersion of the data around its average value. If the data follow a gaussian

distribution, σ represents the width of the gaussian. Note that while in the de�nition

of the previous paramteres the values of Mi and Oi appeared mixed in the equations,

on the contrary σ quanti�es the internal variability of a dataset and is calculated

independently for each of them: the station data, the online model the o�ine one (ath

the locations of the observations).

In this context, σ is not of straightforward interpretation. The dispersion of a dataset

can be due to two overlapping factors: an error in correctly modelling the dust load,

or in measuring it for the observations dataset, and an intrinsic �uctuation of the

observed phenomena due to its seasonal cycle and changes in the wind�elds.

In general, the closer the model σ to the observed one, the better it reproduces the

observed distribution.

5.2.1 Taylor graph

In order to graphically summarize the change in the model performance when using

online dust emissions instead of o�ine ones, we plotted the results of the validation in

a Taylor diagram[59]. The Taylor diagram is usually used to make models performance

intercomparison when dealing with multiple complex models, such those used in climate

science and Earth system modelling.

Using this diagram, the correlation coe�cent, the root mean squared di�erence and

the standard deviation are summarized in one single point on a 2D plot, providing

a visual representation of how well the model-simulated �eld resemble the observed

�eld.

The points are represented in polar coordinates on a polar style graph. The standard

deviation is plotted on the radial dimension, and the radial distance of the point form

the origin is proportional to the value of σ. The correlation coe�cient is plotted on

the angular coordinate, and the correlation coe�cient is equal to the cosine of the

azimuthal position of the point. As the correlation of the observation with itself is by

de�nition 1, the obervation point thus alway lies on the horizontal axes (0◦ azimuth),

respecting the relation cos(0◦) = 1.

A family of concentric circles centered in the observations point is added to the diagram

to plot the root mean squared di�erence RMSD. The model RMSD is proportional to
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the radial distance between the model point and the observation point. The smaller

the RMSD, the closer the model point to the observation point, and the inner the

circle of the family the model point is contained in.

See �gure 26 for the Tayor diagram of this validation.

5.3 The validation results

5.3.1 The timeseries

The timeseries for each station of the model-simulated dust concentration and the

observed one are plotted in �gures 17 - 24.

The performance of the two versions of the TM4-ECPL is overall good. Note that the

only two stations where the atmospheric dust load was directly measured are Miami

(�gure 17) and Barbados (�gure 18). For the other stations, the dust load is calculated

inderectly from the total atmopsheric PM10 with the di�erent methodologies explained

in the previous section.

In general, the seasonality of the dust emissions and the transport seems to be well

captured by both versions of the model for most of the stations. The stations which

shows the worse correspondence between model and observation are Bambey and

Mbour. These two stations are located in the same model grid and were subject

to the most severe data post-processing due to their proximity to the coast, which

lead to the interference of sea-salt in the same diameter range as dust in the total

PM10.

The station of Barbados, even if the seasonality is fully captured, is massively overestimated

by both version of the model. This behaviour might be justi�ed by the fact that this

station falls on the left edge of model box, and is located on the horizontal plume of

dust crossing the Atlantic Ocean. As a consequence, the gradient of dust concentration

along the horizontal direction of the grid might be quite strong, the dust concentration

being higher on the right edge of the grid and lower on the left edge of the grid. As

the model gives as an output the dust concentration averaged over all the gridcell, the

modelled dust concentration in this grid will be higher than the real value measured

at a location situated on the left of the grid, as for Barbados.
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Figures 2-9: Timeseries of the observed and modelled dust concentration at the 8

stations. The shaded area corresponds to the observation standard deviation. In Miami

and Barbados, the standard deviation of the monthly avergae is reported in the datasets.

In Agia Marina and all the African station, the datasets reported a daily and 5-minutes

output respectively, and the standard deviation is calculated as internal �utuation of the

data. For the sation of Cayenne, the data reported the monthly output alone without

any associated error. The red line depicts the output of the online version of the model,

the green one the o�ine one.

5.3.2 The scatter plots

A quantitative comparison between the performance of the two TM4-ECPL versions is

represented by the scatter plots in �gure 25 . For both versions of the model, the model-

simulated dust concentrations are plotted against the correspoinding observations, in

both linear and logarithmic scale.

In linear scale it is easier to appreciate the performance of the model linear �t to a 1:1

line, while in logarithmic scale it is easier to grasp the model performance at di�erent

scales.

From the linear plots in �gure 25 (left column), we can see that the o�ine version of

the model overall underestimate the observed atmospheric dust load,particularly for

the stations near the emission sources (green dots). The best linear �t slope is of 0.71

and 0.37 for the online and o�ine version, respectively.

The online version also performs better in terms of the total mean bias, resulting in a

mean bias of 2.58 µg/m3, better of one order of magnitude with respect to the mean

bias of -14.27 µg/m3 of the o�ine version. If compared to the total average dust load

observed at the slected locations of approximately 51 µg/m3, the online mean bias

corresponds to the 5% of the total load, and the o�ine mean bias corresponds to the

30% of the total load.

The use online emissions also results in a sligthly better correlation coe�cient: the

online version of the model shows a correlation of r = 0.75 with the observations, while

the o�ine version shows a correlation of r = 0.61.
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Figure 25: Monthly averaged observed dust concentration versus the model-simulated

dust concentration at the same locations in µg/m3. On the left column, the scatterplots

are plotted in linear scale, on the right column in log scale. In the linear scale plots,

the 1:1 line is plotted in black, and the best linear �t in red (online TM4), and orange

(o�ine TM4). The text box reports, for each graph, the slope and the intercept of the

linear �t, the mean bias, the Pearson correlation coe�cient (r) and the centered root

mean squared error (RMSD). In the log scale plots, the black line is the 1:1 line, and the

dashed lines are the 10:1 and 1:10 lines. In all plots, the stations are geographically

grouped: African stations (M'bour, Bambey, Cinzana, Banizoumbou) are plotted in

green, the stations on the American coasts and in the Carribbean (Miami, Barbados,

Cayenne) are plotted in violet, and the only Mediterranean station (Agia Marina) is

plotted in pink.
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On the right column of �gure 25 the scatterplots are plotted in logarithmic scale. The

symmetric dashed lines are the 10:1 line and the 1:10, which enclose the area of the

plot in which the points are within an order of magnitude distance from the 1:1 line.

As dust emissions are still quite uncertain, the one order of magnitude distance from

the 1:1 line is usually taken as a reference when validating natural dust[60]. In this

sense, both versions of the model perform quite good, as only a few outliers are not

comprised between the two dashed lines. We can see that the o�ine version of the

model tends to underestimate the dust concentration at large scale, near the emissions

region (green dots in the scatterplots), but overall performs better than the online

version at small scale.

From these scatterplots, we can infere that, when it comes to reproducing dust emissions,

the online emission scheme performs better than the o�ine one. When it comes to

stations far from the sources (the violet dots in the scatterplots), the discrepancy

between model and observation can be due to other physical-chemical processes, such

transport or deposition mechanisms. However, the good accordance between the online

emission scheme and the observations near the sources, where transport and deposition

come into play more marginally, suggests that the online emission scheme reproduces

better the dust emissions than the o�ine one. We can also notice that the online

emissions scheme predicts emissions of one order of magnitude higher than the o�ine

one, which, on the contrary, seem to underestimate them of one order of magnitude.

5.3.3 The Taylor diagram

The Taylor diagram that summarizes the change in the TM4-ECPL model performance

when using an online emissions scheme instead of an o�ine one is plotted in �gure 26.

From the Taylor diagram, we can conclude that the use of the online emission scheme

slightly improve of the model performance with respect to the three plotted parameters.

There is a 15% improvement in the correlation coe�cient (from 0.61 to 0.75), meaning

that the seasonality of the dust emission and of the transport routes is probably better

captured.

The root mean squared error RMSD decreased of about 11 µg/m3 (from 68 µg/m3 to

57 µg/m3), which corresponds to the 21% of the avearage observed dust load of 51
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µg/m3.

The standard deviation of the online emissions scheme gets much closer to the observed

one with respect to the o�ine one. In fact, the observations show a standard deviation

of 84 µg/m3, the concentrations simulated with the online scheme at the same locations

show a standard deviation of 79 µg/m3, and 51 µg/m3 for the o�ine one. This means

that the distribution of the o�ine-modelled concentrations around their mean is much

more skewed than the distribution observed in the measurements.

As we said in the previous section, the dispersion of the observed values might be due

to both a real variabilty of the phenomena, or to observation error or error in the

retrival of the dust fraction from the total PM10.

Figure 26: Taylor diagram comparing the overall performance of the o�ine and the

online dust emissions scheme in the TM4-ECPL model. The diagram compares the

Pearson correlation coe�cient (on the polar angle coordinate), the standard deviation

in µg/m3 (on the radial coordinate),and the root mean squared distance RMSD in

µg/m3 (as distance from the observation point) of the two model versions
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6 The case of study: dust e�ects over air quality in

the Mediterrenean basin

We aim to use the TM4-ECPL to assess the impact of natural dust on air quality in

cities of the Mediterranean basin. The Mediterranean area is signi�canlty a�ected by

the transport of natural dust, as result of its proximity to the Saharan and Middle

Eastern sources and its dry climate, which favours the long lifetime of suspended

aersols.

The initial aim of this study was to address the impact of natural dust on the air

quality of large, densely populated cities. The Mediterranenan basin hosts only two

megacities (i.e. with a population of more than 10 million inhabitants): Cairo and

Instanbul. In this study, we also included Rome and Barcelona as representative of

the West side of the basin, and Athens and Lemesos as representative of the East side

of the basin. It should be noted that the highest urban concentration of the East part

od the basin are found outside of the European Union, but getting atmospheric data

from those location it is often not trivial. The location of Lisbon was added to check

for dust intrusions outside of the basin.

The European Monitoring and Evaluation Programme (EMEP) and Aerosols, Clouds

and Trace Gases Research Infrastructure (ACTRIS) provide a wide set of timeseries

of PM10 measurements for multiple years and locations. Our initial intention was to

identify from the timeseries of the measured PM10 the days in which the European

limits for particulate matter have been exceedeed, use the TM4-ECPL to do a speciation

of the PM10 peaks and calculate from the speciation the dust fractional contribution

to the exceedance. However, the comparison between measured and simulated daily

PM10 at selected locations showed the presence of anoumalous peaks in the modelled

�eld, which surpasses sometimes by an order of magnitude the measured ones. Figure

27 shows the comparison between the measured PM10 �eld and the modelled one

in Barcelona for the year 2014. We can notice how the timeserie of modelled and

measured PM10 are, in general, in good accordance, but that most of the EU limit

exceedances predicted by the model do not �nd a correspondance in the data, and that

the model peaks are dominated by dust. This same behaviour was found at di�erent
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Mediterranean locations. As our analysis aimed particularly at studying peaks and

the dust fractional contribution to those, we decided to do a second validation of total

PM10 restricted to the Mediterranean region.

Figure 27: Timeseries of the measured PM10 (blue), modelled PM10 (red), and

modelled dust (orange) for the year 2014 in Barcelona. The horizontal line is set

at the EU limit of 50 µg/m3 for PM10 over a 24h avergaing period

6.1 PM10 validation and PM10 speciation in the Mediterranean

region

The model validation for the total PM10 in the Mediterranean region aims at addressing

two questions: if the model performs di�erently across the basin and, where there's

a signi�cant discrepancy between model and observations, which PM10 species are

causing it.

To perform the validation, we run the TM4-ECPl model with 3-h temporal resolution

using the online dust emission scheme for the years 2011-2017. The total PM10

�eld simulated by the TM4 - ECPL can be calculated as the summation of all the
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individual atmospheric species belonging to this size range. In the speciation, we

divided these atmospheric species in 5 categories: inorganic aersols, organic aerosols,

biogenic aerosols, natural dust and sea salt, as reported in table 2 in the "Methods"

section.

6.1.1 The locations and PM10 datasets choice

The locations used for the PM10 validation are listed in table 3. The initial choice for

the stations location was the proximity to densely populated cities in the Mediterranean

basin and the proximity to the dust sources. Stations data where initially taken

from the EMEP (European Monitoring and Evaluation Programme) inventory, which

provides the data of air pollutants concentrations reported yearly to the EEA (European

Economic Area) by memberstates. This inventory contains PM10 timeseries starting

from the year 2013 at major European cities.

Due to the signi�cant discrepancy between measurements and model at most of the

selected EMEP locations, we decided to add a few locations from the ACTRIS (Aerosols,

Clouds and Trace gases Research Infrastructure) data inventory to check the consistency

of the validation results. In particular, the two Actris stations in the south of Italy

(Lamezia Terme and Lecce) were added to double check the bad performance of the

model in this part of the Mediterranean basin, which emerged from the analysis of

the Catania EMEP station. For Cyprus, the EMEP data have been integrated with

the data from the study Pikridas&all (2018), provided by prof. M. Vrekoussis. All

locations used for the validation are listed in table 3.

6.1.2 Measurements - model comparison on yearly averages

The daily PM10 timeseries (as in �gure 27), suggested that the model performance

is overall good and that the main discrepancy between model and observation is

restricted to the peaks. As a �rst step to validate this hypothesis, we compared the

yearly averages of the model output and the observations at di�erent Mediterranenan

locations. The result is depicted in �gure 28.

From �gure 28 we can notice that on an yearly average the model performs generally

good across the basin, a part from stations located in the south of Italy, where the
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station country lat lon project acronym years

Lisbon Portugal 38.73 -9.14 EMEP 2013-2017

Barcelona Spain 41.39 2.15 EMEP 2013-2017

Rome-Naples Italy 41 13.5 EMEP 2013-2017

Montelibretti Italy 42.10 12.63 ACTRIS-EMEP 2011-2015

Catania Italy 37.5 15.09 EMEP 2015-2017

Lamezia Terme Italy 38.88 16.23 GAW-WDCA 2015-2017

Lecce Italy 40.33 18.12 GAW-WDCA 2015-2017

Lemesos Cyprus 35 34.5 EMEP 2014-2017

Cyprus (various*) Cyprus 34.7 33 Pikiridas&all (2018) 2011-2015

Athens Greece 37.98 23.73 EMEP 2013-2017

Cairo Egypt 30.08 31.29 GAW-WDCA 2011-2014

Table 3: Stations used for the PM10 validation. For each stations, it is reported: the

city name where the stations are located, the country, the latitude and the longitude,

the project acronyms the data are associated with, and the years for which the data are

available. Rome and Naples, Agia Marina and Lemesos are reported together beacuse

they fall in the same box grid and the reported coordinates are those of the center

gridbox.

measured values are signi�canlty below the modelled ones. In general, the model tends

to slightly over-estimate the yearly measured value, except for the station closer to the

dust emissions (Cairo).

6.1.3 PM10 validation on monthly averages

In order to understad whether the seasonal variability of the PM10 is well enough

captured by the model, we performed a validation of the monthly total PM10 concentration

following the same procedure as for the validation of natural dust in Section "Validation

of the online dust emission scheme". We averaged the measurement data, which have

a daily resolution, and compared it with the speciated PM10 load calculated from the

monthly averaged output of the TM4-ECPL. The timeseries are represente in �gures

29 - 31. For each timeserie, the measurements and the model values are represented
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Figure 28: Yearly averaged PM10 �elds modelled by the TM4-ECPL model compared

with yearly averaged PM10 measurements at selected Mediterranean locations.

in a scatterplot. For each scatterplot, we performed a linear �t and calculated the

Pearson correlation coe�cient, the mean bias and the root mean squared error as we

did for the previous validation.
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Figure 29: Left: timseries of the modelled PM10 speciation as compared to

measurements at the locations of Lisbona, Barcelona, Rome-Naples, Montelibretti.

Measurements are reported with the corresponding monthly standard deviation. The

dust fraction over the entire modelled timserie is reported in the textbox. Right:

measurements-model scatterplots at each location. Model values are reported on the

x-axis and the corresponding measurements on the y-axis. The linear �t parameters

(slope and intercept), the Pearson correlation coe�cient, the mean bias and the root

mean sqaured error for each scatterplot is reported in the text-box.47



Figure 30: Left: timseries of the modelled PM10 speciation as compared to

measurements at the locations of Lecce, Lamezia Terme, and Catania. Measurements

are reported with the corresponding monthly standard deviation. The dust fraction

over the entire modelled timserie is reported in the textbox. Right: measurements-

model scatterplots at each location. Model values are reported on the x-axis and

the corresponding measurements on the y-axis. The linear �t parameters (slope and

intercept), the Pearson correlation coe�cient, the mean bias and the root mean sqaured

error for each scatterplot is reported in the text-box.
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Figure 31: Left: timseries of the modelled PM10 speciation as compared to

measurements at the locations of Athens, Cyprus, and Cairo. Measurements are

reported with the corresponding monthly standard deviation. The dust fraction over

the entire modelled timserie is reported in the textbox. Right: measurements-model

scatterplots at each location. Model values are reported on the x-axis and the

corresponding measurements on the y-axis. The linear �t parameters (slope and

intercept), the Pearson correlation coe�cient, the mean bias and the root mean sqaured

error for each scatterplot is reported in the text-box.
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6.1.4 Discussion of PM10 validation results

In general, the timeseries in �gure 29, 30 and 31 suggest that the model performance is

better on the East side of the basin than on the West side. For all stations, the linear

�t over the scatterplot data is far from the 1:1 line, the �t slope being close to 0 for

most station. In all stations except from Cairo, the presence of wide �uctuations in the

modelled PM10 load, in general not observed in the data, tends to �atten out the linear

relation. These wide �uctuations predicted by the model seem quite uniformly due to

dust: in all stations, the PM10 speciation reveals that dust and inorganic aerosols are

the most abudant component of the total PM10 load, and dust seasonal �uctuations

dominate the peaks in the modelled PM10 timeseries everywhere except from Lisbon,

which is the only station located outside of the Mediterranenan basin.

The location of Rome-Naples sticks out as the worst, showing a negative linear relation

between modelled and observed values.

The East side of the basin:

The best accordance between model and observation is achieved in Cairo, where the

seasonality and the peaks of the PM10 measurements is almost fully captured. The

two timeseries here show a relatively high Perason correlation coe�cient of r = 0.70.

This result is in good accordance with the result of the dust validation, which showed

that the dust concentration near the sources is well modelled by the TM4-ECPL

with the online emissions scheme. However, the model here is quite signi�canlty

underestimating the measured PM10: the calculated negative bias of -51 µg/m3 accounts

for roughly half of the yearly average at this location (around 100 µg/m3).

The model performs fairly also at the location of Athens. Here the seasonality seems

to be fairly captured, scoring a Pearson coe�cient of r = 0.77. While the overall PM10

timeserie is well captured by the model, the model is overestimating the PM10 peaks.

Always on the East side of the basin, in the station of Cyprus the model performs fairly

on the total average, having a low bias of 5.11 µg/m3 between model and obervation.

However, the observed PM10 �eld is rather constant around 30 µg/m3 and shows,

a part from one signi�cant peak, only mild �uctuation around the average, while

the modelled �eld shows much stronger seasonal �uctuations, leading to a �at linear
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relation (slope = 0.09).

The West side of the basin:

The west side of the basin shows quite uniformely a bad correlation between model

and observations.

In the region of south of Italy the validation was performed over three station: Lecce,

Lamezia Terme and Catania. In the stations of Lamezia Terme and Catania the

modelled PM10 concentration are signi�cantly above the measurements, the bias being

in both cases around the double than the averaged measured �eld. Morevore, the

model predicts seasonal �uctuations which are totally absent in the data (resulting

ina a correlation of r = 0.14 for Lamezia Termena and r=0.06 in Catania). However,

the for these stations, the measurements do not appear totally trustable: over a time

lapse of multiple years, the measures remain almost constant and show a very low

variability (in particular the Lamezia Terme data). This appear quite implausable

for two stations located in the middle of the Mediterranean and realtively close to

the Saharan dust sources. In order to understand weather the PM10 measurements

at this stations re�ect the real status of the atmosphere, we checked for the AOD

timeserie at the location of the stations. Figures 32 and 33 show the area-averaged

timeseries of the Aerosol Optical Depth at 550 nm as measured by the NASA MODIS

Spectroradiometer at both locations for the years 2015-2017.

Both AOD timeseries show a signi�cant seasonal variabilty, showing spring and summer

maximums. This suggests the presence of an inconsistency between the ground PM10

measurements and the AOD data. The presence of spring maximums characterize also

the modelled PM10 timeseries, suggesting that a better correlation between model and

measurements might be obtained performing the validation using AOD data. However,

one must remember that the AOD is a measure of the total amount of aerosols in the

vertical atmospheric column, so a further analysis would be needed to assess whether

the AOD peaks also resulted in a surface concentration peak, or if the aerosol plume

passed at an high altitude and did not a�ect dramatically the surface concentration.

Nevertheless, aerosol lidar measurements performed over the timespan between 2014

and 2017 reported numerous Saharan dust events in this region[61]. As there are

concrete reasons to mistrust the PM10 data, a further analysis should be carried on at
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Figure 32: Time series of the area-averaged Aerosol Optical Depth at 550 nm,

with monthly temporal resultion and 1◦ spatial resolution, measured by MODIS-Aqua

between January 2015 - January 2018, in the area [15.5E, 38N, 17.5E, 40N]

Figure 33: Time series of the area-averaged Aerosol Optical Depth at 550 nm,

with monthly temporal resultion and 1◦ spatial resolution, measured by MODIS-Aqua

between January 2015 - January 2018, in the area [14.5E, 36.8N, 15.7E, 38N]

these locations in order to validate the model performance in reproducing the PM10

�eld.

The at the location of Lecce the model performs better than in Catania and Lamezia

Terme. Model and measurements correlate slightly better (r = 0.36), and the bias is
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signi�cantly lower (4.9 µg/m3).

In the stations of Barcelona, Rome-Naples and Montelibretti the model validation leads

to similar results.The modelled signal tends to follow the measured one when the PM10

concentration is low, but fails to grasp �uctuations: most PM10 peaks predicted by the

model are not present in the measurements, and the measured PM10 peaks are often

not reproduced by the model (particularly in the Rome timeserie). This results in a

relatively low bias (between 1.82 and 6.16 µg/m3), but in a low correlation (between

0.16 and 0.25) and �at slopes of the best linear �ts.

The station of Lisbon is the only which is not located in the Mediterranean basin

and that faces the open Atlantic Ocean. Here the speciation of the PM10 timeserie is

di�erent from the other locations: the PM10 load is dominated by inorganic aerosols,

the fractional contribution of sea salt is higher than at the other locations and dust's

fractional contribution is signi�canlty lower. A further speciation of the inorganic

aerosols at this location revealed that the major contribution to this PM10 component

comes from particulate water, which are water droplets contaning debris. The validation

result seem to suggest that at this location the model overestimates particulate water,

as the modelled inorganic aerosol concentration alone surpasses the measured one. At

this station, the model and measured �eld are uncorrelated, showing a correlation

coe�cient of r = 0.09 and linear �t slope of -0.04.

6.1.5 Overall conclusions on PM10 validation

The result of the model validation suggests that the TM4-ECPl model with the

online dust emission scheme performs better at reproducing the PM10 concentration

�eld on the East side of the basin than the West side. However, as some surface

PM10 concentrations proved to be not trustworthy, a second validation using AOD

measurements would be needed to better assess the model performance in the entire

basin. For each timeseries, the dust fractional contribution to the total PM10 load

has been calculated from the speciation, and is reported in text for each timeserie.

Overall, the general trend of the dust �eld along the basin seems to be captured by

the model, showing an overall increasing trend from West to East (from 17% in Lisbon

to 57% in Cyprus), and from North to South, peaking in Cairo (78%).
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However, we cannot ignore the fact that the result of the PM10 validation in the basin

is overall extremely poor. The low correspondance between model and observation

might be due to an intrinsic overestimation of dust in the dust emissions. However,

the online emission scheme perfomed quite good at simulating the dust concentration

near the dust sources (see �gures 21 - 24 in the section "Validation of the dust emission

schemes"), and this behaviour is con�rmed by the good result in the PM10 validation

in Cairo (where the model is actually underestimating the total PM10 �eld). The

reason of the bad performance in the simulation of the model PM10 �eld might thus

be sought in the deposition �uxes and removal processes. However, a further analysis

would be of need to understand which process is driving the anomalous dust load

�uctuations.

As a last test to assess the goodness of the model performance in the basin, we

decided to confront the modelled PM10 �elds with the PM10 measurements data from

Pikiridas&all (2018), which represent a fully troustable set of PM10 measurements for

the years under study.

6.1.6 Model performance in Cyprus

We dispose of a trustworthy PM10 measurements multi-years timeserie for the location

of Cyprus, used in the study by Pikridas&all (2018)[62].

These PM10 measurements were conducted using a TEOM (Tapered Element Oscillating

Microballance measurements) and gravimetric analysis of particulate matter at 7

di�erent stations located on the island over the period 1998-2015. In the same study,

the timeserie of dust concentration was calculated for the same period using the Querol

method[25]. The comparison between the model PM10 yearly averages and the yearly

averages measured in this study are reported in table 4, while the same comparison

for dust is reported in table 5.

From the results reported in table 4, we can see that the yearly average of modelled

PM10 is always compatible with the measured value within the measurement standard

deviation, except for the year 2014. The two values are always compatible within

the model standard deviation, which is always quite high, accounting for half or

more of the modelled average value, implying that the model predicts wide PM10
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year PM10 TM4-ECPL PM10 Pikridas(2018)

2011 (36 ± 31) µg/m3 (25 ± 9) µg/m3

2012 (26 ± 12) µg/m3 (33 ± 10) µg/m3

2013 (34 ± 19) µg/m3 (39 ± 8) µg/m3

2014 (48 ± 28) µg/m3 (38 ± 9) µg/m3

2015 (34 ± 16) µg/m3 (41 ± 10) µg/m3

Table 4: Yearly average of the TM4-ECPL PM10 as compared to the measured one in

Cyprus as in Pikradis&all (2018). The model standard deviation are computed from

the monthly output �elds, the measurements standard deviation from the yearly average

measured at di�erent stations

year Dust TM4-ECPL Dust Pikridas(2018)

2011 (20 ± 27) µg/m3 (6 ± 4) µg/m3

2012 (12 ± 10) µg/m3 (5 ± 2) µg/m3

2013 (18 ± 16) µg/m3 (12 ± 11) µg/m3

2014 (26 ± 24) µg/m3 (8 ± 7) µg/m3

2015 (16 ± 12)µg/m3 (9 ± 8) µg/m3

Table 5: Yearly average of the TM4-ECPL dust as compared to the calculated one in

Cyprus as in Pikradis&all (2018). The model standard deviation are computed from

monthly output �elds, the Pikradis one from the monthly estimates of dust

�uctuations between di�erent months (as could already be seen in �gure 31). From

the results reported in table 5, it is clear that the model tends to overestimate the

dust concentration. The modelled average value is always 2-3 times higher than the

Pikridas one. The two values are compatible within the Pikridas standard deviation

only for the years 2015 and 2013.
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6.2 Exceedances computation in Mediterranean cities

The 3h - 3◦×2◦ runs were used to compute the number of daily exceedances of the

EU limit in 6 cities of the Mediterranenan basin over a time range of 3 years (2015

- 2017). We selected Barcelona, Rome, Athens, Lemesos, Cairo and Instanbul as the

citites of interest. Instanbul was included because it is one of the few megacities (i.e.

population > 10 million) of the Medierranean basin, the only other being Cairo. Even

if we did not perform the PM10 validation directly in the Instanbul area because of

the lack of data, the validation result was overall fair in the nearby stations.

In general, the model seems to capture the seasonality of dust events in the Mediterranenan

basin. All locations on the East side of tha basin (Athens, Lemesos, Instanbul, Cairo)

show a peak in the number of exceedances during Spring, while locations on the West

side show a peak between Spring and Summer. The fractional contribution of dust to

the yearly exceedances oscillate around a 45%-55% on the West side of the basin and

around 45%-65% over the East side (excluding Cairo), and the number of exceedances

increases from West to East and moving closer to the dust sources. Cairo register the

higher number of yearly exceedances with a dust contribution between 70%-75%.

State members are allowed to surpass without penalties the EU daily PM10 limit-

value of 50 µg/m3 only 35 times a year. We included in these limitations also not EU

cities (Cairo and Instabul), as the 50 µg/m3 daily limit is set by the World Health

Organization. Our model predicted that the limit was not met for all years and

locations under consideration. The results are contanined in tables 6 - 11.

6.2.1 Comparison with previous exceedences studies

We confronted the results listed in tables 6 - 11 with previous studies of exceedances

in the Mediterranenan basin. No study reported the number of > 50µg/m3 daily

exceedances for the years and locations we analyzed, so it is not possible to make a

direct comparison. However, as dust events show a periodic cycle, it is still possible

to draw some conclusions on the reliability of our results.

A recent study[63] estimated desert dust contribution to the PM10 load in di�erent

Mediterranenan countries between the years 2015-2018. They estimated an average
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dust concentration of (8.8 ± 7.5), (7.5 ± 5.5), (9.0 ± 5.6) µg/m3 in Spain, Italy and

Instanbul respectively. At the locations of Barcelona, Rome and Instanbul averaging

the daily dust timeserie of the TM4-ECPL output, we obtain an average yearly dust

concentration of (9± 21) µg/m3, (11± 33) µg/m3, (12 ± 34) respectively, in good

accordance with the previous study's results.

The same study[63] estimated the typical PM10 concentration range during dust

outbreaks, which are selected as days in which a thershold value of 150µg/m3 is

surpassed. They �nd that over the year 2015-2017 the PM10 load during dust outbreaks

�uctuated between [213 - 327] µg/m3 in Spain and [153 -445] µg/m3 in Turkey. If we

apply the same 150µg/m3 limit to our timeseries in Barcelona and Instanbul and

calculate the average dust concentration during the dust outbreaks between 2015 and

2017 we get 208 ± 61 µg/m3 for Barcelona 246 ± 129 µg/m3 for Instanbul. Thus, both

minimum and maximum values of TM4-ECPL simulated dust along the Mediterranean

basin are in good accordance with this previous study.

When it comes to the number of estimated exceedances, the number predicted by

the TM4-ECPL seems fair. Another study on PM10 exceedances conducted on the

island of Crete[5], in the middle of the basin, found that in Crete daily EU PM10-

limits are typically surpassed around 1 out of 5 days at background stations, which

would correspond to roughly 70 exceedances per year. In 2011, a EEA technical

report documented that, for the year 2009, Cyprus, Spain, Greece, and Italy, reported,

respectively, 112, 35, 76 and 75 exceedances due to natural events.

The TM4-ECPL predicts a number of exceedances ranging between 36 and 44 in

Barcelona, 51 and 74 in Rome, 61 and 85 in Athens, 59 and 79 in Lemesos, 46 to 67 in

Instanbul, 73 and 103 in Cairo. We can conclude that the number of daily exceedances

of the PM10 EU-limit predicted by the TM4-ECPL seem reasonable.
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Barcelona

Year Season N◦ of exceedances Average PM10 [µg/m3] Dust %

2015

Winter 1 44.35 0.5%

Spring 20 85 ± 40 60.4%

Summer 10 78 ± 26 68.6%

Autumn 5 127 ± 112 51.7%

yearly total 36 85 ± 34 45.3%

2016

Winter 9 55± 27 25.1%

Spring 11 53 ± 12 52.3%

Summer 13 83 ± 45 64.7%

Autumn 8 86 ± 47 57.2%

yearly total 41 69 ± 17 49.8%

2017

Winter 13 95 ± 64 28.8%

Spring 5 74 ± 43 58.8%

Summer 26 86 ± 33 73.0%

Autumn 0 n.a. n.a.
yearly total 44 85 ± 10 53.6%

Table 6

Rome

Year Season N◦ of exceedances Average PM10 [µg/m3] Dust %

2015

Winter 11 80± 31 62.3%

Spring 27 101 ± 131 55.4%

Summer 3 68 ± 10 70.4%

Autumn 17 79 ± 56 47.8%

yearly total 58 82 ± 14 58.9%

2016

Winter 14 64± 16 16.6%

Spring 24 109± 90 59.2%

Summer 21 66± 23 58.2%

Autumn 15 64± 23 43.6%

yearly total 74 76 ± 23 44.4%

2017

Winter 15 97± 58 29.7%

Spring 11 80± 49 40.8%

Summer 19 73± 22 64.9%

Autumn 6 48± 6 31.3%

yearly total 51 75 ± 20 41.7%

Table 7
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Athens

Year Season N◦ of exceedances Average PM10 [µg/m3] Dust %

2015

Winter 28 156 ± 219 45.5%

Spring 29 108 ± 112 66.9%

Summer 7 55 ± 13 52.8%

Autumn 17 75 ± 37 44.6%

yearly total 81 85 ± 34 45.3%

2016

Winter 18 71± 47 17.9%

Spring 43 131 ± 202 59.8%

Summer 13 68 ± 21 63.4%

Autumn 11 72 ± 60 47.0%

yearly total 85 85 ± 30 47.0%

2017

Winter 21 60 ± 18 27.6%

Spring 18 91 ± 71 65.3%

Summer 12 66 ± 20 67.2%

Autumn 10 80 ± 30 52.7%

yearly total 61 74 ± 14 53.2%

Table 8

Lemesos

Year Season N◦ of exceedances Average PM10 [µg/m3] Dust %

2015

Winter 19 87± 41 55.2%

Spring 33 83 ± 66 69.7%

Summer 15 75 ± 61 67.1%

Autumn 12 57 ± 18 72.3%

yearly total 79 76 ± 13 66.1%

2016

Winter 11 60± 20 38.8%

Spring 33 118± 77 72.5%

Summer 18 84± 39 65.5%

Autumn 5 46± 5 68.7%

yearly total 67 77 ± 32 61.6%

2017

Winter 9 50 ± 7 40.6%

Spring 36 94 ± 93 70.7%

Summer 6 84 ± 15 74.4%

Autumn 8 71 ± 36 65.5%

yearly total 59 75 ± 18 62.8%

Table 9
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Cairo

Year Season N◦ of exceedances Average PM10 [µg/m3] Dust %

2015

Winter 38 281 ± 460 78%

Spring 37 133 ± 130 78%

Summer 14 101 ± 82 75%

Autumn 14 67 ± 22 70%

yearly total 103 146 ± 94 75%

2016

Winter 23 267 ± 446 68%

Spring 48 178 ± 201 82%

Summer 17 69 ± 19 69%

Autumn 4 52 ± 20 64%

yearly total 92 141 ± 100 71%

2017

Winter 18 172 ± 223 72%

Spring 41 170 ± 252 78%

Summer 7 90 ± 24 79%

Autumn 7 92 ± 44 71%

yearly total 73 131 ± 46 75%

Table 10

Instanbul

Year Season N◦ of exceedances Average PM10 [µg/m3] Dust %

2015

Winter 21 113± 119 58%

Spring 31 86 ± 62 62%

Summer 8 52 ± 11 44%

Autumn 4 50 ± 6 47%

yearly total 64 75 ± 30 53%

2016

Winter 4 56± 18 13%

Spring 27 125± 91 78%

Summer 12 56± 10 48%

Autumn 3 52± 4 45%

yearly total 67 77 ± 32 61.6%

2017

Winter 4 50 ± 7 40.6%

Spring 27 94 ± 93 70.7%

Summer 12 84 ± 15 74.4%

Autumn 3 71 ± 36 65.5%

yearly total 46 72 ± 35 46%

Table 11
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7 Limitations encountered

7.1 Model limitations

The main model limitation encountered in this study was the spatial resolution. The

model �nest spatial resolution, 3◦×2◦, allows us to calculate the atmospheric �elds

over a 300 km × 200 km grid-box, and we expect to �nd the better correlation with

measurements around the center of the gridbox. If a city falls on the edge of a gridbox,

the model �elds might not be fully representative of the state of the atmosphere at

that location, but rather at a point around 100 km far. This happened for example

for the city of Lisbon, which sits on the left edge of a gridbox (see �gure 34). In this

Figure 34: Lisbon stations used for PM10 validation on the TM4-ECPL horizontal

gridding

particular case, the model gridbox center fall in the middle of the Atlantic Ocean,

where the atmospheric composition is probably very di�erent than in Lisbon. To

mitigate this e�ect, the modelled atmospheric status in Lisbon has been computed as

the average between the model gridbox and the nearby gridbox on the right. This have

improved the correspondance between modelled and observed valued, but it is not a
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accurate way of solving the issue. However, when it comes to natural dust transport,

we expect the concentration gradients to be realively smooth. The use of a coarse

spatial resolution should thus not a�ect dramatically the goodness of the modelled

dust �elds.

The relatively low spatial resolution might nevertheless a�ect the goodness of the

simulated dust �eld. A recent paper by Kok&all (in pre-print at present) is suggesting

that models with a spatial resolution in the order of 100 km are intrinsically ill-equipped

to simulate the dust cycle. This foundamental limit would come from the fact that

dust emission is extremely sensitive to the variation of climatological paramters such

as wind speed and soil properties, a limitation that can only partially be overcome

by sub-gridding of both parameters. The lack of solid high-resolution datasets also

represent a challenge for an accurate dust emission simulation.

7.2 Limitations on the available dust data

A second limitation encountered is the absence of recent publicly available measurements

of dust concentration. As we pointed out previously in this work, most stations

measuring dust concentrations stopped being operative in the mid 1990, making the

net of measuraments available for the validation of surface dust concentration �elds

extremely scarce. As reported in the Aerocom global dust model intercomparison[60],

most models performs fairly in simulating the total atmospheric dust column, but great

uncertainties are still present when modelling surface dust �elds. The availability of

recent dust concentration measurements would thus be of great importance to assess

the models performance. For this study, it would have been of great importance

the disposal of direct dust measurements in the Mediterranenan basin to perfom the

surface dust validation.
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8 Conclusions and future work

In this project, the TM4-ECPL chemistry and transport model has been succesfully

validated for dust concentration in both its version using an o�ine dust emission

scheme and an online dust emission scheme. The validation has been perfomed using

recent surface dust concentration data at locations positioned at strategic locationd

for the global dust transport. The result of the validation suggests that a moderate

improvment in the model performance is obtained when using online emissions. In

its o�ine version, the model shows a Pearson correlation coe�cient of r = 0.61 with

observations, a bias of -14.3 µg/m3 and a linear correlaion with slope 0.37. In its online

version all this parameters showed an improvemnt: r goes up to 0.75, the bias lowers

to 2.6 µg/m3 and the linear correlation slope rises to 0.71.

The version of the TM4-ECPL using online dust emission has been used to study

the impact on air quality in 6 cities of the Mediterranenan basin. In particular, the

question we intented to answer is how many of the daily exceedances of the PM10

EU-limit are attributable to transport of natural dust from the North African and

Middle Eastern dust sources. However, we encountered a potential weakness of the

model when calculating the surface PM10 �elds in the Mediterranenan area. Modelled

and measured PM10 concentrations are essentially uncorrelated in most part of the

basin. The correlation coe�cient is always r < 0.40 and a the linear �t between model

and measurements gives a �at slope, except for a few exeptions in the East part of the

basin. The speciation on the PM10 monthly timeseries at the measurements locations

suggests that the model predicts �ucutations of the dust concentration which are much

wider than the measured ones.

The confrontation of the PM10 and dust modelled concentration with a previous study

by Pikridas&all (2018) in Cyprus[62] suggested that the model might over-estimate the

yearly dust load in the Mediterranenan study by a factor between 2 or 3. However,

the confrontation of the model results with a recent study of PM10 exceedances in

the Mediterrenenan basin[63] by Gomez-Losada&all (2021) points in the direction

that minimum and maximums average values of PM10 during dust outbreaks are

well captured by the model.

Nethertheless, a more thorough analysis of the dust buget in the Mediterrenean basin
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would be needed to understand which processes are leading to the model overestimation

of the PM10 load.

The model output was used to estimate the number of daily exceedances of the

PM10 EU-limit (set to 50 µg/m3 over a 24-h averaging period) in 6 cities of the

Mediterranenan basin: Barcelona, Rome, Athens, Lemesos, Cairo and Instambul. The

model correcly predicts the seasoality of the number of exceedances, peaking in Spring

anf Summer, and their increasing trend from West to East along the basin. The

result seems plausible when compared to previous studies and data, but it cannot

be considered fully trustable due to the proved poor performance of the model at

simulating surface PM10

At present, we cannot exclude that the online dust emissions scheme might lead to

an overestimation of the dust load in the Mediterranean region. The stations used

for the dust �eld validation are in an excellent position to analyse the translatlantic

dust transport. However, due to the absence of stations measuring dust concentration

on the North African coast, we cannot exclude an overastimation of dust emission

on that part of the dust sources. Another possibility would be an overestimation of

the dust lifetime in the basin, due to an underestimation of deposition �uxes. These

hypothesis would need to be checked, for example by using AOD data, which o�er very

good spatial coverage, to validate again the dust �eld, or by using deposition �uxes

measurments, which would allow to check the goodness of the removal processes in the

model.

The TM4-ECPL spatial resolution will be improved by LAMOS in the near future,

downscaling it to 1◦× 1◦. As suggested by Kok&all (in pre-print)[55], improving the

spatial resolution might enhance the performance of the online dust emissions scheme.

However, according to Kok&all, 1◦× 1◦ might be still too coarse to fully capture dust

emissions.

64



References

[1] D.W. Gri�n, Atmospheric Movement of Microorganisms in Clouds of Desert Dust

and Implications for Human Health. CLINICAL MICROBIOLOGY REVIEWS, p.

459-477, July 2007.

[2] N. Middleton, U. Kang. Sand and Dust Storms: Impact Mitigation. Sustainability.

2017.

[3] O. Alizadeh-Choobari, A. Sturman, P. Zawar-Reza. A global satellite view of

the seasonal distribution of mineral dust and its correlation with atmospheric

circulation. O. Alizadeh-Choobari, A. Sturman, P. Zawar-Reza. A global satellite

view of the seasonal distribution of mineral dust and its correlation with atmospheric

circulation. Dynamics of Atmospheres and Oceans, 68, 20-34. 2014.

[4] J. M. Prospero1, P. J. Lamb, African Droughts and Dust Transport to the

Caribbean: Climate Change Implications. Science, vol 302. pages 1024-1027.

November 2003.

[5] E. Gerasopoulos, G. Kouvarakis, P. Babasakalis, M. Vrekoussis, J.-P. Putaud,

N. Mihalopoulos. Origin and variability of particulate matter (PM10) mass

concentrations over the Eastern Mediterranean. Atmospheric Environment 40 (2006)

4679-4690.

[6] C. Mitsakou, G. Kallos, N. Papantoniou, C. Spyrou, S. Solomos, et al.. Saharan

dust levels in Greece and received inhalation doses. Atmospheric Chemistry and

Physics Discussions, European Geosciences Union, 2008, 8 (3), pp.11967-11996. hal-

00304270

[7] U. Im, K. Markakis, M. Koçak, E. Gerasopoulos, N. Daskalakis, N. Mihalopoulos,

A. Poupkou, T. Kindap, A. Unal, M. Kanakidou. Summertime aerosol chemical

composition in the Eastern Mediterranean and ist sensitivity to temperature.

Atmospheric Environment, Vol. 50, 164-173, 2012.

[8] X. Querol, J. Peya, M. Pandol�, A. Alastuey, M. Cusack, N. Perez, T. Moreno,

M. Viana, N. Mihalopoulos, G. Kallos, S. Kleanthous. African dust contributions

65



to mean ambient PM10 mass-levels across the Mediterranean Basin. Atmospheric

Environment 43 (2009) 4266-4277.

[9] A. Slingo T. P. Ackerman R. P. Allan E. I. Kassianov S. A. McFarlane G. J.

Robinson J. C. Barnard M. A. Miller J. E. Harries J. E. Russell S. Dewitte.

Observations of the impact of a major Saharan dust storm on the atmospheric

radiation balance. Geophys. Res. Lett. 33, L24817. 2006.

[10] C Richon, JC Dutay, F Dulac, R Wang. Modeling the impacts of atmospheric

deposition of nitrogen and desert dust-derived phosphorus on nutrients and

biological budgets of the Mediterranean Sea. Progress in Oceanography Volume

163, Pages 21-39, April 2018.

[11] V.H. Garrison, E.A. Shinn, W.T. Foreman, D.W. Gri�n. African and Asian dust:

from desert soils to coral reefs. BioScience 469. Vol. 53 No. 5. May 2003.

[12] J. Boy, W. Wilcke. Tropical Andean forest derives calcium and magnesium from

Saharan dust. Glob. Biogeochem. Cycles 22, GB1027. 2008.

[13] C. A. Kellogg and D. W. Gri�n. Aerobiology and the global transport of desert

dust. TRENDS in Ecology and Evolution Vol.21 No.11. 2006.

[14] D. W. Dockery, C. A. Pope: Acute respiratory e�ects of particulate air pollution,

Annu. Rev. Publ. Health, 15, 107 - 132, 1994

[15] L. Perez, A. Tobias, X. Querol, N. Kunzli, J. Pey, A. Alastuey, M. Viana, N.

Valero, M. Gonzdlez-Cabre, J. Sunyer. Coarse Particles From Saharan Dust and

Daily Mortality. Lippincott Williams & Wilkins. Epidemiology, Vol. 19, No. 6

(November 2008), pp. 800-807.

[16] D. Gri�n, C. Kellogg, E. Shinn. Dust in the wind: long range transport of dust in

the atmosphere and its implications for public and ecosystem health.Global Change

Human Health. 2001;2:21-5.

[17] S. Nicholson. Land surface processes and Sahel climate. Rev. Geophys. 38, 117

(2000)

66



[18] Thomson, M. C., Molesworth, A. M., Djingarey, M. H., Yameogo, K. R., Belanger,

F., and Cuevas, L. E.: Potential ofenvironmental models to predict meningitis

epidemics in Africa, Trop. Med. Int. Health, 11(6), 781-788, 2006.

[19] European Environment Agency, EEA report No 10/2019 Air quality in Europe-

2018 report.

[20] https://www.epa.gov/criteria-air-pollutants/naaqs-table

[21] World Health Organization. WHO Air quality guidelines for particulate matter,

ozone, nitrogen dioxide and sulfur dioxide - Global update 2005 - Summary of risk

assessment. 2006

[22] P. Ozer, M. B. O. M. Laghdaf, S. O. M. Lemine, J. Gassani. Estimation of air

quality degradation due to Saharan dust at Nouakchott, Mauritania, from horizontal

visibility data. Water Air Soil Pollut, 178:79-87. 2006

[23] S. Nava, S. Becagli, G. Calzolai, M. Chiari, F. Lucarelli, P. Prati, R. Traversi, R.

Udisti, G. Valli, R. Vecchi. Saharan dust impact in central Italy: An overview on

three years elemental data records. Atmospheric Environment 60. 2012.

[24] X. Querol, A. Alastuey, S. Rodriguez, M.M. Viana, B. Artinano, P. Salvador, E.

Mantilla, S. Garcia do Santos, R. Fernandez Patier, J. de La Rosa, A. Sanchez de

la Campa, M. Menendez. Levels of particulate matter in rural, urban and industrial

sites in Spain. Elsevier. Science of the Total Environment 334 - 335 (2004) 359 -

376. 2004.

[25] M. Escudero, X. Querol, J. Peya, A. Alastuey, N. Perez, F. Ferreira,S. Alonso, S.

Rodriguez, E. Cuevas. A methodology for the quanti�cation of the net African dust

load in air quality monitoring networks. Atmospheric Environment 41 (2007) 5516

- 5524.

[26] G. Kallos, A. Papadopoulos, P. Katsafados, S. Nickovic. Transatlantic Saharan

dust transport: Model simulation and results. Journal of Geophisical Research,

VOL. 111, D09204, 2006.

67



[27] B. Arvani, R. B. Pierce, S. Teggi, G. Ghermandi, L.Lombroso. Study of Saharan

dust outbreak episode over the Po valley (northern Italy) using IDEA-international

air quality forecast product. ProScience 1 (2014) 1-6.

[28] G. Kallos, A. Papadopoulos, O. Kakaliagou. A model for prediction of desert dust

cycle in the atmosphere. Journal of Geophisical Research, vol. 106, no. D16 pages

18,113-18,129, August 27, 2001

[29] G. Kallos,P. Kassomenos, R.A. Pielke. Synoptic and Mesoscale Weather

Conditions During Air Pollution Episodes in Athens, Greece. In: Kaplan H., Dinar

N., Lacser A., Alexander Y. (eds) Transport and Di�usion in Turbulent Fields.

Springer, Dordrecht (1993).

[30] I. Tegen, S. P. Harrison, K. Kohfeld, I. Colin Prentice, M. Coe, M. Heimann.

Impact of vegetation and preferential source areas on global dust aerosol: Results

from a model study. JGR, Vol. 107, No. D21, 4576. 2002.

[31] B. Marticorena and G. Bergametti. Modeling the atmospheric dust cycle: 1.

Design of a soil-derived dust emission scheme. JGR, Vol. 100, No. D8, pag 16,415-

16,430, August 20, 1995.

[32] B. Heinold, J. Helmert, O. Hellmuth, R. Wolke, A. Ansmann, B. Marticorena,

B. Laurent, and I. Tegen. Regional modeling of Saharan dust events using LM-

MUSCAT: Model description and case studies. Journal of Geophysical Research,

VOL. 112, D11204, 2007.

[33] J. Helmert, B. Heinold, I. Tegen, O. Hellmuth, and M. Wendisch, On the direct

and semidirect e�ects of Saharan dust over Europe: A modeling study. JOURNAL

OF GEOPHYSICAL RESEARCH, VOL. 112, D13208, 2007.

[34] Li, L., Mahowald, N. M., Miller, R. L., PÃ©rez GarcÃa-Pando, C., Klose, M.,

Hamilton, D. S., GonÃ�alves Ageitos, M., Ginoux, P., Balkanski, Y., Green, R.

O., Kalashnikova, O., Kok, J. F., Obiso, V., Paynter, D., and Thompson, D. R.:

Quantifying the range of the dust direct radiative e�ect due to source mineralogy

uncertainty, Atmos. Chem. Phys., 21, 3973-4005, 2021.

68



[35] Kok, J., Ridley, D., Zhou, Q. et al. Smaller desert dust cooling e�ect estimated

from analysis of dust size and abundance. Nature Geosci 10, 274-278 (2017).

[36] Adebiyi, A. and Kok, J. Climate models miss most of the coarse dust in the

atmosphere. Science Advances 08 Apr 2020: Vol. 6, no. 15.

[37] Cormier S., Lomnicki S., Backes W., Dellinger B. Origin and Health Impacts of

Emissions of Toxic By-Products and Fine Particles from Combustion and Thermal

Treatment of Hazardous Wastes and Materials. Environmental health perspectives

114(6):810-7. 2006.

[38] Stafoggia M., Zauli-Sajani, S. Pey, J. & all. Desert Dust Outbreaks in Southern

Europe: Contribution to Daily PM10 Concentrations and Short-Term Associations

with Mortality and Hospital Admissions. Environ Health Perspect 124:413-419.

2016.

[39] Crooks J. L., Cascio W. E., Percy M. S. The Association between Dust Storms

and Daily Non-Accidental Mortality in the United States, 1993-2005. Environmental

Health Perspectives, vol. 124, n. 11.2016

[40] J. Seinfeld, S.Pandis. Atmospheric chemistry and physics: from air pollution to

climate change. Jhon Wiley & Sons.2016

[41] A.S. Goudie, N.J. Middleton. Desert Dust in the Global System. Springer. 2006.

[42] Global Assessment of Sand and Dust Storms. United Nations Environment

Programme, Nairobi.UNEP, WMO, UNCCD (2016).

[43] Global Assessment of Sand and Dust Storms. United Nations Environment

Programme, Nairobi.UNEP, WMO, UNCCD (2016).

[44] N. Mahowald, S. Albani, J. F. Kok, S. Engelstaeder, R. Scanza, D. S. Ward, M.

G. Flanner. The size distribution of desert dust aerosols and its impact on the Earth

system. Aeolian Research 15 (2014) 53-71.

[45] Brasseur G.P, Jacob D. J., Modeling of Atmospheric Chemistry. Cambridge

Univeristy Press (2017).

69



[46] Myriokefalitakis S., Nenes A., Baker A. R., Mihalopoulos N., Kanakidou M.

Myriokefalitakis, S., Nenes, A., Baker, A. R., Mihalopoulos, N., Kanakidou, M.

(2016). Bioavailable atmospheric phosphorous supply to the global ocean: A 3-D

global modeling study. Biogeosciences, 13(24), 6519-6543. 2016.

[47] Kaplan, J. O., Bigelow, N. H., Prentice, I. C., Harrison, S. P., Bartlein, P.

J., Christensen, T. R., Cramer, W., Matveyeva, N. V., McGuire, A. D., Murray,

D. F., Razzhivin, V. Y., Smith, B., Walker, D. A., Anderson, P. M., Andreev,

A. A., Brubaker, L. B., Edwards, M. E., and Lozhkin, A. V. (2003 - in press).

Climate change and arctic ecosystems II: Modeling, paleodata-model comparisons,

and future projections. Journal of Geophysical Research.

[48] Zobler L. A world soil �le for global climate modeling, Tech. Rep. NASA TM-

87802, pp. 32 , NASA, Washington D.C., 1986

[49] F. Dentener, S. Kinne, T. Bond, O. Boucher, J. Cofala, S. Generoso, P. Ginoux,

S. Gong, J. J. Hoelzemann, A. Ito, L. Marelli, J. E. Penner, J.-P. Putaud, C. Textor,

M. Schulz, G. R. van der Werf, and J. Wilson. Emissions of primary aerosol and

precursor gases in the years 2000 and 1750 prescribed data-sets for . Atmos. Chem.

Phys., 6, 4321-4344, 2006

[50] Arimoto R., Duce R. A., Ray B. J., Ellis W. G., Cullen J. D., and Merrill J.

T. Trace-Elements in the Atmosphere over the North-Atlantic, J. Geophys. Res.-

Atmos., 100(D1), 1199-1213 (1995)

[51] Prospero, J. M.: The Atmospheric Transport of Particles to the Ocean, in:

Particle Flux in the Ocean, edited by: Ittekkot, V., SchÂ²afer, P., Honjo, S., and

Depetris, P. J., John Wiley& Sons Ltd., New York (1996).

[52] A numerical study of the contributions of dust source regions to the global dust

budget. Taichu Y. Tanaka, Masaru Chiba, Global and Planetary Change 52 88-

104(2006)

[53] Zuidema P., Alvarez C., Kramer S. J., Custals L.,Izaguirre M., Sealy P., Prospero

J. M., Blades E. Is summer African dust arriving earlier to Barbados? The Updated

Long-Term In Situ Dust Mass Concentration Time Series from Ragged Point,

70



Barbados, and Miami, Florida Paquita. Bulletin of the American Meteorological

Society, Vol. 100, Issue 10, pag. 1981-1986. 2019

[54] http://www.lisa.u-pec.fr/SDT/

[55] J. F. Kok, A. A. Adebiyi, S. Albani, Y. Balkanski, R. Checa-Garcia, M. Chin, P.

R. Colarco, D. S. Hamilton, Y. Huang, A. Ito, M. Klose, D. M. Leung, L. Li, N.

M. Mahowald, R. L. Miller, V. Obiso, C. Perez Garcia-Pando, A. Rocha-Lima, J.

S. Wan, and C. A. Whicker. Improved representation of the global dust cycle using

observational constraints on dust properties and abundance. In Pre-Print

[56] Climate Models and Remote Sensing Retrievals Neglect Substantial Desert Dust

Asphericity. Huang, Y., et al., Geophys. Res. Lett. 47, (2020)

[57] O. Cavalieri, F. Cairo, F. Fierli, G. Di Donfrancesco, M. Snels, M. Viterbini, F.

Cardillo, B. Chatenet, P. Formenti, B. Marticorena, and J. L. Rajot. Variability of

aerosol vertical distribution in the Sahel. Atmos. Chem. Phys. Discuss., 10, 17609-

17655, 2010.

[58] Joseph M. Prospero, Anne E. Barkley, Cassandra J. Gaston, Arthur Campos

y Sansano, and Kathy Panecho. Characterizing and Quantifying African Dust

Transport and Deposition to South America: Implications for the Phosphorus

Budget in the Amazon Basin. Global Biogeochemical Cycles, 34 (2020)

[59] Summarizing multiple aspects of model performance in a single diagram. K. E.

Taylor. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. D7, PAGES

7183-7192, APRIL 16 2001.

[60] N. Huneeus, M. Schulz, Y. Balkanski, J. Griesfeller, J. Prospero, S. Kinne, S.

Bauer, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, D. Fillmore, S.

Ghan, P. Ginoux, A. Grini, L. Horowitz, D. Koch, M. C. Krol, W. Landing, X. Liu,

N. Mahowald, R. Miller, J.-J. Morcrette, G. Myhre, J. Penner, J. Perlwitz, P. Stier,

T. Takemura, and C. S. Zender. Global dust model intercomparison in AeroCom

phase I. Atmos. Chem. Phys., 11, 7781-7816 (2011).

71



[61] Soupiona, O., Papayannis, A., Kokkalis, P., Foskinis, R., SÃ½nchez HernÃ½ndez,

G., Ortiz-Amezcua, P., Mylonaki, M., Papanikolaou, C.-A., Papagiannopoulos,

N., Samaras, S., Gross, S., Mamouri, R.-E., Alados-Arboledas, L., Amodeo, A.,

and Psiloglou, B.: EARLINET observations of Saharan dust intrusions over the

northern Mediterranean region (2014-2017): properties and impact on radiative

forcing, Atmos. Chem. Phys., 20, 15147-15166

[62] M. Pikridas, M. Vrekoussis, J. Sciare, S. Kleanthous, E. Vasiliadou, C. Kizas, C.

Savvides, N. Mihalopoulos. Spatial and temporal (short and long-term) variability of

submicron, �ne and sub-10 µm particulate matter (PM1,PM2.5,PM10) in Cyprus.

Atmospheric Environment 191 (2018) 79-93.

[63] Gomez-Losada, A., Jose C. M. Pires, J. C. M. Estimation of Particulate Matter

Contributions from Desert Outbreaks in Mediterranean Countries (2015-2018) Using

the Time Series Clustering Method. Atmosphere 2021, 12, 5.

[64] Paschalidou, A.K.; Kassomenos, P.; Karanikola P.; Disaggregating the

contribution of local dispersion and long-range transport to the high PM10 values

measured in a Mediterranean urban environment. Science of the Total Environment

527-528 (2015) 119-125.

72


	Abstract
	Introduction
	Current scientific questions related to dust

	An overview on particulate matter
	PM effects on human health
	Dust size distribution
	Emission, transport and deposition of natural dust

	Methods
	Chemistry and transport models (CTM)
	Online and offline CTMs

	The TM4-ECPL model
	The metereology
	The emissions
	The model steps
	The PM10 speciation

	The online emissions scheme
	The vegetation type and snow cover
	The soil texture and size distribution
	The wind speed
	The dust production

	Online - offline dust emission scheme comparison

	Validation of the dust emission schemes
	Description of the datasets
	Miami and Barbados
	Cayenne
	Agia Marina
	M'Bour, Bambey, Cinzana, and Banizoumbou
	Data postprocessing of African stations

	Validation method
	Taylor graph

	The validation results
	The timeseries
	The scatter plots
	The Taylor diagram


	The case of study: dust effects over air quality in the Mediterrenean basin
	PM10 validation and PM10 speciation in the Mediterranean region
	The locations and PM10 datasets choice
	Measurements - model comparison on yearly averages 
	PM10 validation on monthly averages
	Discussion of PM10 validation results
	Overall conclusions on PM10 validation
	Model performance in Cyprus

	Exceedances computation in Mediterranean cities
	Comparison with previous exceedences studies


	Limitations encountered
	Model limitations
	Limitations on the available dust data

	Conclusions and future work

