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Abstract

Droughts are harmful for humans for example through their impact on agricul-
ture and freshwater resources. Monitoring and projecting of these natural haz-
ards is realized using different drought indices dependent on which drought
type is addressed. In this thesis four drought indices are compared in their abil-
ities to identify the changes of droughts in a changing climate. The standard
precipitation index (SPI) is based on precipitation only, the Standardized Precip-
itation Evapotranspiration Index (SPEI) as well as the Palmer Drought Severity
Index (PDSI) and the scaled PDSI (SC-PDSI) are indices that include the Po-
tential Evapotranspiration (PET) and are therefore influenced by the thermody-
namic state of the atmosphere. For these analyses all four indices are calculated
based on variables from seven Earth System Models (ESM), which are part of
the Coupled Model Intercomparison Project Phase 6 (CMIP6) for a historical
simulation (1900-2014) and two future scenarios (2014-2100). The changes of
detected droughts are analysed based on trends of the four drought indices
as well as the frequency, duration, and mean index of moderate and extreme
droughts. SPEI and SC-PDSI, which are spatially comparable on a global scale,
have been chosen for a closer comparison of the two future scenarios based
on two Shared Socioeconomic Pathways, SSP2-4.5 and SSP5-8.5, with different
forcing level. Compared to the other indices, SPI shows more regions with an
increasing trend, i.e. fewer droughts and smaller absolute trends where they are
decreasing. This indicates an underestimation of the change of droughts, be-
cause thermodynamic processes are not considered for SPI. PDSI and SC-PDSI
show a high temporal correlation for most regions when applied to the same
data set. It is known that a global applicability of the PDSI is limited, therefore
only the SC-PDSI is analysed in detail in this study for future changes. For SPEI
and SC-PDSI, a shift towards more frequent droughts is found for most parts of
the globe. This result agrees well with recent findings about changes of agricul-
tural drought severity in the IPCC AR6. Trends and changes of future drought
characteristics differ strongly between regions. The strongest negative trends
and largest differences between the indices are found in arid regions (North
Africa, Middle East, and Central Asia), which is linked to the influence of in-
creasing PET in the future. The characteristics based on SC-PDSI show similar,
but less pronounced, features compared to the SPEI. In general, PET and hence
thermodynamic processes have a larger influence on SPEI than on SC-PDSI.
For both indices, the differences between SSP5-8.5 and SSP2-4.5 are small in re-
lation to the changes from the historical to the future periods, and significantly
more extreme droughts are found in the SSP5-8.5 scenario. Overall, an increase
of droughts is found to be governed by changes of thermodynamic processes,
which increases with warming climate leading to more severe droughts in the
future in arid regions. This is in agreement with findings in the recent IPCC
AR6.
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1. Introduction

The availability of water is an essential requirement for human life, as it is
crucial for several sectors including food production, freshwater supply and
industry. Droughts are dangerous and complex natural hazards. Changes
of their characteristics and their impacts in a changing climate are still not
fully understood. Despite these changes it can affect more people than most
other natural disasters (Hagman et al. 1984; Wilhite 2000).

A drought occurs when the demand of water exceeds the supply over a
period of time, i.e. due to the lack of precipitation as one of the primary
freshwater sources. Considering a drought as an exceptional dry event re-
quires some normal climatic conditions as reference, which is just one of
the challenges of defining droughts. The definition further depends on the
field of application and can be roughly clustered into the following cate-
gories. A decline or absence of precipitation for several days to months is
defined as a meteorological drought. The agricultural drought as another
drought category primarily depends on soil moisture and typically appears
on larger time scales. If a drought persists long enough, it may turn into
a hydrological drought, whose primary indicators are run-off and a de-
creasing water level of lakes, rivers and groundwater (Wilhite 2000). The
sixths Assessment Report (AR6) of the Intergovernmental Panel on Climate
Change (IPCC)(AR6) found an agreement in recent scientific research with
at least medium confidence in an increase of agricultural droughts for sev-
eral regions of the world (IPCC 2021; Seneviratne et al. 2021). This change
is more significant than in meteorological droughts and may implicate seri-
ous consequences for humans. The overarching aim of this thesis is to con-
tribute to the understanding of the reasons for changes in the characteristics
of droughts in a changing climate on a global scale. Increase of temperature
leads to an increase of Atmospheric Evaporative Demand (AED) or Poten-
tial Evapo-Transpiration (PET), which is an indicator for one of the physical
processes involved in the creation of agricultural droughts. The evaluation
of the impact of changing PET is part of this thesis. To asses changes in
drought indices climate model simulations from the Coupled Model Inter-
comparison Project Phase 6 (CMIP6; Eyring et al. 2016a) are used. For the
future two scenarios are chosen, based on two different Shared Socioeco-
nomic Pathways (SSPs; O’Neill et al. 2016).

For several decades efforts have been made to quantify severities and mag-
nitudes of droughts using indices derived from observable or predictable
physical variables. Nowadays, many of such indices have been proposed
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1. INTRODUCTION

for different types of droughts, fields of application, and research topics.
Some of them are designed for monitoring droughts in specific regions. One
of the earliest and widely used drought indices is the Palmer Drought Sever-
ity Index (PDSI; Palmer 1965). It is based on a simple water balance, that
makes use of PET. Due to a lack of spatial comparability (Karl 1983; Alley
1984; Heddinghaus and Sabol 1991; Guttman 1998), the self calibrating PDSI
(SC-PDSI) have been developed in 2004 by Wells, Goddard, and Hayes as a
modern derivative. The accounting for the PET, however, may qualify this
indices for being applied in climate change research using model predic-
tions. The PDSI and SC-PDSI are compared to the widely used precipitation
based Standardized Precipitation Index (SPI; McKee, Doesken, and Kleist
1993) and its derivative the Standardized Precipitation Evapotranspiration
Index (SPEI). To archive this, corresponding diagnostics have been devel-
oped to calculate PDSI and SC-PDSI values for the Earth System Model Val-
idation Tool (ESMValTool; Righi et al. 2019; Eyring et al. 2020; Lauer et al.
2020; Weigel et al. 2021) Version 2 (v2).

Further, methods are elaborated to systematically apply widely used
drought indices, i.e. PDSI, SC-PDSI, SPI and SPEI, to climate projections.
The comparison and understanding of the different drought indices is the
first specific objective of this thesis. The second objective is to find and
highlight differences in long term changes of agricultural droughts between
the SSP2-4.5 and SSP5-5.8 future scenarios. The central pathway SSP2-4.5
assumes a continuation of historical trends resulting in a forcing level of 4.5
Wm−2. For the SSP5-8.5 scenario a rapid growth of a fossil-based economy
is assumed leading to a forcing level of 8.5 Wm−2 at the end of this century.
Both scenarios are part of the CMIP6 ScenarioMIP (Tebaldi et al. 2021).

This master thesis is structured as follows. Section 2 describes the different
categories of droughts and the indices used to quantify them. It explains
the physical background of processes related to agricultural droughts and
provides an insight to the current state of related research. In Section 3 the
approximation method of PET is discussed (3.1) and the primary steps for
calculation of the used indices are given (3.2). Applied metrics and meth-
ods including characteristics of events, trends and correlation are described
in Section 3.4. Most of the methods have been embedded into, or directly
rely on, the software framework of the ESMValTool v2, which is introduced
in Section 4.1. Section 4.2 gives an overview of ScenarioMIP and lists the
models, whose contributions have been used. The results in Section 5, pro-
duced in the scope of this thesis, are separated into two parts: The first part,
Section 5.1, starts with an exemplarily discussion of the calculated PDSI and
SC-PDSI values and compares PDSI, SC-PDSI, SPI and SPEI based on their
agreement in time series based on the same input data and multi-model
mean trends and event characteristics. To address the second objective of
the thesis, the assessment of changes in drought indices in the two different
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1. INTRODUCTION

future scenarios, the occurrence of moderate and extreme droughts and the
statistical distribution of SPEI and SC-PDSI are evaluated in Section 5.2. The
SPI and PDSI have been omitted for this part, since they are not expected to
be spatial comparable and consider thermodynamic processes at the same
time. The results are discussed in Section 6 with respect to their reliability
and scientific relevance. Finally, the primary results of this work are sum-
marized and an outlook towards further research questions on this topic are
given in Section 7.

3



2. Scientific Background

2.1 Drought Types

A drought describes a deficit of water availability. An exact definition can
only be given for a specific application or impact considering the respec-
tive regional climate. A single precise universally accepted definition of
drought does not exist (Wilhite 2000). Wilhite and Glantz (1985) analysed
150 existing definitions of droughts and clustered them into four types: me-
teorological, agricultural, hydrological and socioeconomic droughts.

Meteorological Droughts appear already on short periods as an absence
of precipitation over days or months. Counting consecutive dry days
or calculating statistical precipitation deficits are common methods to
identify droughts of this type.

Agricultural droughts are defined by the impact of meteorological condi-
tions on crop yield and typically appear on time scales of multiple
months or years. Properties of the soil and the atmosphere also affect
the transpiration and therefore the water stress of the crops. Besides
the meteorological variables (i.e. soil moisture, precipitation and PET)
the water demand of crop also depends on their biological properties,
which can vary with the type of crop and the state of growth. Meteoro-
logical droughts can turn into, or overlap, with agricultural droughts,
but they do not necessarily coincide. (Wilhite and Glantz 1985)

Hydrological Droughts might establish if a drought persists long enough.
Its primary indicators are run-off and a decreasing water level of lakes,
rivers and groundwater. (Wilhite 2000)

Socioeconomic Droughts are usually associated with the supply and de-
mand of economic goods. Their features can incorporate with those
from other drought types. An agricultural drought can also be treated
as a socio-economic drought by considering the demand of crop yield.
(Wilhite and Glantz 1985)

Besides these different still conceptual definitions, droughts are difficult
to pinpoint in time and space, as they can have different causes and affect
large areas over long duration (Burton, Kates, and White 1978). For an
agricultural drought to establish different circumstances (i.e. missing
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2. SCIENTIFIC BACKGROUND

precipitation and high evapotranspiration) have to accumulate over a
certain period of time. The actual start of the drought is not trivial to link
to a threshold of any observable variable. The indices discussed in sections
2.3 and 3.2 are approaches to substantiate the conceptual definitions to
an operational level where thresholds of numerical values can be used
to define start and end of a drought. Because of regional differences and
different fields of applications many of this indices have been developed in
the last decades.

2.2 Mechanisms and Drivers of Agricultural Droughts

Figure 2.1 shows some of the main processes in the hydrological cycle
relevant for understanding the establishment of droughts and impacts of
climate change. The main driver of the cycle is evaporation over the oceans.
It is the largest source for the atmospheric moisture. Atmospheric uptake
of water is the strongest in the tropics and subtropics, while precipitation
dominates evaporation in higher latitudes. Moist air is transported through
the atmosphere and part of its water content is depleted over land. On the
land surface water can directly run-off and flow through a network of rivers
into lakes or back to the ocean. A part of the depleted water, depending on
surface conditions, is infiltrated into the soil and can be taken up again by
plants or flows into reservoirs.

Figure 2.1: Schematic of a hydrological cycle focusing on processes, that are rele-
vant for understanding droughts. Figure taken from Dennis (2019). Original Cap-
tion: The water cycle.
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2. SCIENTIFIC BACKGROUND

Evaporation is not limited to water surfaces. It also happens at land surfaces
and can directly reduce soil moisture. An additional process of the water
cycle, that primarily occurs on land surface, is transpiration. Plants can take
up water from deeper soil layers and transport it upwards utilizing capillary
action. Their water supply and CO2 exchange is controlled by biological
processes depending on water vapour pressure difference and temperature
(Schulze et al. 1973). Due to plant coverage of a significant part of global
land surface, plants provide an additional interface for moisture exchange
on the surface layer. The sum of transpiration by plants and direct surface
evaporation is often referred to as actual evapotranspiration (ET).

Both processes, evaporation and transpiration, depend on relative humid-
ity, temperature and surface wind speed. These atmospheric properties can
be combined to the Potential Evapo-Transpiration (PET), which includes
only atmospheric properties that impact the actual evaporation and is there-
fore also referred to as Atmospheric Evaporative Demand (AED). Actual
evaporation further depends on physical properties of the surface includ-
ing availability of water, and additionally depends on physical and biolog-
ical properties of the plant. Atmospheric properties such as temperature,
humidity and precipitation are widely available in observations and future
projections. One method to approximate the PET from atmospheric prop-
erties, recommended by the FAO, is given in section 3.1. Less physical ap-
proaches of estimating PET, that are based only on precipitation (i.e. Har-
greaves and Samani 1985, Thornthwaite 1948), tend to overestimate PET
(Seneviratne et al. 2021). Under agricultural drought conditions ET is usu-
ally low compared to the PET, because of limited water availability.

2.3 Drought Indicators and Indices

Different atmospheric variables play a role in dynamic and thermodynamic
processes of the atmosphere, which leads to the establishment of droughts.
This includes precipitation, temperature, radiation and wind speed. Hy-
drological variables like soil moisture, groundwater level and streamflow
can be closer linked indicators for agricultural droughts, but are more diffi-
cult to observe or estimate. Variables that can be used to describe drought
properties such as magnitude, duration, severity and spatial extend are also
called drought indicators (Hayes, Cavalcanti, and Steinemann 2005). Mul-
tiple drought indicators can be synthesized into a single drought index.

Drought indices are numerical representations of the magnitude or severity
of droughts, whose exact definition may vary, and thus their operational or
scientific meaning (Hayes, Cavalcanti, and Steinemann 2005). They are usu-
ally complex multi-scalar functions of one or more of the named indicators
(McKee, Doesken, and Kleist 1993). A drought index is not necessarily a

6



2. SCIENTIFIC BACKGROUND

value with physical units, but instead often represents an assignment to la-
bels on a statistical or arbitrarily derived quantitative scale (Redmond 2002).
This makes it difficult to compare different indices in a pure mathematical
sense without a discussion about their application. Which index is the most
suitable depends on the field of application, the type of drought and the
availability of data.

The currently existing indices for drought monitoring can be derived in two
broad groups. The first group contains the indices based on water balance
calculation (i.e. PDSI and SC-PDSI) and the second group are the indices
that are derived from statistics of a time series (i.e. SPI and SPEI) (Peters
2014). For methods involving a water balance additional physical variables
are required (i.e. Available Water Capacity (AWC) for the PDSI). In the IPCC
AR6 the SPI has been considered in the assessment of meteorological and
SPEI, PDSI and soil moisture in the assessment of agricultural droughts
(Seneviratne et al. 2021). The derived information is primarily based on
indices and their trends calculated for observational data and model projec-
tions (Seneviratne et al. 2021). PET plays a crucial role for the development
and has important influence on the intensity of drought events (Masson-
Delmotte et al. 2021; García-Herrera et al. 2019a; Otkin et al. 2016).

The four indices used in thesis are widely used in different fields of drought
research. And some of their limitations have already been shown. The SPI
does solely depend on precipitation. It is used to highlight the impact of
PET in the results by comparison with other indices. The SPEI does account
for PET but not for actual water availability on the surface and overesti-
mates drought intensities for arid regions (Rehana and Monish 2021). One
of the first indices involving PET was the PDSI. Even if the index itself can
be applied to wet spells in the same way as to droughts, it has been de-
veloped for drought monitoring. The wet spells predicted by the PDSI are
not designed to detect floods. It was criticized a lot for not being spatially
comparable (Karl 1983; Alley 1984; Heddinghaus and Sabol 1991; Guttman
1998). To overcome this issue the self calibrating PDSI (SC-PDSI) has been
developed in 2004 by Wells, Goddard, and Hayes as a modern derivative,
that can be used globally. While the SC-PDSI includes some mechanisms
that make it applicable for climate change studies, others are still missing.
The simple two-layered water balance model does not account for snow
melt, ice cover, run-off or changes in land-use and vegetation or human in-
teractions like irrigations (Dai, Trenberth, and Qian 2004; Hayes, Cavalcanti,
and Steinemann 2005).

7



2. SCIENTIFIC BACKGROUND

2.4 Droughts in a Changing Climate

The IPCC AR6 concludes, that changes in climate and extreme events can be
substantial on local and regional scales (IPCC 2021; Seneviratne et al. 2021).
Trends of drought indices can have different signs for specific regions and
differ considerably from global means (Fischer, Beyerle, and Knutti 2013;
Chen et al. 2021).

For previous publications of the IPCC various sets of geographical regions
are proposed, to properly analyse the emergent climate change signal
across. Suitable shapes and size of such regions depend on the climate
variable, process and feedback of interest (Chen et al. 2021). To analyse
the impact of a changing climate to extreme events such as droughts, the
Land-subset of the IPCC AR6 WG1 reference regions is used in this thesis.
Their shapes are shown in Figure 2.2 (Iturbide et al. 2020).

8



2. SCIENTIFIC BACKGROUND

Figure 2.2: IPCC WG1 reference regions (v4) land masked. This figure has been
generated using the regionmask package by Hauser et al. (2021). Abbreviations and
names of the regions: North America: NWN (North-Western North America, NEN
(North-Eastern North America), WNA (Western North America), CNA (Central
North America), ENA (Eastern North America), Central America: NCA (North-
ern Central America), SCA (Southern Central America), CAR (Caribbean), South
America: NWS (North-Western South America), NSA (Northern South Amer-
ica), NES (North-Eastern South America), SAM (South American Monsoon), SWS
(South-Western South America), SES (South-Eastern South America), SSA (South-
ern South America), Europe: GIC (Greenland/Iceland), NEU (Northern Europe),
WCE (Western and Central Europe), EEU (Eastern Europe), MED (Mediterranean),
Africa: MED (Mediterranean), SAH (Sahara), WAF (Western Africa), CAF (Central
Africa), NEAF (North Eastern Africa), SEAF (South Eastern Africa), WSAF (West
Southern Africa), ESAF (East Southern Africa), MDG (Madagascar), Asia: RAR
(Russian Arctic), WSB (West Siberia), ESB (East Siberia), RFE (Russian Far East),
WCA (West Central Asia), ECA (East Central Asia), TIB (Tibetan Plateau), EAS
(East Asia), ARP (Arabian Peninsula), SAS (South Asia), SEA (South East Asia),
Australasia: NAU (Northern Australia), CAU (Central Australia), EAU (Eastern
Australia), SAU (Southern Australia), NZ (New Zealand), Small Islands: CAR
(Caribbean), PAC (Pacific Small Islands)

In the IPCC AR6, assessments about different types of droughts have been
made for each of these regions for the period 1950 to present (Seneviratne
et al. 2021). Changes in meteorological drought are estimated based on
precipitation-based indices including SPI. The estimation of changes in agri-
cultural and ecological droughts is based on SPEI, PDSI. A stronger in-
crease in frequency and severity of agricultural compared to meteorologi-
cal droughts, might be caused by the contribution of PET (Seneviratne et
al. 2021; García-Herrera et al. 2019b; Williams et al. 2020). The synthesis
from several studies (Greve et al. 2014; Dai and Zhao 2017; Spinoni et al.
2019; Padrón et al. 2020) of observed changes in agricultural and ecological
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drought are shown in Figure 2.3 (Masson-Delmotte et al. 2021). The com-
plete list of references is given in Table 11.9 of the IPCC AR6 (Seneviratne
et al. 2021). Beside the SPEI and PDSI, different drought indicators includ-
ing total and surface soil moisture, water-balance estimates (precipitation
minus ET) have been taken into account for the assessment. An agreement
with at least medium confidence in an increase of agricultural and ecolog-
ical droughts since 1950 have been found for four regions in Africa, (WAF,
CAF, WSAF, ESAF), three in Asia (WCA, ECA, EAS), two in Europe (WCE,
MED) and one each in North (WNA) and South America (NES) and Aus-
tralasia (SAU). Drought decrease can be found in just one region (NAU)
with at least medium confidence. All other regions have low agreement
or limited data and/or literature (GIC, SAH, ARP, PAC). There is no high
confidence for any region linking the general trends of drought severity to
human contributions, but for the impact of greenhouse gas emission to ther-
modynamic changes (Masson-Delmotte et al. 2021). However, the moisture
exchange between surface and atmosphere is complex and depends on dy-
namic processes, which can only be linked to human contributions with low
confidence (Gulev et al. 2021).

In future projections of CMIP5 simulations an increase in frequency of ex-
treme droughts in subtropical regions is found in several studies (Dai and
Zhao 2017; Touma et al. 2015; Hunt 2011; Martin 2018). For the deep tropics
studies discovered a wetting trend in future projections until 2100 (Mar-
tin 2018; Collins et al. 2013). More recent studies, some of them including
CMIP6 models, allow a more robust assessment of drought changes, for the
regions specified in Figure 2.2 (Seneviratne et al. 2021). Following some of
these studies (Greve, Gudmundsson, and Seneviratne 2018; Wartenburger
et al. 2017; Xu, Chen, and Zhang 2019), an increase in drought frequency and
intensity can be found as a function of global warming for several regions.
The probability of drought hazards is also rising with increasing forcing
levels of different future scenarios (Seneviratne et al. 2021).

Balting et al. (2021) recently published a study, to exhibit an increase of sum-
mer droughts for the northern hemisphere in CMIP6 future projections. The
most significant intensification is found for arid regions. Based on the SPEI
from multi-model simulations for three different socioeconomic pathways
(SSP1-2.6, SSP2-4.5, SSP5-8.5), a doubling of the concurrence rate between
SSP1-2.6 and SSP5-8.5 is shown for sub-tropical regions (Balting et al. 2021).
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Figure 2.3: The IPCC AR6 WGI inhabited regions are displayed as hexagons with
identical size in their approximate geographical location. All assessments are made
for each region as a whole and for the 1950s to the present. The colours in each
panel represent the four outcomes of the assessment on observed changes. Striped
hexagons (white and light-grey) are used where there is low agreement in the type
of change for the region as a whole, and grey hexagons are used when there is lim-
ited data and/ or literature that prevents an assessment of the region as a whole.
Other colours indicate at least medium confidence in the observed change. [...]
Agricultural and ecological droughts are assessed based on observed and simu-
lated changes in total column soil moisture, complemented by evidence on changes
in surface soil moisture, water balance (precipitation minus evapotranspiration)
and indices driven by precipitation and atmospheric evaporative demand. Yellow
hexagons indicate regions where there is at least medium confidence in an observed
increase in this type of drought, and green hexagons indicate regions where there is
at least medium confidence in an observed decrease in agricultural and ecological
drought. Panel c from Figure SPM.3 published in Masson-Delmotte et al. 2021.
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3.1 Potential Evapo-Transpiration

The PET is a required input variable for the SC-PDSI, PDSI and SPEI. It com-
bines evaporation and transpiration, which is water released from plants to
the atmosphere. PET depends on several environmental parameters (i.e.
radiation, temperature and humidity). Transpiration and evaporation gen-
erally happen at the same time, but the ratio of their potential values highly
depends on the surface type (Allen et al. 1998). However, for the drought
indices only the easier to predict combined PET is of interest. Some of the
models participating in CMIP6 already provide the PET through a variable
called evspblpot, but it is neither a standard variable, nor is its calculation
documented in detail for any model. To make the climate indices applicable
to a wider range of models and the performance of indices less dependent
on the internal land-surface components of the respective model, a mathe-
matical approximation for this value is calculated and used for all analysed
models.

Over the last century a variety of methods to approximate the PET has
been developed. Thornthwaite (1948) proposed a method based on day-
time length and daily temperature. 15 years later Hamon (1963) came up
with an equation, that includes the saturation vapour pressure. Both ap-
proximations are not reliable under changing climate conditions (Shaw and
Riha 2011). In contrast, the Penman-Monteith (PM) method (Monteith 1965;
Penman 1948) provides a more complex combination of parameters (Equa-
tion 3.1) to approximate PET with a closer link to the underlying physical
processes. It includes several variables like the soil heat flux density G ,
mean daily air temperature at 2m Td, wind speed at 2m u2, the psychome-
tric constant γ, saturation and actual vapour pressure es and ea. ∆ is the
slope of the vapour pressure curve (Allen et al. 1998).

PETpm =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(3.1)

PET approximations which are solely based on air temperature exist as
well (Hargreaves and Samani 1985; Thornthwaite 1948), but the PM-method
shown in Equation 3.1 is more adequate and recommended by the Food and
Agriculture Organization of the United Nations (FAO), and therefore some-
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times referred to as FAO-56 Penman-Monteith equation (Pereira et al. 2015).
Allen et al. (1998) and Zotarelli et al. (2010) provide instructions how to
calculate the psychometric constant and how to approximate variables that
may not be available in observational or model data. Equation 3.1 is used
in the SPEI R package (Beguería et al. 2014) and through this in the SPEI
diagnostics of the ESMValTool (Adeniyi 2019). Additional approximation
methods have been developed since then (Oudin et al. 2005).

3.2 Calculation of Indices

In the following the methods are described that have been used to calculate
the indices. Some mathematical details, which are relevant for the analysis
and parameters, required to reproduce the results are given. The calculation
for PDSI and SC-PDSI is described step by step to support the understand-
ing of the diagnostics developed for the ESMValTool during this thesis.

3.2.1 Standardized Precipitation Index

The SPI categorizes droughts based on the deficit between observed or pre-
dicted precipitation and a standardized probability to observe such precipi-
tation (Guttman 1998). Since precipitation is not normally distributed prob-
ability functions other than gauss functions might represent measurements
better. In this thesis a gamma distribution is used to locally describe normal
climate conditions for a historical reference period of 115 years (1900-2014).

By cumulating monthly precipitation, the SPI can be calculated for any time
scale of interest (McKee, Doesken, and Kleist 1993). Typical choices of this
smoothing windows are 1, 3, 6, 12, 24 or 48 months (McEvoy et al. 2012;
McKee, Doesken, and Kleist 1993). SPI calculated on short time scales can be
related to soil moisture, while larger time scales are used to analyse impacts
on ground water or other reservoirs. For this month a scale of six months is
chosen which is expected to be relatable to agricultural impacts and shows
the smallest time lag to the PDSI (Guttman 1998).

The probability of the averaged precipitation over the chosen time scale
can be derived from the probability function (i.e. a gamma-distribution),
which has been fitted to match the percentiles given in Table 3.1 (Guenang
and Kamga 2014). A detailed description of the computational process can
be found in publications (McKee, Doesken, and Kleist 1993; Guenang and
Kamga 2014).
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Table 3.1: Mapping of SPI and SPEI values to their category and occurrence. These
probabilities are used to fit the probability function used by the SPI or SPEI (Le et
al. 2019; Vicente-Serrano, Beguería, and López-Moreno 2010). SPI values between 0
and -1 for the SPI have originally been labelled as mild droughts, but are considered
as normal for simplification (McKee, Doesken, and Kleist 1993).

SPI/SPEI Label Occurrence

2.0 ≤ SPI Extreme wet 2.3%
1.5 ≤ SPI < 2.0 Severe wet 4.4%
1.0 ≤ SPI < 1.5 Moderate wet 9.2%
-1.0 < SPI < 1.0 Normal 68.2%
-1.5 < SPI ≤ -1.0 Moderate dry 9.2%
-2.0 < SPI ≤ -1.5 Severe dry 4.4%

SPI ≤ -2.0 Extreme dry 2.3%

3.2.2 Standardized Precipitation Evapotranspiration Index

In contrast to the classical SPI, which is solely based on precipita-
tion, the Standardized Precipitation Evapotranspiration Index (SPEI;
Vicente-Serrano, Beguería, and López-Moreno 2010) includes additional
atmospheric variables through PET. The difference between precipitation
and PET is used as a simple climatic water balance. While the proposed
SPEI uses a PET approximation method that only requires monthly
temperature data (Thornthwaite 1948), in this thesis the more complex
Penman-Monteith approximation is used. A description of the approxima-
tion method is provided in Section 3.1 and further details on calculation of
the SPEI can be found in (Vicente-Serrano, Beguería, and López-Moreno
2010). The scale of the SPEI is the same as the one for SPI given in Table 3.1.
As probability function for the SPEI a log-Logistic distribution is used with
a time scale of nine months.

3.2.3 Palmer Drought Severity Index

One of the first and most widely used drought indices is the PDSI proposed
by Palmer (1965). The Index is calculated using a simple water balance
model to find the climatically appropriate precipitation Pc, based on AWC,
PET and precipitation Pc. A moisture anomaly index Z is calculated by
comparing P and Pc and used to recursively calculate three drought indices
with different limitations. The final PDSI is one of these three indices, cho-
sen based on the establishment of a drought or wet spell. In the following,
the mentioned steps are described in detail, based on published guidelines
(Palmer 1965); Alley 1984; Guttman 1998).
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Step 1: Hydrological Accounting from Water Balance

The first step of calculating PDSI is to find the climatically appropriate pre-
cipitation Pc, which can then be compared to the actual measured or pre-
dicted precipitation. In analogy to a simple water balance model (where
precipitation is the sum of run-off RO, recharge R, evapotranspiration ET
and change in moisture −L) the balance for Pc is defined by Palmer (1965)
as

Pc = αPET + βPR + γPRO − δPL (3.2)

In this equation PR is potential recharge, PRO potential run-off and PL po-
tential loss or potential change of soil moisture. The coefficients (α, β, γ, δ)
are ratios of long-term mean quantities of actual to potential values (Alley
1984). They are calculated for each month of the year j = 1, . . . , 12 to finally
provide Pc,j accounting for seasonal variability:

αj =
ĒT j

¯PET j
β j =

R̄j

P̄Rj
γj =

R̄Oj

¯PROj
δj =

L̄j

P̄Lj
(3.3)

The exchange of water between soil and atmosphere is limited by the avail-
ability of water close to the surface. Palmer divided the soil in two layers
and assumed the upper (surface) layer has a capacity of 25 mm water col-
umn. The amount of water stored in this layer is referred to as Ss. The
underlying layer has an actual amount of Su and its maximum storage is de-
fined by the given Available Water Capacity (AWC). The AWC refers to the
combination of both layers. The assumptions that the surface layer needs
to be completely dry (or wet) before water is transferred between the lay-
ers and that the evapotranspiration takes place at the potential rate, lead to
the expressions for the loss of each layer Ls = min(Ss, PET − P) and Lu =
(PET − P − Ls) Su/AWC. Considering no run-off unless Ss + Su > PET,
potential values can be defined as:

PR = AWC − (Ss + Su) (3.4)

PRO = Ss + Su = AWC − PR (3.5)

PL = min(PE, Ss) + (PE − min(PE, Ss)) Su/AWC (3.6)
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Step 2: Moisture Anomaly

The monthly moisture anomaly is the difference between the observed pre-
cipitation P and Pc. Scaling the anomaly by a standardizing factor K to make
it comparable between different months and regions, leads to the moisture
anomaly index Z.

Z = K(P − Pc) = K(P − αPET − βPR − γPRO + δPL) (3.7)

A given deficit of rain has stronger influence on the PDSI (larger K) in an
arid region rather than in a humid region. The standardizing factor K (also
referred to as climate characteristic) is an refinement of Palmers general cli-
mate characteristics approximation K′:

K′
i = 1.5 log1 0





¯PEi+R̄i+ ¯ROi
P̄i+L̄i

+ 2.8

D̄i



+ 0.5 (3.8)

Kj =
17.67K′

j

∑
12
i=1 D̄iK

′
i

(3.9)

The parameter τj =
P̄Ej+R̄j+R̄Oj

P̄j+L̄j
, can be interpreted as the ratio between

demand and supply of moisture (Alley 1984).

Step 3: Recursive PDSI Calculation

The Palmer Drought Index PDI for month t is then calculated by the fol-
lowing equation:

PDIt = 0.897PDIt−1 + 0.333Zt (3.10)

Equation (3.10) is empirically determined to fulfil the assignments of Table
3.2 for the historically driest periods in nine locations in the USA (Kansas,
Iowa, North Dakota, Ohio, Pennsylvania, Tennessee central Iowa and west-
ern Kansas and three locations in Texas) observed before 1965, which limits
its applications to regions with climate similar to this nine locations. Calcu-
lating an index as defined in Equation (3.10) poses the problem of finding
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Table 3.2: Mapping of PDSI values to their category. The labels have been assigned
by Palmer (1965) based on observations.

PDSI Range Label

PDSI > 4.0 Extremely wet
4.0 ≥ PDSI > 3.0 Very wet
3.0 ≥ PDSI > 2.0 Moderately wet
2.0 ≥ PDSI > 1.0 Slightly wet
1.0 ≥ PDSI > 0.5 Incipient wet spell
0.5 > PDSI > -0.5 Near normal
-0.5 > PDSI ≥ -1.0 Incipient drought
-1.0 > PDSI ≥ -2.0 Mild dry spell
-2.0 > PDSI ≥ -3.0 Moderate drought
-3.0 > PDSI > -4.0 Severe drought
-4.0 ≥ PDSI Extreme drought

exact start or end dates for a dry or wet spell, which is crucial to describe
the severity of a drought. The PDIt is highly influenced by the PDI of the
previous months (t−1, t−2, ...). Therefore, long periods of dry conditions can
retain a low PDI, even if the precipitation of one or two months should have
ended the drought.

Palmer solved this issue by calculating three indices PDI1,t, PDI2,t and
PDI3,t, where PDI1,t ≥ 0 tracks a wet spell that is becoming established,
while PDI2,t ≤ 0 tracks establishing droughts accordingly. A drought (or
wet spell) is considered to be established for PDI ≤ −1 (or PDI ≥ 1)
after the previous established event ended. The end of such an event can
either be designated by the respective PDI reaching near normal condi-
tions (−0.5 < PDI < 0.5) or the received moisture reaching the amount
required to end a wet or dry spell. How these amounts are determined is
described by Alley (1984). PDI3,t tracks both types of events, by setting
PDI3,t = PDI1,t (or PDI3,t = PDI2,t) whenever a new drought or wet spell
becomes established. The final PDSI will be assigned to one (non-zero) of
these PDIs. However, different situations, including the common case of
two non-zero PDIs, require additional rules for these assignments. Palmer
provides a whole set of rules, which in some cases require information
about the end of the event. It is one of the main limitations for real time
application of this index, that it is not able to provide the final index
continuously for ongoing events.

Table 3.2 shows the mapping of PDSI values to the drought categories
Palmer used. The assignments follow the arbitrary definition of an extreme
drought having an index value of -4.
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3.2.4 Self-Calibrating PDSI

To overcome some of the PDSIs limitations, Wells, Goddard, and Hayes
(2004) introduced a method to replace the parameters, which have been de-
rived from observational data of a few locations, by dynamically calculated
values. In particular the climate characteristic K and the duration factors p
and q are calculated from historical reference data at the specific location.
p and q replace the constants 0.897 and 0.333 in Equation 3.10. When the
original PDSI has been developed in 1965, the required reference data and
computational power was not available (Wells, Goddard, and Hayes 2004).

Adjusting Climate Characteristics

The given climate characteristic from Equation 3.9 contains the empirical
value 17.67, which is the accumulated yearly moisture anomaly averaged
over the nine locations named in Section 3.2.3. The equation is therefore a
ratio of the expected and observed yearly moisture anomaly. Since the PDSI
is based on the accumulated moisture anomaly, the new spatially dependent
climate characteristic K̃ could be estimated by calibrating

K̃ =
expected PDSI

oberved PDSI
. (3.11)

Since the PDSI is centralized at zero its tails are more suited for calibration.
Therefore the frequency of extreme events fe is used to calibrate K̃, consider-
ing the driest 2% (wettest 2%) of the reference time belongs to Indices below
-4 (above 4):

K̃ =







K′(−4.00/2nd percentile), if d < 0

K′(4.00/98th percentile), if d ≥ 0
(3.12)

To apply the calibration the PDSI is calculated once using a first order ap-
proximation of Z = dK′, where Equation 3.8 defines K′.

Calculate Duration Factors

As one can see in Equation 3.10 the PDI and therefore the PDSI is a recur-
sive Index, where each value is the weighted sum of the previous value
(represents the climate trend) and the current moisture anomaly (represents
the contribution by the current month). These experimentally determined
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weights will be replaced by the duration factors p and q, which are calcu-
lated dynamically for the SC-PDSI, to define the sensitivity to precipitation
and the lack thereof (Wells, Goddard, and Hayes 2004). Further, Equation
3.10 can be written as

Xi = pXi−1 + qZi (3.13)

The duration factors calculated similar to the PDSI from the linearisation of
cumulated moisture anomaly Ẑ = ∑

t
i Zi vs time periods t:

p =

(

1 −
m

m + b

)

, q =
C

m + b
. (3.14)

m and b are slope and y-intercept of Ẑ(t) for events specified as C. In the
case of PDSI this calibration has been done for the most severe dry spell
(C = −4) from Kansas. However, the sensitivity to precipitation of the
index can vary over regions and is not necessarily the same for dry and wet
spells. Thus the SC-PDSI calculates two pairs of duration factors for each
location, using least square fits for the extreme events (C1 = −4, C2 = 4).
b is further adjusted to match the most extreme event in the reference data.
As reference data the same model output for the period 1900-2014 is used
as for the SPI and SPEI.

3.3 Rescaling Indices

The drought indices that are used in this thesis provide different scales (Ta-
ble 3.1 and 3.2). Both scales agree in some of their labels and the indices can
be rescaled to a common scale, to make the comparison easier. For the SPI,
SPEI and SC-PDSI the 2.3% wettest and 2.3% most dry months of the refer-
ence period are considered to be extreme wet or extreme dry by definition.
The percentiles are mapped to a common scale from -1 to 1. This means
dividing the standardized indices SPI and SPEI by 2 and PDSI and SC-PDSI
by 4 leads to a scale that can be used for all four indices in common, where
-1 and -0.5 are the thresholds for extreme and moderate drought events.
The PDSI categories near normal, incipient wet/dry, slightly wet and mild
drought are merged into one category named mild or normal.
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Table 3.3: A common scale for drought indices normalized by extreme conditions
synthesized from Table 3.2 and 3.1.

SPI PDSI Normalized Label

> 2 > 4 > 1 Extreme wet
1.5 to 2 3 to 4 0.75 to 1 Severe wet
1 to 1.5 2 to 3 0.5 to 0.75 Moderate wet
-1 to 1 -2 to 2 -0.5 to 0.5 Mild or normal
-1.5 to -1 -3 to -2 -0.75 to -0.5 Moderate dry
-2 to -1.5 -4 to -3 -1 to -0.75 Severe dry
< -2 < -4 < -1 Extreme dry

3.4 Applied Drought Metrics

The analysed drought indices are calculated for different future predictions
of climate models. In contrast to short-term weather predictions, the cho-
sen ESMs produce long-term climate projections, where weather and other
simulated short-term processes are not primarily defined by the initial state
of the variables. Precipitation is influenced by complex meteorological pro-
cesses on spatial and temporal scales that can not be resolved by the used
models. The parametrisations used differ from model to model and small
changes of the atmospheric state can result in completely different weather
patterns. Weather is often referred to as a chaotic system. Therefore, it
is expected that future predictions of monthly precipitation over multiple
decades is almost uncorrelated for different models. Figure A.1 shows an
example of almost independent precipitation and SC-PDSI time series from
different datasets. None of the dataset pairs show a significant correlation
of SC-PDSI (Figure A.2). Especially normally distributed uncorrelated data
like drought indices, which are based on precipitation, loose most of their
information when a multi-model mean is applied. Hence, time integrated
metrics are used to describe droughts, which can be averaged over regions
and models. While correlations are calculated for indices pairwise, trends
and event-based characteristics are calculated for each index. Consecutive
months with normalized index values below the threshold are considered
as a drought event. Multiple of such events may be found in a given pe-
riod. Event-based characteristics are calculated for the historical (1900-2014)
baseline and two future scenarios 2015-2100 for moderate (index < -0.5) and
extreme (index < -1) droughts. All time independent metrics, that are used
in the analysis are listed below, followed by some information on how they
are calculated.

Cross-correlation The Pearson correlation coefficient is used to measure
the similarity of the drought indices time series pairwise.
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Trend: The slope of a linear fit of a time series of index values is rescaled to
time intervals of 50 years.

Mean duration: The durations in months of all events in the period of in-
terest is averaged.

Frequency: The total number of events per year. To link the frequency to
the occurrence rate it has to be multiplied by the mean duration.

Mean average Index: The mean of the respective Index during an event,
averaged over all events in the period of interest.

The Pearson correlation coefficient rXY can be used to analyse the associa-
tion between two monthly sampled normal distributed variables X and Y
(Lord, Qin, and Geedipally 2021). With sx (sy) being the standard deviations
and x̄ (ȳ) the mean values of X (Y) their correlation is calculated as

rXY =
cov(X, Y)

sX, sY
, with cov(X, Y) =

∑
n
i=1(xi − x̄)(yi − ȳ)

n − 1
. (3.15)

This association measurements are used in a pairwise comparison of time
series for different indices in individual datasets.

A linear regression is used for the calculation of trends. It is provided by the
scipy python module (Virtanen et al. 2020). A linear function f (t) = βt + α
is calculated to minimize the sum of squared distances to the actual indices
yi and their time coordinate ti. For N samples this cost function can be
written as

C(α, β) =
N

∑
i=0

(βti + α − yi)
2 . (3.16)

Due to the scale-invariance of the linear regression, the trend β for of the
normalized indices can easily be rescaled to their original mapping. For
compatibility the long-term trends over 115 years for the historical and 85
years for the future period are converted to index change per 50 years, as it
is done by Dai, Trenberth, and Qian (2004).
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4.1 ESMValTool

The analysis in this work is done utilizing the latest version 2.4 of the Earth
System Model Validation Tool v2.4 (Andela et al. 2021). This community di-
agnostic and performance metrics tool, targeting routine evaluation of Earth
system models participating in CMIP, was first released in 2016 (Eyring et
al. 2016b). Since then the software has been developed rapidly. The newest
major version two of the tool contains technical improvements to increase
performance and usability (Righi et al. 2019) as well as additional large-scale
diagnostics to evaluate ESMs (Eyring et al. 2020, diagnostics for emergent
constraints and future projections (Lauer et al. 2020), and several more spe-
cific diagnostics including extreme events (Weigel et al. 2021). The ESMVal-
Tool can be used to reproduce figures from IPCC Fifth Assessment Report
(AR5) and is integrated into the infrastructure of the Earth System Grid Fed-
eration (ESGF) at the Deutsches Klimarechenzentrum (DKRZ) for the evalu-
ation of CMIP6 models, shortly after their output is published (Eyring et al.
2020; Lauer et al. 2020).

The tool is split into two modules: Firstly the ESMValCore (Andela et al.
2020b), which provides common preprocessing operations including data
extraction, filtering and re-gridding. The core module is automatically
loaded and used by the other module, the ESMValTool (Andela et al.
2020a). The latter provides many ready to use diagnostics and editable
recipes to run analysis and evaluations for different scientific use cases
on the preprocessed data. The tool makes it easy for users to run existing
diagnostics by creating or modifying recipes. Diagnostics are scripts,
that contain the analysis in any of the supported scripting languages. By
contrast, the recipes are text files, which contain the list of datasets to use,
as well as sets of parameters and configurations for the diagnostics.

As part of this work a diagnostic diag_scpdsi.py has been developed to cal-
culate the PDSI and SC-PDSI and plot_indices.py to analyse and visualize
the result including the calculation of characteristics and comparison with
other indices. Methods to calculate the precipitation based indices, SPI and
SPEI are already included in the ESMValTool (Weigel et al. 2021). The anal-
ysis could be applied to any normalized monthly drought index. Figure 4.1
visualizes the workflow and the interaction of different components in the
ESMValTool. The named diagnostics (red) are used in this thesis.
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Figure 4.1: Workflow and interaction of different components in the ESMValTool
framework.

Existing diagnostics have been modified and used to calculate PET, SPI and
SPEI. A new diagnostic (diag_scpdsi.py) has been developed to calculate
PDSI and SC-PDSI by applying the algorithms described in 3.2.3 and 3.2.4 to
datasets compatible to the Climate Model Output Rewriter (CMOR; Taylor,
Doutriaux, and Peterschmitt 2004). This diagnostic makes use of functions
from the open source python library climate_indices (Adams 2017). All fig-
ures and other results in this work are generated using the newly developed
plot_indices.py diagnostic.

4.2 ScenarioMIP

The Coupled Model Intercomparison Project (CMIP) organized by the
World Climate Research Program (WCRP), started with its first phase in
1996 comparing global coupled climate models (Meehl et al. 1997) and has
grown to an international climate research activity for different scientific
communities. 2016 has the sixth phase of CMIP started (CMIP6; Eyring
et al. 2016a). The Diagnostic, Evaluation and Characterization of Klima
(DECK) experiments form a baseline for CMIP6 and future phases. The
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Table 4.1: Shared Socioeconomic Pathways used in the scenarios in ScenarioMIP.
The forcing levels belong to the integrated pathways selected for ScenarioMIP Tier
1. Assumptions and values taken from O’Neill et al. (2016).

SSP Assumptions Forcing level
in 2100

SSP1 substantial investments in education and health,
rapid economic growth, and well-functioning in-
stitutions increasing shift toward sustainable prac-
tices

2.6 Wm-2

SSP2 central pathway in which trends continue their his-
torical patterns without substantial deviations

4.5 Wm-2

SSP3 little investment in education or health, fast grow-
ing population, and increasing inequalities coun-
tries prioritize regional security

7.0 Wm-2

SSP4 little investment in education or health, fast grow-
ing population, and increasing inequalities large
inequalities within and across countries

-

SSP5 substantial investments in education and health,
rapid economic growth, and well-functioning in-
stitutions & energy intensive, fossil-based econ-
omy

8.5 Wm-2

DECK experiments include a historical Atmospheric Intercomparison
Project (AMIP) simulation, a pre-industrial control simulation (piControl),
a simulation forced by an abrupt quadrupling of CO2 (abrupt-4xCO2) and a
simulation forced by a 1% CO2 increase per year (Eyring et al. 2016a). These
experiments and a historical simulation from 1850 to 2015 are mandatory
to perform for any participating model.

Additional experiments targeted at specific scientific questions can be
added to the project as a CMIP-Endorsed Model Intercomparison Project
(MIP). For CMIP6 one such endorsement is the ScenarioMIP (O’Neill
et al. 2016), which defines experiments for eight alternative possible
future pathways of anthropogenic drivers like greenhouse gases, chemical
reactive gases, aerosols and land use from 2015 to 2100. One of the primary
objectives of the ScenarioMIP is to facilitate integrated research on climate
impact, which will be important for mitigation and adaptation policy con-
siderations (O’Neill et al., 2016). Future pathways of societal development,
the SSPs, have been developed and combined with the Representative
Concentration Pathways (RCPs) from CMIP5 (Kriegler et al. 2014; O’Neill
et al. 2014; Riahi et al. 2017, Van Vuuren et al. 2014). A short description of
each SSP is given in table 4.1.
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Four integrated pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) have been
selected from the feasible SSP-RCP combinations to form Tier 1 of Scenar-
ioMIP. It is mandatory for all participating models of this MIP to produce
predictions for these scenarios. Contributions to two pathways (SSP2-4.5,
SSP5-8.5) by seven models form the data base for this thesis. The contribut-
ing models are presented in table 4.2. In figure labels and technical descrip-
tions their identifiers SSP245 and SSP585 are used.

4.3 Datasets

The minimum requirement for a ScenarioMIP contributor to be considered
in this thesis is the availability of needed variables, which are precipitation
pr, monthly minimum temperature tasmin, monthly maximum temperature
tasmax, surface wind speed sfcWind, total cloud cover clt and sea level pres-
sure psl, for the historical, SSP2-4.5 and SSP5-8.5 scenarios in the r1i1p1f1
ensemble. Due to computational limitations, only seven models have been
chosen from the list of candidates. Table 4.2 shows a summary of the se-
lected CMIP6 models. The field capacity (capacity of soil to store water)
mrsofc is taken from the AWI-CM-1-1-MR (2000) model and considered to
be constant between 1900 and 2100. It is used for the water balance during
PDSI calculation described in Section 3.2.3.

All datasets regardless of their nativ resolution have been re-gridded to a
3◦ × 3◦ and oceans have been masked out. The time period from 1900 to
2014 is taken from the historical experiment and combined with different
ScenarioMIP contribution of the same model contribution until 2100. The
scenario independent historical period (1900-2014) is used as reference pe-
riod for the SPI, SPEI, PDSI and SC-PDSI calculation. It is also used as his-
torical baseline for the assessment and discussion of changes in drought
indices.
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5. Results

In the first part of this section the newly implemented PDSI and SC-
PDSI calculating diagnostic is tested and example results are shown and
discussed. Metrics and drought characteristics are calculated based on
these monthly indices and compared with those based on standardized
indices SPI and SPEI, from existing methods. As primary input monthly
variables predicted by seven models (ACCESS-ESM1-5, AWI-CM-1-1-MR,
CMC-ESM2, CANESM5, MIROC6, MPI-ESM1-2-LR, MRI-ESM2-0) and
re-gridded to a 3◦x3◦ resolution are used for all indices. The PET is calcu-
lated independently from the indices using the approximation described in
Section 3.1. The four drought Indices are normalized in a way that extreme
droughts belong to values <-1 and extreme wet spells to values >1 (i.e. SPI
and SPEI divided by 2 and PDSI and SC-PDSI divided by 4) to make them
easier to compare. Drought index values in the results are given on this
normalized common scale (Table 3.3), unless described otherwise.

SPEI and SC-PDSI, which are spatially comparable and consider PET, are
chosen in the second part of the results, to discuss the differences of the
future scenarios to the historical period and to each other. To do regional
characteristics are extracted for the IPCC AR6 WG1 reference regions de-
scribed in Section 2.4.

5.1 Index Comparison

The plot_indices.py diagnostic is able to produce maps for given dates and
timelines for given locations and intervals. The plots are created for each
dataset and each experiment. Figure 5.1 shows an example map for the
PDSI and SC-PDSI in the summer of the last year of the historical period
(July 2014) using data produced by the MIROC6 model.
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5. RESULTS

(a) PDSI (b) SC-PDSI

normalized index value

Figure 5.1: PDSI (a) and SC-PDSI (b) for July 2014 plotted globally based on the
MIROC6 dataset.

The values in 5.1 are distributed between -1 and 1 with a few exceptions for
the PDSI. The PDSI shows a few locations with extreme wet spells (Middle
East and Central Asia) and extreme droughts (South Africa, South Amer-
ica). Most regions show a value close to zero which indicates normal or near
normal conditions without ongoing droughts or wet spells. Further, one can
see that both indices, the original PDSI and the enhanced SC-PDSI, qualita-
tively agree in their patterns at least for this specific point in time. The main
difference is the locally recalibrated characteristic climate, described in sec-
tion 3.2.4, which leads to a scaling of the calculated index, depending on
the location. Parameters that differ between SC-PDSI and PDSI are constant
in time, but location dependent. Therefore, the global pattern may differ
between this two indices, but the correlation of time lines is expected to be
high for any location. Which can also be observed in the next example. Fig-
ure 5.2 exemplarily shows a time line for Western Central Europe (WCE) of
all four analysed drought indices PDSI, SC-PDSI, SPI and SPEI. Their values
are averaged throughout the WCE region and shown with their respective
standard deviation. The shape of the WCE region is shown in Figure 2.2.
The figure shows the full analysed time span from 1900 to 2100, split into
the historical period in the top panel and the SSP2-4.5 future scenario at the
bottom.
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Figure 5.2: Drought Indices calculated based on MIROC6 model output for the
CMIP6 historical and ScenarioMIP SSP2-4.5 experiments. The data has been av-
eraged over all cells in the Western Central European reference region WCE. The
semitransparent regions indicate the standard deviations of the grid cells for each
index. The time series is split into two panels to improve visibility.

One can see a high qualitative agreement of all indices, but some indica-
tions for systematic differences can be seen too. The SPI and SPEI, which
have a high agreement in the historical phase experiment before 2014, are
diverging for WCE in the future. This might be related to the moisture loss
by increasing PET, which is part of the SPEI but not of the SPI. In WCE, the
purely precipitation based SPI tends towards higher values than the three
other PET dependent indices. This is most obvious for the last decades of
this century. The SC-PDSI seems to correlate well with the PDSI over the
full period in WCE. The SC-PDSI, however, is attenuated compared to the
PDSI, which is probably a result of the previously discussed calibration.

To proof the qualitative findings from the examples and quantify the in-
dex agreements correlations are calculated pairwise globally and are av-
eraged over all seven datasets. Figure 5.3 shows a multi-model mean of
Pearson correlation coefficients between SC-PDSI/PDSI, SC-PDSI/SPI, SC-
PDSI/SPEI and SPI/SPEI based on data contributed to the combined his-
torical and SSP2-4.5 experiments. Figure 5.3 (a) confirms the expectation of
high correlation between SC-PDSI and PDSI by showing values close to 1
for all regions. Only in North Africa slightly lower coefficients are found
by some models, which becomes more visible in the multi-model standard
deviations shown in Figure 5.4. In panel (c) and (d) is apparent, that SPEI is
almost uncorrelated to SPI and SC-PDSI for North Africa and parts of Cen-
tral Asia. Apart from that, the correlation coefficients range from 0.6 to 1 for
all index combinations and can be considered to be significant. Correlation

29
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maps of PDSI to SPEI and SPI are not shown, as they are similar to those
from SC-PDSI.

(a) SC-PDSI vs PDSI (b) SC-PDSI vs SPI

(c) SC-PDSI vs SPEI (d) SPEI vs SPI

Figure 5.3: Multi-model mean Pearson correlations of four different drought in-
dices calculated for the combined experiment historical-SSP245 over the period
1900-2100.

(a) SC-PDSI vs PDSI (b) SC-PDSI vs SPI

(c) SC-PDSI vs SPEI (d) SPEI vs SPI

Figure 5.4: Multi-model standard deviations of Pearson correlation coefficients
between PDSI and SC-PDSI for the combined experiment historical-SSP245 on a
global scale from 1900 to 2100. The right panel shows the standard deviation of the
multi-model mean.
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To analyse the development towards wetter or dryer climate conditions
in future scenarios at any location, trends of the monthly drought indices
are calculated over the full period (1900-2100). These Trends are shown as
multi-model means in Figure 5.5. Their standard deviations over the differ-
ent datasets can be found in Figure A.6 in the appendix.

(a) PDSI Trend SSP2-4.5 (b) PDSI Trend SSP5-8.5

(c) SC-PDSI Trend SSP2-4.5 (d) SC-PDSI Trend SSP5-8.5

(e) SPI Trend SSP2-4.5 (f) SPI Trend SSP5-8.5

(g) SPEI Trend SSP2-4.5 (h) SPEI Trend SSP5-8.5

normalized index trend [/50yr]

Figure 5.5: Multi-model mean of long term trends (1900-2100) of drought indices in
historical experiment combined with SSP2-4.5 and SSP5-8.5 future scenarios. For
the SC-PDSI trends for individual scenarios can be found in A.8. Standard devia-
tions of the multi-model mean are shown in Figure A.6.
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All four drought indices agree in negative trends indicating generally drier
conditions in the northern part of South America and South Africa in both
future scenarios SSP2-4.5 and SSP5-8.5. A positive trend towards generally
wetter conditions can be found for the Sahara in PDSI, SC-PDSI and SPI
values in both Scenarios.

The PDSI shows the most drastic changes for large areas of South America.
Index decrease of more than 0.4/50yr can be found in the SSP5-8.5 future
scenario in Figure 5.5 (b). The SPEI also shows a strong negative trend of
less than -0.5/50yr for the northern part of Africa and slightly less intense
for South Africa. The central part of Africa from 0◦N up to 15 ◦N shows
almost no trend for the SPEI, weak positive trends for SPI and SC-PDSI and
the overall strongest positive trend of more than 0.4/50yr for PDSI in the
SSP5-8.5 scenario. Around the Mediterranean Sea negative trends down
to -0.1/50yr can be found in Figure 5.5 (a, c, g). This region of drying is
pronounced in the SSP5-8.5 scenario and extends over Europe and West
Asia. For Central Asia no clear trend is observable over all models in any
of the analysed indices. The SPI shows a consistent positive trend between
0.1/50yr and 0.3/50yr in this area, while the SPEI strongly decrease in parts
of the same area.

The spatial pattern of the SC-PDSI and the PDSI trends is similar, but the
SC-PDSI trend shows less extreme values, as a result of generally lower ab-
solute values in regions with the largest changes. The SPI as an index solely
depending on precipitation shows less regions with negative trends and no
large differences between the two scenarios. All negative index trends in
the SSP5-8.5 scenario are enhanced compared to the SSP2-4.5 scenario. For
the PDSI and SPI higher absolute values for the positive trends at Central
Africa can be found as well. The trends of the input variables in Figure 5.6
can be used as explanation for some of this differences. The precipitation
trends (a) and (b) are similar for both scenarios and its spatial features are
comparable to the SPI trends in 5.5. Increasing PET is another effect leading
towards smaller SPEI, PDSI and SC-PDSI values. The PET shows only posi-
tive trends in Figure 5.6 (e) and (f), due to global warming conditions in the
period 1900-2014 (c) and (d). In the SSP5-8.5 future scenario the tempera-
ture change is significantly higher resulting in positive PET trends of more
than 30 mm s−1 per 50 years in subtropical regions around 30◦N and 30◦S.

Nevertheless, while precipitation plays the primary role in establishment
of droughts, the increase of global temperature and therefore PET (Figure
5.6) reinforces agricultural droughts and is responsible for drying condi-
tions in many areas. This can be seen by comparing the SPI, which is solely
based on precipitation, with the other PET based indices in Figure 5.5. Long
term positive trends in precipitation compensates increasing temperature
in some areas especially for central Africa, while they enhance the effect of
drying elsewhere i.e. northern South America.
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(a) Precip. Trend SSP2-4.5 [10−6kg m−2 s−1 /50yr] (b) Precip. Trend SSP5-8.5 [10−6kg m−2 s−1 /50yr ]

(c) Temperature Trend SSP2-4.5 [K/50yr] (d) Temperature Trend SSP5-8.5 [K/50yr]

(e) PET Trend SSP2-4.5 [mm /month /50yr] (f) PET Trend SSP5-8.5 [mm /month /50yr]

Figure 5.6: Multi-model mean of long term trends (1900-2100) of drought indicators
used for index calculation considering SSP2-4.5 and SSP5-8.5 future scenarios.

However, index trends on its own are not as meaningful for economic im-
pacts of droughts as the changes in characteristics of harmful events. The
severity of both extreme dry and wet events could massively increase with-
out changing the trend. Further, slight shifting towards dryer climate may
result in the same trends as an increase in extreme droughts. Therefore
event based characteristics of droughts are calculated in the next section.

For each index the characteristical frequencies, durations and mean index
values are calculated for moderate and extreme drought events as described
in Section 3.4. Such events are consecutive months with normalized in-
dex values below -0.5 (moderate) or below -1 (extreme). The multi-model
mean of the SC-PDSI characteristics for this period is shown in Figure 5.7.
Their standard deviations along the different datasets can be found in the
Appendix (A.12). Locations without predicted extreme events have a fre-
quency of zero (yellow), which leads to missing values (white) for other
characteristics, requiring existing events.
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(a) Frequency (moderate) [events/year] (b) Frequency (extreme) [events/year]

(c) Mean duration (moderate) [months] (d) Mean duration (extreme) [months]

(e) Averaged Index (moderate) (f) Averaged Index (extreme)

Figure 5.7: Characteristics based on normalized SC-PDSI calculated globally for the
historical period 1900-2014. Sub-figures (a, c, e) consider moderate droughts with
an index threshold of -0.5. For extreme droughts (index < -1) characteristics are
shown in (b, d, f). Corresponding standard deviations can be found in Figure A.12.

More than one moderate drought every two years can be found in Northern
Africa and parts of Asia averaged over the historical period 1900-2014. The
average duration of these events is between 4 and 8 months, except some
locations in India and North Africa, where events with durations of more
than 10 months on average occur. For extreme droughts the frequencies
(less than 0.4 events per year) and average durations (less than 5 months)
are significantly lower then for moderate droughts. The average index is
close to the threshold of -1, while the SC-PDSI during moderates droughts
is between -0.6 and -0.7 globally.

The highest variance can be found in the frequencies, where up to 3 events
per year are considered as extreme droughts in northern Africa, Antarctica
and Greenland. Due to the simple water balance model, which does not
consider snow coverage, the resulting Palmer indices are not expected to
reliably indicate droughts in polar regions. Since the SC-PDSI distribution
has been calibrated along the 2.3%-percentile at SC-PDSI of -1, the low fre-
quencies and durations everywhere else match the expectations. For the
future scenarios SSP2-4.5 and SSP5-8.5 the characteristics of the SC-PDSI
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are similar, but different compared to the reference period (Figure A.4 and
A.5). The regional differences in the characteristics and those between the
SSP2-4.5 and SSP5-8.5 future scenarios are evaluated in the next part for the
SC-PDSI and the SPEI.

5.2 The Role of SSPs in Agricultural Drought Development

In the first part is shown that the SPI, which is purely based on precipitation,
describes meteorological droughts and their response to changing precipita-
tion patterns in future climate scenarios. However, it does not consider ther-
modynamic processes in the atmosphere, whose significant impact on the
establishment and intensity of agricultural droughts are confirmed. More-
over, the PDSI highly correlates with the SC-PDSI, which is adjusted to the
local climate. Due to the advantages of the SPEI and SC-PDSI over their
predecessors, the following analysis focus on these two indices, while some
figures for the PDSI and SPI are provided in the appendix for the interested
reader. The previously discussed trend and event based characteristics are
averaged over the climatic similar IPCC AR6 WG1 reference regions shown
in Figure 2.2 to examine the role of different SSPs in future development of
agricultural droughts.

Frequencies, mean duration and mean averaged indices for moderate and
extreme droughts are shown in Figure 5.8 and 5.9 for the SSP2-4.5 future
scenario. The colours are used to visually support the differences of the
values written in the hexagons.

In the SSP2-4.5 future scenario roughly 0.5 ±0.1 moderate drought events
per year are predicted by both indices in some regions of Europe, Amer-
ica and Asia (WCE, EEU, WSB, WCA and CNA), while most of the other
regions have frequencies between 0 and 0.5 events per year. For the SPEI
the hotspot with most moderate droughts in East Central Asia is spread
out to the neighbour regions WCA, WSB, ESB and TIB and significant more
events are predicted for Western and Eastern Europe such as South America
by the SPEI compared to the SC-PDSI. In the subtropics around the Mediter-
ranean (MED, WCA, SAH and ARP) the frequencies of moderate droughts
are lower, but their mean duration is increased up to 10 months according
to the SC-PDSI and up to more than three years by the SPEI (ARP). For
many subtropic regions, especially the arid area from Western Africa up
Eastern Central Asia, the SPEI predicts moderate dry conditions for three to
six months per year. The SC-PDSI shows similar average moderate drought
durations for most parts of the Earth, except the Mediterranean and its sur-
rounding regions. Following the SC-PDSI no moderate droughts lasting
for more than a year is predicted in this future scenario. In the regions
where SPEI and SC-PDSI differ the most (SAH and ARP) an average index
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(a) Frequency (SC-PDSI) (b) Frequency (SPEI)

(c) Mean duration (SC-PDSI) (d) Mean duration (SPEI)

(e) Mean avg Index (SC-PDSI) (f) Mean avg Index (SPEI)

Figure 5.8: Characteristics based on different indices for moderate droughts in the
SSP2-4.5 projection from 2015 to 2100 . Colours are used to visualise the respective
characteristic value of each hexagon. Mean duration is given in months and fre-
quencies in events/year. Severities and indices are unit-less. Values are averaged
over AR6 WG1 reference regions and shown in the respective hexagons.

value close to -1 is shown which indicates almost extreme dry conditions for
several years. However, this regions are arid and mostly covered by bare
ground without trees, crops or grass (Ziehn et al. 2020; Figure A.3). Both
indices have known limitations under this conditions. The mean average
SC-PDSI over moderate droughts for each region spreads -0.54 and -0.67,
which is consistent to the observations for the historical period (1900-2014)
in Figure 5.7.

Extreme drought events are consecutive months with index values below -1.
They are less frequent than moderate events by definition. Figure 5.9 shows
frequencies and mean durations of extreme droughts in the SSP2-4.5 sce-
nario (2015-2100). Both indices agree in the spatial pattern of the frequency.
Most events occur in the arid regions SAH, ARP, WCA, ECA and at around
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some spots in North and South America (CNA, WNA, SAM). However, the
SPEI shows roughly three times more extreme droughts in most regions.
Frequencies of 0.53 events per year with an average duration of 7.5 months
can be found for Western Central Asia (Fig. 5.9 (b), (d)), which would corre-
spond to roughly one six months lasting extreme drought every two years.
The occurrence rate for this region would be 33% which is more than 10
times larger than the 2.3% of the historical baseline (1900-2014). According
to the SC-PDSI the occurrence rate for extreme events in Western Central
Asia in the SSP2.4-5 scenario is 3.4%. In agreement to moderate droughts
the mean event durations differ most in the arid regions.

Only the frequencies based on SPEI reach 0.5 per year and more for ex-
treme droughts in the arid regions SAH, ARP, WCA, ECA. In this regions
the SPEI shows also mean durations of 15 for this extreme events. The PDSI
shows some long term extreme droughts with more than 10 months in South
America as well. The frequencies and or durations and therefore the sever-
ities of moderate and extreme droughts based on SC-PDSI and SPEI are
higher for most regions in future scenarios compared to the historical refer-
ence period.

(a) Frequency (SC-PDSI) (b) Frequency (SPEI)

(c) Mean duration (SC-PDSI) (d) Mean duration (SPEI)

Figure 5.9: Similar to 5.8, but for extreme droughts in the SSP2-4.5 Scenario.

The SSP5-8.5 future scenario, which represents an anthropogenic forcing of
8.5 Wm−2 at the end of the century, showed larger positive temperature
trends (Fig. 5.6 c,d) and enhanced positive and negative trends depending
on the region (Fig. 5.6 a,b). The global mean temperature is for the historical
period and both future scenarios is shown in Figure 5.10. SSP5-8.5 shows
a more drastic increase of temperature over the next decades. In 2100, at
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the end of the analysed period, a total increase of roughly 5.5 K can be seen,
while the temperature in the SSP2-4.5 only rises by roughly 2.5 K.

Figure 5.10: The global averaged annual temperature for different scenarios. The
filled area around the lines indicate the standard deviation of the multi-model
mean. The data have been derived from monthly minimum and maximum tem-
peratures, that have been used for index calculation.

Figure 5.11: The global averaged annual precipitation for different scenarios. The
filled area around the lines indicate the standard deviation of the multi-model
mean. The data have been derived from monthly precipitation, that have been
used for index calculation.

Multi-model standard deviations of the global mean are shown as shaded
areas for the respective periods in 5.10 and 5.11. The latter Figure shows
global precipitation. For the globally averaged annual precipitation in Fig-
ure 5.11 no significant difference can be seen. The slope for multi-model
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mean temperature in the SSP5-8.5 scenario is slightly steeper than for SSP2-
4.5, but this difference is small considering the multi-model standard devia-
tions of both scenarios, which widely overlap. As already shown previously
for trends of the full period, the precipitation change highly depends on the
region (Fig. 5.6). That is especially the case for the future periods, whose
precipitation trends are appended as Figure A.10.

To see the impact of the different SSPs on the regional frequency and mean
duration, Figures 5.8 and 5.9 have been created for the SSP5-8.5 scenario
as well (Fig. A.16 and A.17). The spatial differences are much larger than
those between the scenarios, therefore difference plots showing the absolute
and relative differences between frequency and mean duration of extreme
droughts for both scenarios have been created and will be discussed instead.

Figure 5.12a shows several regions (NWN, NSA, EEU, WSB, ESB, TIB, WAF,
CAF), where the frequency of extreme droughts differ by one or more event
per year for the SC-PDSI. In panel b of Figure 5.12 the frequency is increased
by more than one event per year for all regions except GLC, MED, ECA,
MED, SAH, WSAF and SAU. Apart from Greenland this exceptions show
an increase of mean extreme drought duration by more than 40%. It is likely,
that several extreme events in this regions are merged into fewer long last-
ing super droughts in the SSP5-8.5. Extreme droughts in the SSP5-8.5 are
extended in their duration compared to SSP2-4.5 for most of the regions.
Greenland/Iceland (GIC) is the only region where less events and a shorter
mean extreme droughts are found in the SSP5-8.5 than in the SSP2-4.5 sce-
nario using the SPEI.
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(a) Frequency (SC-PDSI) (b) Frequency (SPEI)

(c) Mean duration (SC-PDSI) (d) Mean duration (SPEI)

Figure 5.12: Differences of extreme drought frequency [months/100years] and
mean durations [months]. The first number and colour of each hexagon is the
absolute difference (SSP5-8.5-SSP2-4.5), while the second number is the difference
relative to SSP2-4.5.

For the SC-PDSI and SPEI trends of the future period from 2015 to 2100
in Figure 5.13, one can see a general intensification and expansion of re-
gions with negative trends. Both indices show negative trends during the
future period around the Mediterranean, which expands towards Central
Europe in the SSP5-8.5 future scenario. These findings agree with those
from the long term trends in Figure 5.5, which is expected, since the full pe-
riod (1900-2100) is just a combination of different future scenarios with the
same data for the historical period. Possible causes for the differences be-
tween the indices have been discussed already. However, the trend values
significantly differ for the future period. In South America, Central North
America, South Africa and Australia mainly weak negative trends are found
(0 to -0.25 per 50yr) for the SSP2-4.5 scenario, which are stronger in SSP5-8.5
(-0.25 to -0.5 50yr for SC-PDSI and less than -0.5 per 50yr almost anywhere
for SPEI). According to the SPEI trend the normal conditions in 2100 are
what have been considered as an extreme drought for the baseline period
(1900-2014). This results should be treated carefully, since the trends for
future scenarios show large differences between the datasets. The multi-
model standard deviation for both future scenarios (A.9) is in the same or-
der of magnitude as the calculated trends. Highest standard deviations can
be found in the tropics (Central Africa and large parts of Northern South
America). Nevertheless, subtracting the trends for the SSP2-4.5 from those
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for the SSP5-8.5 scenario and averaging the differences along the reference
regions leads to Figure 5.14.

(a) SC-PDSI trend in SSP2-4.5 (b) SPEI trend in SSP2-4.5

(c) SC-PDSI trend in SSP5-8.5 (d) SPEI trend in SSP5-8.5

Figure 5.13: 50 year trend of SC-PDSI and SPEI in two different future scenarios
SSP2-4.5 and SSP5-8.5 (2015-2100).

(a) SC-PDSI (b) SPEI

Figure 5.14: The absolute difference between the multi-model mean 50yr trends for
two future scenarios (SSP5-8.5-SSP2-4.5). The trends have been calculated for SC-
PDSI and SPEI based on seven models for the period 2015-2100. Red (blue) colours
indicate regions, where the SSP5-8.5 scenario shows lower (higher) trends. Yellow
indicates similar trends and regions coloured white, provide not enough values to
compare.

In Figure 5.14 only a few regions (GLC, RAR and RFE) show a positive trend
difference, which means higher (or less negative) trends in the SSP5-8.5
compared to SSP2-4.5. For this regions, positive trends are found for both
indices in Figure 5.13, meaning the regions are expected to change towards
wetter climate in the future. The differences of SPEI trends in contrast to the
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SC-PDSI trend differences show generally more and higher negative values.
Comparing 5.14 with 5.13 one can conclude, that the indices change toward
dryer conditions in arid regions, drought index trends found in SSP2-4.5
are intensified in SSP5.8-5 and the SPEI shows stronger trends and changes
of the trends than the SC-PDSI. These agrees with the previously analysed
event characteristics, showing more or longer extreme droughts with higher
differences between the scenarios in the regions with negative trends.

To summarize the regional trends and changes of moderate and extreme
droughts the statistical distribution of the SC-PDSI and SPEI is compared
between the historical period (1900-2014) and the future scenarios SSP2-4.5
and SSP5-8.5 (2015-2100).

(a) SC-PDSI (b) SPEI

Figure 5.15: Histograms of SC-PDSI and SPEI for the region between 60◦S and
60◦N. Indices collected over all seven datasets. The historical group shows index
values from 1950 to 2014. SSP2-4.5 and SSP5-8.5 contain values from 2015 to 2100.

Figure 5.15 shows the statistical density distribution of index values derived
from seven datasets as histograms for the region 60◦S to 60◦N in intervals
of 0.25. Polar regions have been excluded because of two reasons. On one
hand, they contain more outliers especially for the SC-PDSI, which does not
consider snow coverage. On the other hand, Figure 5.15 is created without
weighting the values by the area of their grid cells. The grey bars show
the index values for the baseline period used to calibrate them. For the SC-
PDSI, parameters are adjusted, so that 2% of previously approximated PDSI
are above and below 1 and -1. For the standardized SPEI in contrast one can
see the historical values following the exact symmetric normal distribution.
Most SC-PDSI values are found between 0 and -0.25 for all periods and sce-
narios. One can see a general widening of the SC-PDSI distribution in the
future. For both scenarios the peak is slightly lower and significant more
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values below -0.5 are found and twice as much below -1, which means that
the occurrence of moderate and extreme droughts around the globe will be
significantly higher in the period from 2014 to 2100 predicted according to
the SC-PDSI in both future scenarios. For the SSP5.8-5 scenario the occur-
rence of extreme droughts is even higher than for the SSP2-4.5 scenario. A
general shift of less than 0.25 towards dryer conditions in the future can be
found for SC-PDSI. This is small compared to the shift of the SPEIs mode
from 0 in the historical period to roughly -0.75 in future scenarios. A mode
of -0.75 means that moderate drought would be the most common or nor-
mal condition between 60◦S to 60◦N from 2014 to 2100. Overall the SPEI
and SC-PDSI indices agree in a shift towards dryer conditions in both fu-
ture scenarios, while the SSP5-8.5 with higher radiative forcing at the end
of this century shows a significant higher occurrence of extreme droughts
compared to the SSP2-4.5. The effect of drying by due to increasing PET is
more dominant for the SPEI than the SC-PDSI resulting in larger differences
of the scenarios especially for arid regions in the subtropics.

43



6. Discussion

For this thesis new diagnostics have been implemented to the ESMValTool
to calculate PDSI and SC-PDSI based on CMIP6 data. The calculation time
especially for the SC-PDSI, where an computational expensive calibration is
required, can become a limitation. For 200 years of monthly data from seven
datasets, it was necessary to reduce the resolution of the data to 3◦ × 3◦, to
keep the calculation time of SC-PDSI values below one day. Even if technical
optimizations could reduce the calculation time, it is notable a disadvantage
of the SC-PDSI. Event based characteristics especially for extreme events
require a high temporal and spatial resolution. Agricultural droughts with
spatial extends of more than 500km and durations of at least months can be
found with the methods and data used in this thesis, but smaller events are
possibly not resolved. Further, the quantitative results for the characteristics
might depend on the resolution of the data.

However, resulting PDSI and SC-PDSI timelines have been shown to closely
correlate with SPI and SPEI for the historical period. The order of magni-
tude of the indices converted back from normalization agrees with those
in the literature (Dai, Trenberth, and Qian 2004). SC-PDSI trends based on
observational data and reanalysis from 1950 to 2008 have been calculated
by Dai (2011) using different PET approximations (Figure A.7). Comparing
the trends of SC-PDSI based on the Penman-Monteith approximation for the
PET considering temperature change from their Figure A.7d with the trends
calculated in this thesis for the same time period based on model contribu-
tions to the CMIP6 historical experiment (Figure A.8b) shows agreement in
some regions, but also some major differences. For his comparison the nor-
malized SC-PDSI values are multiplied by 4 to match the original scale. In
some regions of South America negative trends between 0 and -2 per 50yr
can be found in both figures. The same accounts for Europe, South Africa
and eastern Asia. In other parts of Asia trends between -1 and +1 per 50yr
dominate. This study was not able to find the strong negative trends with
less than -3/50yr as one can see in Figure A.7d in areas of North America
central Africa and at the east coast of Asia. For central Africa positive trends
have been calculated in this work. For the USA small absolute trends less
than 2/50yr have been found in both studies, but again with different signs.
Beside the input data, they used different reference periods and spatial res-
olution, which makes it difficult to address the discrepancies.

Findings of this thesis for drought occurrence change in future scenarios
based on SPEI agree with recent publications. Balting et al. (2021) found
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significant drought intensification in dry regions for the SSP2-4.5 and SSP5-
8.5 future scenario of CMIP6 data. In contrast to this thesis, Balting et al.
focused on the Northern Hemisphere during summer (June, July and Au-
gust). They compared model projections for the historical baseline (1971-
2000) to a future period (2071-2100) based on SSP1-2.6, SSP2-4.5 and SSP8-
5.8. The resulting SPEI difference is shown in Figure A.18, where panel
b and c show the same spatial pattern as long term trends (1900-2100) of
the SPEI (Fig. 5.5 g and h) calculated for this thesis. The strong trend to-
wards lower SPEI values agree with the regions around the Mediterranean
of high differences between the historical and future periods in Figure A.18
for SSP2-4.5 and SSP5-8.5. Similar negative trends at the South-West coast
of North America and small positive trends in some regions in the North
of Asia and North America can be found in both studies too. To compare
the absolute difference between two periods with 100 years distance with
the normalized (by 2) 50 year trend of this thesis. The trend values have
to multiplied by four. In the Center of North America Figure A.18 shows
SPEI differences from 0 to -1 for the SSP2-4.5 and -0.5 to -1.5 for the SSP5-8.5
scenario. The rescaled SPEI trends for corresponding regions are between
0 and -0.8 (Fig. 5.5 g) and -0.4 and -1.2 (h). The regional changes of the
SPEI agree in their pattern and quantities. The drought occurrence rates
found by Balting et al. cannot be exactly confirmed by this thesis, since dif-
ferent thresholds and different sets of models have been used throughout
the studies. However, a general stronger increase of frequency and dura-
tion 5.12 and a general shift towards more intense droughts for the SSP5-8.5
scenario compared to SSP2-4.5, have been found as well.

Understanding of drought indices, their differences and their ability to con-
sider changing climate conditions, is an intermediate goal of this thesis. An
effect of drying caused by increased PET, as a result of global warming is
described in the literature and confirmed by the results. While the SC-PDSI
correlated well with the SPI for the reference period, one can see stronger
trends towards negative indices and hence a tendency to stronger or more
frequent droughts in the three indices involving PET. PDSI and SC-PDSI
rely on the same physical approach of a water balance model in contrast
to the SPEI. Considering PET is advisable in research about the impact of
changing climate to drought characteristics (Vicente-Serrano, Beguería, and
López-Moreno 2010). This does not hold the other way around. The con-
sideration of PET does not automatically improve an index. The effect of
PET may be under- or overestimated and should be validated on reliable
soil moisture data under warming conditions. This problem have been pro-
posed for the SPEI by Rehana and Monish (2021).

Overall, a global tendency towards more severe and frequent agricultural
droughts can be concluded from the results in agreement with the assess-
ments for atmospheric-based drought indices of the IPCC AR6 (Seneviratne
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et al. 2021). According to Seneviratne et al. (2021), the spatial extent of
droughts predicted by atmospheric-based drought indices is expanded to
most of North America, Europe, Africa, Central and East Asia and southern
Australia. The differences between trends and characteristics for SPI and
the PET-based indices agree partly, but have not been analysed for future
projections explicitly, within this thesis. The comparison of the SSP2-4.5
and SSP5-8.5 showed an increase in frequency of extreme drought events in
future projections, which is even stronger in SSP5-8.5, the scenario with the
higher forcing level. This agrees with the conclusion of Seneviratne et al.
(2021), that the probability of drought hazards is rising with increasing forc-
ing levels of different future scenarios. An important spread of PDSI-PM
and SPEI-PM exists in future projections among different models (Senevi-
ratne et al. 2021, Cook et al. 2014). This spread also exists for the SC-PDSI
and SPEI among the seven models used in this thesis. The multi-model
standard deviations of trends in future scenarios (Fig. A.9) is of the same
magnitude as the multi-model means (Fig. 5.13)).

The results as a whole can facilitate to the superior goal of understanding
the impact of a changing climate on characteristics and trends of droughts
on the global scale. IPCC AR6 summarized, that different drought types
respond differently to increasing greenhouse gas concentrations and can
be associated with different impacts (Seneviratne et al. 2021). A lack of
sufficient soil moisture, due to precipitation deficit or evaporation, some-
times amplified by increased atmospheric evaporative demand, result in
agricultural and ecological drought (Chen et al. 2021). Further IPCC AR6
found high confidence in thermodynamic processes being the main driver
of drought changes under human-induced climate change (Seneviratne et
al. 2021). This agrees with the results of the index comparison in this thesis.
The SPI which does not directly consider the thermodynamic processes was
not able to detected drying trends in several regions, predicted by the other
indices, based on PET.

Strengths and weaknesses of the evaluated indices for application to future
projections and climate change research that stood out during this thesis are
summarized in Table 6.1. The SPI is comparably easy to calculate and solely
based on precipitation which is widely available in simulation output and
observations. Changes in climate are only indirectly considered by this in-
dex in the way they affect the precipitation. Effects that lead to drying by
evaporation and transpiration are not included and therefore the index is
not suited for research in changes in agricultural droughts. The PDSI, in
contrast, is based on PET in addition to precipitation and therefore aware of
temperature changes and it involves a physical water balance model, which
can further differentiate between temporal variability in precipitation. The
results and the literature showed that its spatial comparability is very lim-
ited and therefore the SC-PDSI should be considered instead, especially for
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global studies. Its water balance model, based on physical properties of
the soil and atmosphere, considers several direct and indirect influences of
a changing climate, but requires significantly more computation time and
additional input variables. Some components, that may become important
when discussing changes in droughts are not considered by the SC-PDSI,
i.e. water storage, streamflow, snowfall land-use and change of vegetation
(Dai, Trenberth, and Qian 2004).

Table 6.1: Advantages and disadvantages of the SPI, SPEI, PDSI and SC-PDSI for
application in climate change research based on model predictions.

Index Advantages Disadvantages

SPI
requires only precipitation;
low computational effort

no consideration of temperature;
not suited for agricultural
droughts

SPEI
considers PET;
widely used in drought research

might overestimate impact of
PET

PDSI
physical simulation of soil;
widely used in the USA;
considers PET for water balance

not comparable across regions;
complex calculation

SC-PDSI
physical simulation of soil;
considers PET for water balance

even more complex calculation

The SPEI is primarily based on the statistical distribution of precipitation,
but also accounts for temperature changes through PET, in contrast to the
SPI. Compared to the PDSI, the SPEI is more sensitive to PET (Seneviratne
et al. 2021; Cook et al. 2014; Vicente-Serrano et al. 2015), which agrees with
the findings of this thesis, that differences between the SC-PDSI and SPEI
trends are higher regions with strong PET trends. It is likely, that SPEI over-
estimates PET in arid regions (Rehana and Monish 2021), which promotes
the SC-PDSI over the SPEI for this regions.

Anthropogenic influence to the changes in drought could be analysed based
on the results to some extend. The reference period starts several decades
after the beginning of the industrial revolution and anthropogenic impacts
are already considered in the determination of the climatic appropriate pre-
cipitation. The differences in characteristics for different future scenarios,
however, are directly linked to the socioeconomic pathways. The results
are not sufficient to be used in political decision making, as they are purely
based on physical processes. To link the droughts to their ecological con-
sequences or food or fresh water security for humans is beyond the scope
of this study. The term agricultural drought may indicate direct impacts
on agricultural industry and food security, but in the scope of this work is
purely used to describe a specific type or category of droughts. The actual
crop yield highly depend on the type of crop and its state of growth. To
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face this type of research question soil and atmospheric properties and sev-
eral other circumstances i.e. the possibility of irrigation must be taken into
account on a regional level.
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To compare the most widely used drought indices SPI, SPEI, PDSI and
SC-PDSI, two diagnostics have been developed for the ESMValTool v2.
One for calculating the PDSI and SC-PDSI values and another to apply
different metrics and characteristics to normalised monthly drought indices
(including SPI and SPEI). Required monthly input variables for each index
are taken from the same CMIP6 models (ACCESS-ESM1-5, AWI-CM-1-1-
MR, CMC-ESM2, CANESM5, MIROC6, MPI-ESM1-2-LR, MRI-ESM2-0).
The once calculated PET is reused by the SPEI, PDSI and SC-PDSI. The
period 1900-2014 is used as baseline to calibrate all indices and two future
scenarios SSP2-4.5 and SSP5-8.5 are analysed for the period 2015-2100.

For the seven CMIP6 models analysed in this thesis, the PDSI and SC-PDSI
qualitatively agree and are highly correlated everywhere as expected. The
original PDSI makes use of constants, that have been experimentally deter-
mined for locations within the USA based on observational data available in
1965, which leads to systematic under- or overestimations in regions with
different climate. The SC-PDSI overcomes this problem by recalculating
such constant based on reference data for each location. The produced re-
sults for SC-PDSI generally agree with those for SPEI except for arid areas of
North Africa, Middle East and Central Asia. The overestimate of the PETs
drying effect by SPEI for arid regions could be related to this. The applica-
bility of the SC-PDSIs underlying water balance model to simulate extreme
arid regions is still uncertain and makes the SC-PDSI less reliable for this
regions.

To avoid loosing information about drought events in spatial, temporal or
multi-model means, trends and characteristical properties of the occurring
events in a given period of time for moderate and extreme droughts have
been calculated. This includes the frequency, duration, severity and aver-
age index of events below the thresholds -0.5 and -1 for normalized indices.
These characteristics are cumulated and multi-model means have been ap-
plied globally. Spatial averages over the IPCC WG1 reference regions have
been calculated to visualize regional timelines and simplify comparing be-
tween scenarios and with the synthesis in the AR6.

For the analysed period 1900 to 2100 a dominating drying trend could be
found for the SPEI strongest in arid regions from the Sahara over the Mid-
dle East to Central Asia. This large area experiences SPEI trends of less than
-1 per 50yr (rescaled from normalization in the figures). The SC-PDSI shows

49



7. SUMMARY AND OUTLOOK

generally less extreme trends to PDSI and SPEI, while the spatial character-
istics of both other indices can be affirmed. The areas with positive and
negative trends are roughly balanced for the SC-PDSI and negative trends
are dominant for the SPI. The causes for the most extreme trends and the
differences between the indices could be linked to changes in the most im-
portant input variables.

Roughly 0.5 moderate drought events per year could be found for all in-
dices in parts of Europe and Asia in the SSP2-4.5 future scenario and less
in most of other regions. Extreme droughts are rare with typically less than
0.2 events per year. Only the SPEI shows frequencies of more than 0.5/yr
with mean durations of more than a year. The frequencies or durations of
drought events increase in the SSP2-4.5 and SSP5-8.5 future scenarios ac-
cording to SC-PDSI and SPEI.

Both future scenarios (2015-2100) show more total number of months
with moderate or extreme drought conditions according to the SPEI and
SC-PDSI, than the reference period (1900-2014). Frequency or duration of
drought events is significantly increased, compared to the reference period.
For the SSP5-8.5 scenario the probability of extreme drought is higher than
for SSP2-4.5, which agrees with recent literature Balting et al. 2021. While
this holds for the SC-PDSI and the SPEI, the effect is significantly stronger
for the SPEI compared to the SC-PDSI. This is especially the case in arid
regions around the Mediterranean, where the largest negative trends have
been found and linked to increasing PET. The huge differences are likely
due to different implementations of PET between SPEI and SC-PDSI. The
SC-PDSI limits the amount of water that can evaporate in a certain time
with the amount of water in the upper soil layer. SPEI might overestimate
the impact of PET, since it has no limitation like that. However, an underes-
timation of role of PET might be an other reason. Further evaluation of the
change of input variables could be done for the arid regions to understand
the processes causing the differences.

The presented results could be extended by CMIP6 models, scenarios and
other monthly drought indices using the existing methods. A huge part of
evaluation is designed to be applied to a regional selection of the data. This
could be used to recreate some of the results explicitly for specific regions
with more datasets and higher spatial resolution. The results have shown
very different index behaviours and large multi-model standard deviations
for tropical regions mainly covered by deserts. Further scientific research fo-
cusing on these regions may provide a deeper understanding, that may be
transferred back to the global scale. From a technical perspective the created
diagnostic could be optimised for parallel computing to consider more than
seven CMIP6 models or increase the spatial resolution at the same compu-
tation time. While the results have been compared to literature and other
findings based on CMIP6 simulations, the input variables have not been
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evaluated in this thesis. A comparison of the historical simulation with vari-
ables and derived drought indices from observational or reanalysis data for
the same period, would be a useful follow up study to provide insights into
the performance of individual models and the multi-model mean.

The results have been shown to be highly dependent on the PET, where only
one of many available approximation methods have been used. Many as-
sumptions have been done i.e. the crop height, which impact the resulting
PET and therefore the index values. McColl proposed 2020 an alternative to
the Penman-Monteith evapotranspiration to overcome an conceptual error
of the Penman-Monteith equation. ESMs provide PET as predicted vari-
able, which probably make use of internal model components and data that
is not included in most of the traditional approximations. This way actual
simulated data from a coupled biospheric model could be used to account
for changes in plant types. Further research could be done including differ-
ent types of PET approximations or model predictions. Rehana and Monish
(2021) further proposed a method to restructure the SPEI to use estimations
of actual evapotranspiration instead of PET for water-limited areas.

One motivation for developing precipitation and temperature based
drought indices over the last decades are the sparse measurements of
evaporation and soil moisture in observational data. However, this is not
necessarily the case for datasets produced by ESMs, which often simulate
dense hydrological data. Several of the CMIP6 contributing models calcu-
late soil moisture for multiple layers. Soil moisture anomaly is an indicator
for agricultural droughts. Its correlation with the PDSI have been globally
examined by Dai, Trenberth, and Qian (2004). They found a significant
correlation between 0.5 and 0.8 with highest values in the late summer
under warm conditions and low impact of melting snow, which is not
accounted by the PDSI. Using soil moisture anomaly or soil moisture based
indices could overcome some of the mentioned limitations of the PDSI and
SC-PDSI (Dai, Trenberth, and Qian 2004). This work could be continued
by including soil moisture anomaly based on the reference period and
comparing this to the existing indices.
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Figure A.1: Precipitation and normalized SC-PDSI based on seven different CMIP6
models for the last 20 years of the SSP2-4.5 future projection (2080-2100) on a shared
time axis at a location close to Moscow.

Figure A.2: Globally averaged cross correlations of SC-PDSI values between all
analysed datasets in the combined historical-SSP2-4.5 scenario (1900-2100).
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Figure A.3: Grid-cell fraction of (a) trees, (c) grass and shrubs, (e) crops and (g)
lakes, ice and bare ground for 1850 and the change in grid-cell fraction between
2015 and 1850 for (b) trees, (d) grass and shrubs, (f) crops and (h) lakes, ice and
bare ground. (taken from Ziehn et al. 2020)
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(a) Frequency (b) Mean Duration

(c) Averaged Index

Figure A.4: SC-PDSI characteristics calculated globally for the SSP5-8.5 (2014-2100).

(a) Frequency SSP2-4.5 (b) Frequency SSP5-8.5

(c) Mean Duration SSP2-4.5 (d) Mean Duration SSP5-8.5

(e) Averaged Index SSP2-4.5 (f) Averaged Index SSP5-8.5

Figure A.5: Characteristics based on normalized SC-PDSI calculated globally for
two experiments SSP2-4.5 and SSP5-8.5 (2014-2100).
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A. ADDITIONAL FIGURES

(a) PDSI Trend SSP2-4.5 (b) PDSI Trend SSP5-8.5

(c) SC-PDSI Trend SSP2-4.5 (d) SC-PDSI Trend SSP5-8.5

(e) SPI Trend SSP2-4.5 (f) SPI Trend SSP5-8.5

(g) SPEI Trend SSP2-4.5 (h) SPEI Trend SSP5-8.5

Figure A.6: Multi-model standard deviations of long term trends (1900-2100) of
drought indices in historical experiment combined with SSP2-4.5 and SSP5-8.5 fu-
ture scenarios.
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A. ADDITIONAL FIGURES

Figure A.7: Trend maps (red, drying, change per 50 years) in the four forms of the
annual PDSI from 1900 to 2014 computed using (a, b, c, d) all forcing data and (e, f,
g, h) all but no temperature changes for PDSI_th (a, e), PDSI_pm (b, f), SC-PDSI_th
(c, g), and SC-PDSI_pm (d, h). Figure taken from Dai 2011.
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A. ADDITIONAL FIGURES

(a) SC-PDSI Trend 1900-2014 (historical) (b) SC-PDSI Trend 1950-2008 (historical)

(c) SC-PDSI Trend 2015-2100 (SSP2-4.5) (d) SC-PDSI Trend 2015-2100 (SSP5-8.5)

Figure A.8: SC-PDSI trends for the reference period and two future scenarios. The
period 1950-2008 have been included for comparison with literature.
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A. ADDITIONAL FIGURES

(a) SC-PDSI (historical) (b) SPEI (historical)

(c) SC-PDSI (SSP2-4.5) (d) SPEI (SSP2-4.5)

(e) SC-PDSI (SSP5-8.5) (f) SPEI (SSP5-8.5)

Figure A.9: Multi-model standard deviations of SC-PDSI and SPEI trends in the
historical period (1900-2014) and future scenarios (2014-2100).

(a) Future scenario SSP2-4.5 (b) Future scenario SSP5-8.5

Figure A.10: Precipitation trend of the period 2015-2100 for two scenarios SSP2-4.5
and SSP5-8.5. The values are given in 10−6 kg m−2 s−1/50yr
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A. ADDITIONAL FIGURES

Figure A.11: Difference of moderate drought frequency in events per century for
each reference region. The first number and colour of each hexagon is the absolute
difference (SSP5-8.5-SSP2-4.5), while the second number is the difference relative
to SSP2-4.5.

(a) Frequency (moderate) [months/year] (b) Frequency (extreme) [months/year]

(c) Mean duration (moderate) [months] (d) Mean duration (extreme) [months]

(e) Averaged Index (moderate) (f) Averaged Index (extreme)

Figure A.12: Multi-model standard deviations of characteristics based on normal-
ized SC-PDSI for the historical period 1900-2014.
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(a) Frequency (SC-PDSI) (b) Frequency (SPEI)

(c) Mean duration (SC-PDSI) (d) Mean duration (SPEI)

(e) Mean avg Index (SC-PDSI) (f) Mean avg Index (SPEI)

Figure A.16: Similar to 5.8, but for moderate droughts in the SSP5-8.5 Scenario.
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(a) Frequency (SC-PDSI) (b) Frequency (SPEI)

(c) Mean duration (SC-PDSI) (d) Mean duration (SPEI)

(e) Mean avg Index (SC-PDSI) (f) Mean avg Index (SPEI)

Figure A.17: Similar to 5.8, but for extreme droughts in the SSP5-8.5 Scenario.
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Figure A.18: Changes to summer drought conditions under SSP1-2.6, SSP2-4.5 and
SSP5-8.5. ac Averaged anomalies of summer droughts under SSP1-2.6 (a) and SSP2-
4.5 (b) and SSP5-8.5 (c) in the Northern Hemisphere for the period 20712100 relative
to the baseline period of 19712000. The hatched areas in all three subfigures indicate
areas with insignificant changes according to the two-sided Students t test (p <
0.05). (Fig. 6 from Balting et al. 2021)
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