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Lecture 1.1 Introduction

Maxwell-Boltzmann to Alder & Wainwright
via long-tailed probability distributions and
the scaling of atmospheric temperature and

winds.
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The correspondence and coupling of the microscopic and macroscopic

processes in the atmosphere.
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Maxwellian Velocity Distribution
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Maxwellian speed PDFs, m = 28: T dependence
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Maxwellian speed PDFs: mass dependence
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DEFINITION

Atmospheric temperature is what is measured
by your thermometer (meteorological).

The absolute temperature, T, of a system is the reciprocal of the
derivative of the entropy, S, with respect to its energy, E :

ds 1
dE kT

[Landau & Lifshitz, (1980), Statistical Physics, Course of Theoretical Physics, Vol. 5, 3 ed.,
Chapters1-3.]

T Is purely statistical, having strict meaning only for macroscopic
bodies at equilibrium. One can of course observe with a
calibrated thermometer. It averages over the velocity distribution
of the molecules impinging upon it.
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MICROSCOPIC VIEW OF TEMPERATURE

* The total kinetic energy of N classical particles is
3NKT/2.

 In terms of distributions of molecular velocity v
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Long-tailed PDFs of temperature: millions of 5 Hz points from
scores of ER-2 flight segments, Arctic summer 1997 & winter
2000, ER-2 & WB57F tropical tropopause 1987-1999.
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Scale Invariance and Statistical Multifractality

So(¥) = ([ P(x+r1) - P(x) |

T q" order structure function S of variable ¥(x)
If a plot of logSq vs. log(r) is linear with slope {(q), then

¢(q) is a scaling exponentfor ¥(x), which therefore has
scaleinvariance and power law PDFs.

Define

H(q) = C(a)/q

Further define

H=H,+ K(g)/q

We will be interested in K(q) and H
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To obtain K(q), consider ¥ (x)to have been
observed at finite intervals x = 1,2,3..... Xax
and define:-

g(1,X) = {| P(x + 1) - POOP(X +1) = F(X) | )
forx=1,23. ..... X max

e(rx) = (UNZ 5 1e(L, )
forx =123, ..... Xpax —

then a plot of log{e(r,x))% vs log r has slope —K(q)

and a plot of —-K(qg) vs g shows a convex function
with K(0) = K (1) = 0.

We can now note equivalences between scale
invariance and statistical thermodynamics.



Formal equivalences between scale invariant (r.h.s.)
and statistical thermodynamic (l.h.s.) variables

T = 1/9Kgoitzmann temperature

f=e XK@ partition function

G =-K(9)/q Gibbs free energy

This offers possible links:

molecular scale
J
statistical thermodynamics

)

macroscopic scale invariant observables
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Basic scaling relations for atmospheric turbulence

Consider horizontal velocity v with fluctuations Av over horizontal
length interval Ax and vertical interval Az :

Av = g(horiz).(Ax)H(horiz)

Av = g(vert).(Az)H(vert)

where g(horiz) is the turbulent energy flux ¢in the vertical and
@(vert) is the turbulent energy flux; H(horiz) and H(vert) are
the associated power law exponents. The Kolmogorov law for
isotropic turbulence is obtained by setting

@(horiz) = g(vert) = ¢ and H(horiz) = H(vert) = 1/3

However, as we shall see later, this is at odds with observations.
We therefore assume via dimensional analysis relations that
preserve scaling while permitting anisotropy:

@(horiz) = ¢®  implying H(horiz) = 1/3
@(vert) = p1h> implying H(vert) = 3/5

where energy flux ¢ (m?s-3) dominates in the horizontal and buoyancy
variance flux n (m?s-°) dominates inthe vertical.
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Alder & Wainwright (1970): molecular dynamics simulation of
a flux applied to an equilibrated Maxwellian population results in
the emergence of vortices on scales of 101* seconds & 10® metres.

b —t
— \ AN v =0,0]1
) S,
. - N
e .
} v v 1
W A
\ \ W A /
= o
N \_;‘a > -7
L5 — s
—
~ \#T“)
— -
— r——— >

Slide 16



NOAA-NCEP GFS 0.5° RESOLUTION ANALYSIS, FLECHES &
ISOTACHS
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1.1 Summary

* Organized flow emerges from a randomized (thermal) population
of Maxwellian ‘billiard balls’ subject to an anisotropic flux simulated
by molecular dynamics, on very short time and space scales.

*Observed temperature distributions in the atmosphere are not
of Maxwell-Boltzmann character.

*To accommodate the observed non-M-B PDFs, we must lift the
assumption of isotropy in the atmosphere.

*The atmosphere has permanent anisotropies: gravity, planetary
rotation, solar beam, planetary surface and, for any one scale except
the great circle, larger scale winds.

Abandoning isotropic motions on any scale yields predictions:

H(horiz)=1/3
H(vert) = 3/5

and so H(horiz)/H(vert) = 5/9

*How do these work out in practice? See next lecture ......



