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Lecture 1.1    Introduction 

 

 

Maxwell-Boltzmann to Alder & Wainwright 

via long-tailed probability distributions and 
the scaling of atmospheric temperature and 

winds. 

Slide 3 



Key References 

Alder & Wainwright (1970), Phys. Rev. A, 1, 18-21. 

[emergence of fluid flow from molecular dynamics] 

 

Schertzer & Lovejoy (1987), J. Geophys. Res., 92, 9693-9714. 

[generalized scale invariance, statistical multifractals] 

 

Tuck (2008), Atmospheric Turbulence: A Molecular Dynamics 

Perspective. Oxford University Press. 

 

Tuck (2010, 2011), Q. J. R. Meteorol. Soc., 136, 1125-1144 & 137, 

275. 

 

Schertzer & Lovejoy (2011), Int. J. Bifurc. Chaos, 21(12), 3417-3456. 

[most recent review of generalized scale invariance] 

 

Lovejoy & Schertzer (2012), The Weather and the Climate: 

Emergent 

Laws and Multifractal Cascades. Cambridge University Press.  

 

 Slide 4 



  

O 3   O +  O 2   

The correspondence and coupling of the microscopic and macroscopic 

processes  in the atmosphere. 
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Maxwellian Velocity Distribution 
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Maxwellian speed PDFs, m = 28: T dependence 
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Maxwellian speed PDFs: mass dependence 
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DEFINITION 

 The absolute temperature, T, of a system is the reciprocal of the 
derivative of the entropy, S, with respect to its energy, E : 

 

                           

 
  

 

 [Landau & Lifshitz, (1980), Statistical Physics, Course of Theoretical Physics, Vol. 5, 3rd ed., 
Chapters 1 - 3. ] 

 T is purely statistical, having strict meaning only for macroscopic 
bodies at equilibrium. One can of course observe with a 
calibrated thermometer. It averages over the velocity distribution 
of the molecules impinging upon it. 

dS

dE


1

kT

Atmospheric temperature is what is measured 

by your thermometer (meteorological). 
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MICROSCOPIC VIEW OF TEMPERATURE 

• The total kinetic energy of N classical particles is 
3NkT/2. 

 

• In terms of distributions of molecular velocity v 
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Long-tailed PDFs of temperature: millions of 5 Hz points from 

scores of ER-2 flight segments, Arctic summer 1997 & winter 

2000, ER-2 & WB57F tropical tropopause 1987-1999. 
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Sq(r;) = x + r) - (x )q 

 qth order structure function S of variable (x) 

If a plot of logSq vs. log(r ) is linear with slope (q), then 
(q) is a scaling exponent for (x), which therefore has 
scale invariance and power law PDFs. 

Further define 
 

H = Hq + K(q)/q 
 

 

Define 
 

H(q) = (q)/q 
 

 
 

 

Scale Invariance and Statistical Multifractality 

We will be interested in K(q) and H 
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To obtain K(q), consider (x)to have been  

observed at finite intervals x = 1,2,3….. xmax 

and define:- 

 

(1,x) = {(x + 1) - (x)/x +1x 

for x = 1,2,3. ….. xmax 

(r,x) = (1/r) j=x
x+r-1(1, j) 

for x = 1,2,3, ….. xmax  r 

then a plot of logr,x)q vs log r has slope K(q) 

and a plot of K(q) vs q shows a convex function 

with K(0) = K (1) = 0. 

 

We can now note equivalences between scale  

invariance and statistical thermodynamics. 
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Formal equivalences between scale invariant (r.h.s.) 

and statistical thermodynamic (l.h.s.) variables 

T = 1/qkBoltzmann  temperature 

f = eK(q)                   partition function 

G = K(q)/q                             Gibbs free energy 

This offers possible links:  

 

molecular scale   

  

statistical thermodynamics 

  

macroscopic scale invariant observables 
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Basic scaling relations for atmospheric turbulence 

Consider horizontal velocity v  with fluctuations ∆v over horizontal 

length interval ∆x and vertical interval ∆z : 

 

∆v = ø(horiz).(∆x)H(horiz) 

 

∆v = ø(vert).(∆z)H(vert) 

 

where ø(horiz) is the turbulent energy flux  in the vertical and 

Ø(vert) is the turbulent energy flux; H(horiz) and H(vert) are 

the associated power law exponents. The Kolmogorov law for 

isotropic turbulence is obtained by setting 

  

Ø(horiz) = ø(vert) =  1/3     and     H(horiz) = H(vert) = 1/3 

 

However, as we shall see later, this is at odds with observations.  

We therefore assume via dimensional analysis relations that  

preserve scaling while permitting anisotropy: 

 

Ø(horiz) =  1/3           implying         H(horiz) = 1/3 

 

Ø(vert) = 1/5         implying         H(vert) = 3/5 

 

where energy flux  (m2s-3) dominates in the horizontal and buoyancy 

variance flux  (m2s-5) dominates in the vertical. 
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Alder & Wainwright (1970): molecular dynamics simulation of 

a flux applied to an equilibrated Maxwellian population results in 

the emergence of vortices on scales of 10-12 seconds & 10-8 metres. 
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NOAA-NCEP GFS 0.50 RESOLUTION ANALYSIS, FLECHES & 

ISOTACHS 



1.1 Summary 
 

• Organized flow emerges from a randomized (thermal) population 

of Maxwellian ‘billiard balls’ subject to an anisotropic flux simulated  

by molecular dynamics, on very short time and space scales. 

 

•Observed temperature distributions in the atmosphere are not 

of Maxwell-Boltzmann character. 

 

•To accommodate the observed non-M-B PDFs, we must lift the 

assumption of isotropy in the atmosphere. 

 

•The atmosphere has permanent anisotropies: gravity, planetary 

rotation, solar beam, planetary surface and, for any one scale except 

the great circle, larger scale winds. 

 

•Abandoning isotropic motions on any scale yields predictions: 

 

H(horiz) = 1/3 

H(vert) = 3/5 

 

and so                H(horiz)/H(vert) = 5/9 

 

*How do these work out in practice? See next lecture …… 
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