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Lecture 2.1 Kinetic moleculartheory, fluid mechanics
and generalized scale invariance

A quick walk through some formulae.
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The mean square molecular velocity along one Cartesian coordinate is

2 —mv? 2k, T ky, T
Tv e gy =2

= / m
v. = |——=]|ve
2wk, T ", m

X

and in three dimensions the total kinetic energy of N classical particles is 3kgT/m where
m = molecular mass and kg is Boltzmann’s constant.
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One result we take from Chapman & Cowling is the persistence of
molecular velocity after collision, their pp. 93-96 and 327. It
means that the assumption of no correlation in speed and
position before and after collision with another molecule,
which underlies Gaussian velocity distributions and

Lorentzian line shapes in molecular spectra, is not valid. The
expression is

where w,, Is the persistence ratio, the ratio of the mean velocity
after collision to velocity before collision, m; is the mass of
molecule 1 and m, is the mass of molecule 2. For equal masses, it
has the value 0.406; heavy molecules take more collisions to lose
their translational energy than light ones.
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The central development was the invention of molecular dynamics simulation by
numerical process on computers (Alder & Wainwright, 1970), when it was shown how
fluid mechanical behaviour emerges from a population of atomic scale elastic spheres. It
was discovered that when an anisotropy (in the form of a pulse of fast molecules, or a
flux) was applied to an equilibrated population of M axwellian molecules, ‘ring currents’
evolved on a very short time scales (10™2s) and on very small space scales (10° m).
Slides 16 & 21 show the original diagram from Alder & Wainwright’s paper; the ‘ring
current’ is hydrodynamic behaviour, what a meteorologist would call a vortex. A non-
equilibrium statistical mechanical explanation was provided quickly by Dorfman &
Cohen (1970); they showed that the molecular velocity autocorrelation function had a
‘longtail’, obeying a power law rather than an exponential decay at long times.
Quantitatively, they found that the molecular velocity correlation function, C, was
expressible as a function of the velocity v(t) at time t in systems of physical
dimensionality d (d =2 = discs; d =3 = spheres) by

C(t)y=d ' (v(t)-v)yoct ™,

Physically, the mechanism for the emergence of the vortices is a nonlinear
interaction among the faster-moving molecules: they create high number densities
ahead of themselves, leaving low number density behind. The number densities in these
regions tend to equalize, creating the vortex flow. Itis a point of central importance
that the energies of the fast molecules and of the vortex feed into each other — they
are mutually sustaining, via positive feedback. Thisis a new light on the concept of
vorticity, suggesting that it can emerge under anisotropy, a flux, in the simplest
possible representation of a population of molecules. It does so moreover on very short
timescales, 10™2 seconds and on very short space scales, 10°® metres; these scales are far
smaller than the millimetric to centimetric scales at and below which true molecular
diffusion have been traditionally considered to supplant fluid behaviour in the
atmosphere.
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The vorticity form of the Navier-Stokes equation in three dimensions [note that
observationally H,(s) # 1, where s is horizontal wind speed, so we cannot expect to view
atmospheric vorticity in two dimensions and remain quantitative, since the
dimensionality of atmospheric flow is 2 + H4(s), see for example Schertzer and Lovejoy
(1985, 1991), Tuck et al. (2004), Schertzer et al. (2012)] is

Do _ (@ Vu+xV’o.
Dt

The first term on the right says that vorticity, o, advects itself: nonlinearity is inherent.
This term alone is responsible for much of the complexity and difficulty associated with
understanding, describingand computing atmosp heric flow under the continuum
assumption.

o is defined by

o=Vxu

and by using the autocorrelation function for vorticity

(@(t)- @(t)) =—V(u(?)- (1)) = C(7)

where t is time, we can define enstrophy:
1, p
E :E\m\ =2C(?)

and enstrophy is governed by

D6 Yo v 7 o)

This expresses the generation of vorticity by stretching, or its destruction by compression,
via the first term, balanced by viscous dissipation in the second term. The third term is
the divergence, often assumed to be locally zero; this cannot be strictly true, for example,
if 0zone phatodissociation is leading to the generation of vorticity. Here S; is the
straining rate on a fluid element.

Statistical mechanics offers several definitions of entropy. One uses vorticity,
see for example Bell and Marcus (1992). If P, is the probability density inthe " bin
(orid box, cell, pixel . . .) of size &, and there are L bins all of size &, with

®, =1léw,and [=1,...,L,
R =Zﬂ(a)ykal)

ik

l)= N7 if |a), - a)[jk| <6, /2 and zero otherwise.

where ,u(co

ijk>
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An entropy of the vorticity fidd is then given by

Sw = _ZB ]IIPI
I

(not to be confused with $; above).
We thus can associate entropy with vorticity, an alternative to potential

temperature. Because the macroscopic definition of temperature is
a 1

dE kT

vorticity can be related to the thamodynamic state of the flow (Truesdell, 1952).

Vorticity can be normalized over an air column by dividing by the depth of the
column, to yicld a conservative quantity, potential vorticity (Rossby, 1940; Ertel, 1942;
Hoskins et al_, 1985). The full development in meteorologically familiar notation 1s in
the last of these three references, which expounds OP VthinkingO.

For isentropic flow, using potential temperature @- which physically 1s the
temperature an air parcel would attain by compression if brought adiabatically to the
surface - as the vertical coordinate, the absolute vorticity (£ 1+ f),1s the sum of the relative
vorticity £ and the planetary vorticity f, so

d
£(§+f)a = _(§+f)avﬂ i

By employmg the hydrostatic assumption, pressurep and @ can be related and the
equation re-wrntten as

el

and
@

Qaz(ga+f)ap

expresses the potential vorticity, 0.
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A full quantum mechanical treatment of the atmospheric population of molecules will
remain a remote fantasy for the foreseeable future, for many reasons well known in non-
equilibrium statistical mechanics and also because atmospheric molecular populations
hawve insufficient time to achieve equilibrium distributions. Thisis so because the
combined effects of solar flux, pnotochemistry, planetary rotation and gravity
induce turbulent vorticity structures, with non-equilibrated, long-tailed molecular
speed PDFs, on short time and space scales. There will be positive feedback between
the latter and the core of jetstreams, large-scale structures which can have wind
speeds that are asignificant fraction of the average molecular speed.

If the density in phase space for a single molecule of mass m, position r and
velocity v at time tis f, then Boltzmann's equation is

9 I 9
al;+v.vrf+%F(r)-va=(alj . (EQ.5)

collision

where F(r) is an external force acting on the molecule. The left hand side represents the
Liouville operator expressing Hamiltonian dynamics in a potential, and is time
symmetric. The right hand side is the collision integral, and even for the simplest
molecu lar model has squared terms in f; for a population of molecules it also contains
probabilistic expressions. The equation has lost time symmetry, a concept examined via
the H-equation in the above references; the squared terms mean that part of the equation
does not reverse sign when t is replaced by -t. Equation (5) is one of many examples of
fundamental equations describing the time evolution of samples of matter which look
beguilingly simple in their derivation and in their compact expression, but which
nevertheless are impossibly difficult to solve analytically.
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The macroscopic relationship between vorticity and the thermodynamic state of a
gas flow was derived and investigated by Truesdell (1952), and is sometimes given in
meteorological texts as the Beltrami equation (e.g. Dutton, 1986). There appears to be no
microscopic equivalent, but if molecular populations behave as fluids it ought to be
possible to express vorticity in terms of the molecular velocity fields via Egs. (9 to 13)
after substituting molecular velocities v for fluid velocities u. In this case,

{lw-@y=-V{v-V)

which yields twice the enstrophy after taking the curl of the molecular velocity field.
The vorticity of ‘air’ in a molecular dynamics simulation would then arise from

®=Vx v(p,q)

where p is molecular momentum and q is molecular position. q is necessary because the
intermolecu lar force field for real molecules depends upon separation and angle, and

because v in the atmosphere will depend upon position as a result of anisotropies arising
from gravity, planetary rotation and the solar beam. In such a simulation, the expression
for the n™ moment of the molecular speed (Landau & Lifshitz, 1980)

-2y

would allow calculation of the structure functions used in generalized scale invariance.
In practice it would be necessary to investigate the averaging of the discrete molecular
velocities before derivatives could be taken; it should be the minimum possible, to avoid
damage to any emerging scaling properties.
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Dewar’s formulation says that entropy production, o, along a forward path in phase

space T is governed by the same, Gibbsian, distribution that Jaynes aoplied to the
equilibrium case, namely

S = _err Inpy,

where Sy is equal to the logarithm of number of phase space paths T with probability pr,
where

(70,
pr o« CXPLEJ

B

Instead of counting microstates as in the equilibrium case, paths are counted in phase
space for the non-equilibrium case. From microscopic reversibility the dynamical
equations are time-reversible (the dynamical equations are time-symmetric), replacement

of I" by its reversal T will result in o, =-07, S0

from which it follows that the ratio of the probability of the forward pathto that of the
reversed path is

»
Pr,

(1)
_expL kBJ

This states that the probability of the forward path T isexponentially greater
than that of the reverse path I's, a proposition thatis also truer the longer s the

time 7. Violations of the second law of thermodynamics are possible in fluctuations, but
not for long or over a hig phase space volume, since entropy is extensive.
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The stable, random non-Gaussian processesconsidered by L vy produce probability
density functions characterized by S, (o f, ) where o is the stability index we have used
in our formulation of generalized scale invariance, ois scale factor (standard deviation
for a Gaussian), f71s skewness and  is the mean (Samorodinsky and Taqqu, 1994).
There are only 3 known cases that can be stated in closed form:

3
Gaussian: S»(0; £, @) with probability density 1 e pL (x ﬂ)2 J i
207

Cauchy: 51(g;, £ i) with probability density

ﬂ'((x—;l)2+0'2),

L vy: Sin(o with probability densi \/_ 3,2

For §. (o, B, ) the upper and lower tails of the PDFs decreaselike a power
function. The rate of fall-off depends on « the smaller is o the slower is the decay and
the fatter is the tail. When ¢ < 2 the distributions have infinite variance and when o
S 1the mean is infinite too. Fortunately we know empirically that for atmospheric
variables 1 < a < 2. The full set of conditions governing S(q, f 1) 15 & E[O,Z], o0

372
B e[-11] and u eR'. Bis definable in terms of statistical moments as ‘Ax3 ‘ / ‘(Ax}z

>

the skewness.

It 1s not immediately clear how to relate H; and C; from generalized scale
mvariance to g, ffand g But we know o A 16 for our atmospheric data, and we can
calculate o, fand ;2 The atmosphere qualifiesas a non-Gaussian,Lvy stable
random process. In turn this has implications for prediction and numenical modelling;
Gaussians may not be useful, while mtermittency and multifractality have to be
recognized.
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The calculation procedure
for H ,C,and « is as
follows. The quantity H; is
the scaling exponent
calculated from an aircraft
or dropsonde time series f(t)
by application of the first
order structure function.
The g™ order structure
function of f(t) is defined by

S, )= (1 @+r-r@)’)

Where the lag r is real and
positive, the angle brackets
denote an average over t and
ensemble averaging over f.

If a plot of log
Sq(r;f)  versus log(r) is
linear (the 95% confidence
interval of the fit to obtain
the slope (q) is generally
less than 10%), then £(q) is
a scaling exponent for f(t).
In general we find:

@) = gH - K(a)

where K(q) characterizes
the intermittency. If the
intermittency is linear (of
the form K(q) = C,(g-1), C;
is the codimension of the
mean characterizing the
intermittency intensity)
then the intermittency is
monofractal; generally, it
will be nonlinear, hence
multifractal.

We then define

Hq = &(a)/q

If Hgy is constant as ¢
changes, and if K(q) = O,



t+r-1

qr)=2 S l) =123t —r
ro

For our signals, it is found that the quantity <g(r,t)"> has a power law dependence on the

scale r. An unweighted linear least squares fit to log<s(r,t)"> versus log r provides a

slope —K(g). A plot of K(g) versus g shows a convex function with K(0)=K(1)=0.
The exponent C; is defined as K'(1), evaluated here numerically from the slope
defined by the points (0.9,K(0.9)) and (1.1,K(1.1)). The uncertainty estimate in C; is
obtained by taking the square root of the sum of the squares of the 95% confidence
intervals returned by the unweighted linear least squares fits correspondingto ¢=0.9 and
g =1.1. Further discussion of these procedures can be found in Schertzer and Lovejoy
(1991), Tuck et al., (2004) and Tuck (2008).

The multifractality index a has the range 0<a<2 theoretically and
characterizes the generator of the intermittency which is the logarithm of the turbulent
flux. It may exceed 2 for data from real systems. The corresponding fluctuations will
be roughly log-Lévy except for the extreme probability tail which will generally be of a
power law form with exponent qp. Unlike Lévy variables whose probability tail has an
exponent qp = a<2, for the fluctuations there is no restriction on the value of qp (note
that the Gaussian is the exceptional o = 2 case with exponential fall-off). Schertzer and
Lovejoy (1991) discuss the five main cases for «; here we note that the variables we have
measured appear to have 1<a <2 (Tuck et al. 2002, 2004). Our experience indicates
that a large quantity of high quality data is necessary for an accurate computation
of a. We use the double trace moment techniqueto compute «. Define

_lren-r@f'
(re+n-rey)

&lm.t)

1=1,23,..1,

t4r=

1
é(r,n,t)=l D) =123t 7
"=

where 77 is allowed to range from —1.0 to +1.0 in steps of 0.1. For g = 1.5 an unweighted
fit to log<s(r,77,t)"> versus log r is made, with the slope being K(g,77) and the standard
deviation being o(g.77). A plot of log K(g,7) versus log 7 yields for our data a collinear
region having a positive slope. A weighted linear least squares fit to this region, with

weights K(¢,77)In10/0(g,7), has slope «, with the uncertainty represented by the 95%
confidence interval returned by the weighted fit.



Eady (1951): ‘l congratulate Dr. Batchelor on his scholarly presentation
of the similarity theory of turbulence initiated by Kolmogoroff.

The argument which derives the consequences of statistical “de-coupling”
between the primary turbulence-producing processes and the secondary
small-scale features of the turbulence appears to be sound but does it
get us very far? In meteorology and climatology we are concerned
principally with the transfer properties of the turbulence, determined
mainly by the large-scale primary processes to which the similarity
theory does not pretend to apply. It is the great virtue of similarity
theories that no knowledge of the mechanism is involved and we do not
have to assume anything about the nature of “eddies”; anything which
has “size” (such as a Fourier component) will do in our description of
the motion. But this emptiness of content is also their weakness and they
give us very limited insight. It is true that a similarity theory that could

be applied to the primary turbulence-producing processes would be of
great value but there is no reason to expect that anything simple can be
found; when several non-dimensional parameters can be formed,
similarity theory, by itself, cannotdo much. [continued....... ]




Similarity theories are attractive to those who follow Sir Geoffrey Taylor in
rejecting crude hypotheses regarding “eddies”, mixing lengths, etc. But those
who try to determine the properties of turbulence without such (admittedly
unsatisfactory) concepts must show that they have sufficient material (in the
shape of equations) to determine the answers. If this is not the case it will

be necessary to develop some new principle in addition to the equations of
motion and the nature of this principle may be brought to light in a study of
the mechanism of the primary turbulence-producing process i.e. by trying to
refine or modify what we mean by an “eddy” rather than by completely

rejecting the concept.’.
A wider context for the importance of understanding the mechanisms of

turbulence can be found in Eady and Sawyer (1951).




Evans & Searles (2002), The fluctuation theorem, Advancesin Physics, 51, 1529-1585.
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The molecular dynamics result that hydrodynamics (organized

flow) emerges when a flux causes anisotropy on molecular scales

IS in contrast to the conventional meteorological decomposition

of flow into an organized mean plus dissipative fluctuations (eddies).

On the molecular dynamics view, dissipation is accomplished by
the near-average molecules that allow an operational definition of
temperature, while the organized flow (wind)is caused by the most
energetic molecules producing ‘ring currents’ with which they are
mutually self-sustaining.

Physically, the high speed molecules cause higher number densities
ahead and leave lower number densities behind. The random motion
of the near-average molecules tends to remove this density gradient,
so producing the ‘ring current’ (vortex in meteorological parlance).



Summary, Lecture 2.1

* Both microscopic and macroscopic equations have no known
analytical solutions: - numerical simulation via computer is
necessary.

*Vorticity emerges from molecular behaviour.

*Non- Gaussian, non-Maxwell-Boltzmann distributions are
expected and found in practice.



