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Lecture 2.1    Kinetic molecular theory, fluid mechanics 
            and generalized scale invariance 

 
 

 

 
 

 
A quick walk through some formulae. 
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The mean square molecular velocity along one Cartesian coordinate is  
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and in three dimensions the total kinetic energy of N classical particles is 3kBT/m where 
m = molecular mass and kB is Boltzmann’s constant. 
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One result we take from Chapman & Cowling is the persistence of 

molecular velocity after collision, their pp. 93-96 and 327. It 

means that the assumption of no correlation in speed and 

position before and after collision with another molecule, 

which underlies Gaussian velocity distributions and 

Lorentzian line shapes in molecular spectra, is not valid. The 
expression is 
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where 



w 12 is the persistence ratio, the ratio of the mean velocity 

after collision to velocity before collision, m1 is the mass of 
molecule 1 and m2 is the mass of molecule 2. For equal masses, it 

has the value 0.406; heavy molecules take more collisions to lose 
their translational energy than light ones. 

Slide 51 



The central development was the invention of molecular dynamics simulation by 

numerical process on computers (Alder & Wainwright, 1970), when it was shown how 

fluid mechanical behaviour emerges from a population of atomic scale elastic spheres.  It 
was discovered that when an anisotropy (in the form of a pulse of fast molecules, or a 

flux) was applied to an equilibrated population of Maxwellian molecules, ‘ring currents’ 

evolved on a very short time scales (10
-12 

s) and on very small space scales (10
-8 

m).  

Slides 16 & 21 show the original diagram from Alder & Wainwright’s paper; the ‘ring 

current’ is hydrodynamic behaviour, what a meteorologist would call a vortex.  A non-
equilibrium statistical mechanical explanation was provided quickly by Dorfman & 

Cohen (1970); they showed that the molecular velocity autocorrelation function had a 

‘long tail’, obeying a power law rather than an exponential decay at long times.  

Quantitatively, they found that the molecular velocity correlation function, C, was 

expressible as a function of the velocity v(t) at time t in systems of physical 
dimensionality d (



d  2 discs; 



d  3 spheres) by 

 

 



C t  d1
v(t)  v  td / 2

.  

 

Physically , the mechanism for the emergence of the vortices is a nonlinear 

interaction among the faster-moving molecules:  they create high number densities 

ahead of themselves, leaving low number density behind.  The number densities in these 

regions tend to equalize, creating the vortex flow.  It is a point of central importance 
that the energies of the fast molecules and of the vortex feed into each other – they 

are mutually sustaining, via positive feedback.  This is a new light on the concept of 

vorticity, suggesting that it can emerge under anisotropy, a flux, in the simplest 

possible representation of a population of molecules. It does so moreover on very short 

timescales, 10
-12

 seconds and on very short space scales, 10
-8

 metres; these scales are far 
smaller than the millimetric to centimetric scales at and below which true molecular 

diffusion have been traditionally considered to supplant fluid behaviour in the 

atmosphere. 
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The vorticity form of the Navier-Stokes equation in three dimensions [note that 

observationally H1(s)  1, where s is horizontal wind speed, so we cannot expect to view 

atmospheric vorticity in two dimensions and remain quantitative, since the 
dimensionality of atmospheric flow is 2 + H1(s), see for example Schertzer and Lovejoy 

(1985, 1991), Tuck et al. (2004), Schertzer et al. (2012)] is  

 D

Dt
   u 2 .  

 

The first term on the right says that vorticity, , advects itself:  nonlinearity is inherent. 
This term alone is responsible for much of the complexity and difficulty associated with 

understanding, describing and computing atmospheric flow under the continuum 

assumption.  

 is defined by 

 



 u  

 

and by using the autocorrelation function for vorticity 
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(t)  (t)  u(t)  u (t) C t   

 
where t is time, we can define enstrophy: 

 

 

  



E 
1

2

2
 2C(t)  

 

and enstrophy is governed by  
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This expresses the generation of vorticity by stretching, or its destruction by compression, 

via the first term, balanced by viscous dissipation in the second term.  The third term is 

the divergence, often assumed to be locally zero; this cannot be strictly true, for example, 

if ozone photodissociation is leading to the generation of vorticity.  Here Sij is the 
straining rate on a fluid element. 

 Statistical mechanics offers several definitions of entropy.  One uses vorticity, 

see for example Bell and Marcus (1992).  If Pl is the probability density in the l
th

 bin 

(grid box, cell, pixel . . .) of size , and there are L bins all of size , with  

l  l , and 



l 1, ,L, 

 Pl    ijk ,l 
ijk

   

 

where  ijk ,l  N 3  if l ijk  / 2  and zero otherwise. 
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A full quantum mechanical treatment of the atmospheric population of molecules will 

remain a remote fantasy for the foreseeable future, for many reasons well known in non-

equilibrium statistical mechanics and also because atmospheric molecular populations 
have insufficient time to achieve equilibrium distributions. This is so because the 

combined effects of solar flux, photochemistry, planetary rotation and gravity 

induce turbulent vorticity structures, with non-equilibrated, long-tailed molecular 

speed PDFs, on short time and space scales. There will be positive feedback between 

the latter and the core of jet streams, large-scale structures which can have wind 
speeds that are a significant fraction of the average molecular speed. 

 If the density in phase space for a single molecule of mass m, position r and 

velocity v at time t is f, then Boltzmann's equation is 
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F r v f 
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





collision

,      (Eq. 5)         

 

where F(r) is an external force acting on the molecule.  The left hand side represents the 

Liouville operator expressing Hamiltonian dynamics in a potential, and is time 
symmetric. The right hand side is the collision integral, and even for the simplest 

molecular model has squared terms in f; for a population of molecules it also contains 

probabilistic expressions. The equation has lost time symmetry, a concept examined via 

the H-equation in the above references; the squared terms mean that part of the equation 

does not reverse sign when t is replaced by -t. Equation (5) is one of many examples of 
fundamental equations describing the time evolution of samples of matter which look 

beguilingly simple in their derivation and in their compact expression, but which 

nevertheless are impossibly difficult to solve analytically. 
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The macroscopic relationship between vorticity and the thermodynamic state of a 

gas flow was derived and investigated by Truesdell (1952), and is sometimes given in 

meteorological texts as the Beltrami equation (e.g. Dutton, 1986).  There appears to be no 
microscopic equivalent, but if molecular populations behave as fluids it ought to be 

possible to express vorticity in terms of the molecular velocity fields via Eqs. (9 to 13) 

after substituting molecular velocities v for fluid velocities u.  In this case,  

 

      v  v   

 
which yields twice the enstrophy after taking the curl of the molecular velocity field.  

The vorticity of ‘air’ in a molecular dynamics simulation would then arise from 

 

    v p,q   

 

where p is molecular momentum and q is molecular position.  q is necessary because the 
intermolecular force field for real molecules depends upon separation and angle, and 

because v in the atmosphere will depend upon position as a result of anisotropies arising 

from gravity, planetary rotation and the solar beam.  In such a simulation, the expression 

for the n
th

 moment of the molecular speed (Landau & Lifshitz, 1980) 
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would allow calculation of the structure functions used in generalized scale invariance. 

In practice it would be necessary to investigate the averaging of the discrete molecular 

velocities before derivatives could be taken; it should be the minimum possible, to avoid 

damage to any emerging scaling properties. 
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Dewar’s formulation says that entropy production, , along a forward path in phase 

space  is governed by the same, Gibbsian, distribution that Jaynes applied to the 
equilibrium case, namely 

 

 S   p ln p ,  

 

where S is equal to the logarithm of number of phase space paths  with probability p, 

where 
 

 
p  exp

 

2kB







  

 

Instead of counting microstates as in the equilibrium case, paths are counted in phase 

space for the non-equilibrium case.  From microscopic reversibility the dynamical 
equations are time-reversible (the dynamical equations are time-symmetric), replacement 

of  by its reversal R will result in R
  , so 

 

 
pR

 exp 
 

2kB


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


  

 

from which it follows that the ratio of the probability of the forward path to that of the 

reversed path is 

 

 p

pR

 exp
 

kB







  

 

This states that the probability of the forward path  is exponentially greater 

than that of the reverse path R, a proposition that is also truer the longer is the 

time .  Violations of the second law of thermodynamics are possible in fluctuations, but 
not for long or over a big phase space volume, since entropy is extensive.  

 

Slide 57 



Slide 58 



The calculation procedure 

for H ,C1 and  is as 

follows. The quantity H1 is 
the scaling exponent 

calculated from an aircraft 

or dropsonde time series f(t) 

by application of the first 
order structure function.  

The q
th

 order structure 

function of f(t) is defined by 

 



Sq r; f  f t  r  f t 
q

 

 
Where the lag r is real and 

positive, the angle brackets 

denote an average over t and 

ensemble averaging over f.  

 If a plot of log 
Sq(r;f) versus log(r) is 

linear (the 95% confidence 

interval of the fit to obtain 

the slope (q) is generally 

less than 10%), then (q) is 
a scaling exponent for f(t).   

In general we find: 

  

(q) = qH - K(q) 
 

where K(q) characterizes 

the intermittency.  If the 

intermittency is linear (of 

the form K(q) = C1(q-1), C1  
is the codimension of the 

mean characterizing the 

intermittency intensity) 

then the intermittency is 

monofractal; generally, it 
will be nonlinear, hence 

multifractal. 

We then define 

 

Hq = (q)/q 
 

If Hq is constant as q 

changes, and if (q) = 0, 
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

 r,t 
1

r
 1, j 

j t

tr1

 , t 1,2,3,...tmax  r  

 

For our signals, it is found that the quantity 



 r,t 
q

 has a power law dependence on the 

scale r.  An unweighted linear least squares fit to 



log  r,t 
q

 versus log r provides a 

slope 



K(q).  A plot of 



K(q) versus q shows a convex function with 



K(0) K(1)  0 .  

The exponent C1 is defined as 



K (1) , evaluated here numerically from the slope 

defined by the points 



0.9,K 0.9   and 



1.1,K 1.1  .  The uncertainty estimate in C1 is 

obtained by taking the square root of the sum of the squares of the 95% confidence 

intervals returned by the unweighted linear least squares fits corresponding to 



q  0.9  and 



q 1.1. Further discussion of these procedures can be found in Schertzer and Lovejoy 

(1991), Tuck et al., (2004) and Tuck (2008). 

 The multifractality index  has the range 



0 2 theoretically and 

characterizes the generator of the intermittency which is the logarithm of the turbulent 

flux. It may exceed 2 for data from real systems.  The corresponding fluctuations will 

be roughly log-Lévy except for the extreme probability tail which will generally be of a 
power law form with exponent qD.  Unlike Lévy variables whose probability tail has an 

exponent qD = <2, for the fluctuations there is no restriction on the value of qD  (note 

that the Gaussian is the exceptional  = 2 case with exponential fall-off). Schertzer and 

Lovejoy (1991) discuss the five main cases for ; here we note that the variables we have 
measured appear to have 



1 2 (Tuck et al. 2002, 2004).  Our experience indicates 

that a large quantity of high quality data is necessary for an accurate computation 

of  .  We use the double trace moment technique
 
to compute .  Define 

 



 1,,t 
f t 1  f t 



f t 1  f t 

, t 1,2,3,...tmax  

 



 r,,t 
1

r
 1,, j 

j t

tr1

 , t 1,2,3,...tmax  r 

 

where  is allowed to range from –1.0 to +1.0 in steps of 0.1.  For q = 1.5 an unweighted 

fit to 



log  r,,t 
q

 versus log r is made, with the slope being 



K q,  and the standard 

deviation being 



 q, .  A plot of 



logK q,  versus log  yields for our data a collinear 

region having a positive slope.  A weighted linear least squares fit to this region, with 

weights 



K q, ln10/ q, , has slope , with the uncertainty represented by the 95% 

confidence interval returned by the weighted fit. 



Eady (1951): ‘I congratulate Dr. Batchelor on his scholarly presentation 

of the similarity theory of turbulence initiated by Kolmogoroff.  

The argument which derives the consequences of statistical “de-coupling” 

between the primary turbulence-producing processes and the secondary 

small-scale features of the turbulence appears to be sound but does it  

get us very far? In meteorology and climatology we are concerned  

principally with the transfer properties of the turbulence, determined  

mainly by the large-scale primary processes to which the similarity  

theory does not pretend to apply. It is the great virtue of similarity  

theories that no knowledge of the mechanism is involved and we do not  

have to assume anything about the nature of “eddies”; anything which  

has “size”  (such as a Fourier component) will do in our description of  

the motion. But this emptiness of content is also their weakness and they  

give us very limited insight. It is true that a similarity theory that could  

be applied to the primary turbulence-producing processes would be of  

great value but there is no reason to expect that anything simple can be  

found; when several non-dimensional parameters can be formed,  

similarity theory, by itself, cannot do much. [continued…….] 

  



Similarity theories are attractive to those who follow Sir Geoffrey Taylor in  

rejecting crude hypotheses regarding “eddies”, mixing lengths, etc. But those  

who try to determine the properties of turbulence without such (admittedly  

unsatisfactory) concepts must show that they have sufficient material (in the 

shape of equations) to determine the answers. If this is not the case it will  

be necessary to develop some new principle in addition to the equations of  

motion and the nature of this principle may be brought to light in a study of  

the mechanism of the primary turbulence-producing process i.e. by trying to 

refine or modify what we mean by an “eddy” rather than by completely  

rejecting the concept.’.   

A wider context for the importance of understanding the mechanisms of  

turbulence can be found in Eady and Sawyer (1951). 



Figure 47 

Evans & Searles (2002), The fluctuation theorem, Advances in Physics, 51, 1529-1585. 



The molecular dynamics result that hydrodynamics (organized 

flow) emerges when a flux causes anisotropy on molecular scales  

is in contrast to the conventional meteorological decomposition 

of flow into an organized mean plus dissipative fluctuations (eddies). 

 

On the molecular dynamics view, dissipation is accomplished by 

the near-average molecules that allow an operational definition of 

temperature, while the organized flow (wind)is caused by the most 

energetic molecules producing ‘ring currents’ with which they are  

mutually self-sustaining. 

 

Physically, the high speed molecules cause higher number densities 

ahead and leave lower number densities behind. The random motion 

of the near-average molecules tends to remove this density gradient, 

so producing the ‘ring current’ (vortex in meteorological parlance). 



Summary, Lecture 2.1 

 
* Both microscopic and macroscopic equations have no known 

analytical solutions: - numerical simulation via computer is 

necessary. 

 

•Vorticity emerges from molecular behaviour. 

 

•Non- Gaussian, non-Maxwell-Boltzmann distributions are 

expected and found in practice. 

 

 

 

 


