3.2

Lecture 3.2 Correlations among scaling exponents

There are some unexpected correlations among scaling exponents, with potentially important consequences.

Correlations in the scaling exponents.

* There are five correlations among the scaling exponents that emerge when appropriate grand averages are resolved on a flight-by-flight basis:-

[1] *H* for wind speed and temperature with measures of jet stream strength, in the 'horizontal' from ER-2 observations.

[2] *H* for the vertical scaling of the horizontal wind speed with jet stream strength, taken from 'vertical' dropsonde observations.

[3] $C_1(T)$, the intermittency of temperature, with the ozone photodissociation rate during ER-2 flights in Arctic summer and winter.

[4] $H(O_3)$ and $\alpha(O_3)$ - the conservation and multifractality exponentsin the lower stratospheric polar vortex during ER-2 flights in late winter and early spring.

[5] Chemical values of H > 0.56 show source behaviour, H = 0.56 are tracers, H < 0.56 show sink behaviour.

What do these correlations imply? None are predicted by current theory.

Correlation of *H* for ER-2 wind speed and temperature with jet strength

Correlation of *H* for dropsonde wind speed with jet strength, WS 2004

Scaling Calculation for 19890220 Wind Speed

Vertical scaling of horizontal wind, 235 dropsondes, Winter Storms 2004. Scaling is not Kolmogorov or gravity wave; Bolgiano-Obukhov applies in lower troposphere, but none are correct at jet altitudes.

Alder & Wainwright (1970): A flux applied to an equilibrated population of Maxwellian molecules. Vortices and fluid flow emerge in 10⁻¹²s and 10⁻⁹ m.

Correlation of the observed photodissociation rate of ozone with the intermittency of observed temperature. Arctic summer 1997 and winter 2000.

ER-2, Arctic summer 1997. Racetrack segments in static air mass, crossing terminator. Temperature changes between night and day, nothing else does.

Time (seconds UTC)

ER-2, Arctic summer 1997. Unlike temperature, wind speed and nitrous oxide do not change across the terminator.

Shift to warmer temperatures on sunlit side of terminator, ER-2 racetrack flights in static air mass, Arctic summer 19970509.

Shift to warmer temperatures, sunlit side of terminator, ER-2 racetrack flights in static air mass, Arctic summer 19970911,14,15.

Baloïtcha & Balint-Kurti (2005), *PCCP, 7,* 3829-3833. Speed distribution of photofragments, O₃ photodissociation, Hartley band.

Scaling of ER-2 CIO, Arctic vortex, 20000226. Source no longer operative.

Scaling of ER-2 CIO, Arctic vortex, 20000312. A sink is operative, *H*[CIO] < 0.56.

All ER-2 ozone & nitrous oxide, 59°N-70°S, heavy SH weighting

All ER-2 'horizontal' segments >2000 s, 1987-2000

All DC-8 total water, 'horizontal', 44°S - 90°S, Aug-Sep 1987

ER-2 scaling exponents for CIO and NO_y, Arctic vortex, January - March 2000. An early CIO source & NO_y sink from PSCs evolve to a sink and to a passive scalar (tracer) respectively.

Scatterplot, scaling exponents of CIO & O_3 , Arctic vortex 2000. 1 = 20000120, 11 = 20000312. Ozone sink was present 20000120.

*H*₁ scaling exponents for chemical species ER-2 during SOLVE

Date	Time Interval	$H_z(ClO)$	$H_z(NO_v[B])$	$H_z(O_3)$	$H_z(M)$
20000120[1]	37553-47828	0.69±0.13	0.06±0.03	0.34 ± 0.03	0.50 ± 0.05
20000123[2]	31017-38648	0.76±0.16		0.30 ± 0.03	0.49±0.05
20000131[3]	38199-43249	0.82±0.11	$0.04{\pm}0.01$	$0.24{\pm}0.03$	0.51±0.05
20000202[4]	35869-53229	0.66±0.15		0.36 ± 0.03	0.52 ± 0.07
20000226[5]	30303-43443	0.46±0.05	0.45±0.04	0.32 ± 0.08	0.48 ± 0.07
20000305[6]	35567-39442	0.37±0.20	0.47 ± 0.08	0.34 ± 0.07	0.43 ± 0.04
20000305[7]	52392-57922	0.42±0.17	0.47±0.11	0.33±0.06	0.44 ± 0.07
20000307[8]	28834-43679	0.32±0.08	0.39±0.09	0.37 ± 0.02	0.54 ± 0.07
20000311[9]	46765-52389	0.32±0.07	0.46 ± 0.06	0.39 ± 0.03	0.52 ± 0.08
20000312[10]	37649-48709	0.32±0.07	$0.44{\pm}0.04$	0.36 ± 0.04	0.47 ± 0.06
20000312[11]	51342-58549	0.34±0.03	0.42 ± 0.05	0.34 ± 0.03	0.46 ± 0.06

ER-2 temperature data from SOLVE, Arctic Jan-Mar 2000. H_1 , C_1 and α . Archived (truncated) data spoils calculation of $\alpha(T)$.

ER-2, O₃ SOLVE data. Scaling exponents H_1 , C_1 and α .

ER-2, O₃ scaling exponents, AAOE, Antarctic vortex, Aug-Sep 1987.

Summary, Lecture 3.2, Correlations.

*In both horizontal and vertical, *H*(windspeed) is correlated with jet stream strength. Why? Recall the Alder-Wainwright mechanism, and that observed winds breach Navier-Stokes assumptions.

* Correlation of intermittency of temperature with ozone photodissociation rate. Fast O atoms + Alder-Wainwright breach local thermodynamic equilibrium assumption.

* Correlation of *H* and α exponents for ozone in the winter polar vortex can only be of chemical origin.

* Correlation of *H* for molecular species, including water, with source, tracer and sink behaviour with values greater than, equal to and less than 5/9 (0.56). Is the interpretation in the statistical thermodynamic formulation of scale invariance?