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Lecture 4.2, Consequences of scale invariance [2] 
 

 
 

* Temperature scales differently than passive scalars (tracers) 

and differently to wind speed. 
 

* The intermittency of T is correlated with J[O3] - what does  
it imply? 

 

* Example: what does the scaling of  T imply for stratospheric 
water? 

 
* Temperature implies a relevance to climate - what has 

scaling to say? 
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ATMOSPHERIC  TEMPERATURE 

* Intermittency of T  is correlated with O3 photodissociation rate.*** 

* Horizontally, H1(T) = 0.52 ± 0.02 

* Vertically, H1(T) = 0.986 ± 0.002 
 

***Will the same thermometer be measuring the same average over 

molecular speeds in the troposphere and stratosphere? At the surface 

now as 100 years ago, when the ozone was a factor of  2 to 5 less? 

 

T is well defined operationally, but the implied fat-tailed molecular 

speed distributions will have consequences (no LTE) for radiation, 

turbulence and chemistry. T may not be proportional to mean square 

most probable velocity of air molecules; are molecular and 

macroscopic T consistent?  

 

Heat flux and the hydrostatic relation are central. Generalized 

Scale Invariance has linkages at smallest and largest  scales. 
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Historical montane surface site observations of ozone: 

Marenco et al. (1994),JGR, 99, 16617-16632. 
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If J[O3] is correlated with T and C1[T], what does this mean? 
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Dropsonde (25˚N,157˚W) on 20040229.  The ‘Russian doll’ structure. 
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Figure 47 

Evans & Searles  (2002), Adv. Phys., 51,1529-1585. The high speed 

 molecules, a minority, produce order (‘flow’) while the average 

 majority produce dissipation (‘temperature’). 
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PDFs of O3 and CH4 from WB57F flights at (10°N, 84°W) 
Jan - Feb 2004, for H2O vapour ≤ 10 ppmv 
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Water vapour and T, H2O ≤ 10 ppmv, WB57F,  
(10°N, 84°W), Jan - Feb 2004 
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PDF of tropopause temperatures, NCEP Analysis, 30°N to 30°S, 
20031201 to 20040229 UTC. 
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A Mechanism for Dehydration in the Upper Atmosphere  

An example showing that over tropical Central America in January 2004 the water 

vapor minimum was 200-300 metres above an underlying saturated or apparently 

supersaturated layer; this was the case on every profile.  Small ice particles 

evaporated, and the resulting water vapour condensed on larger particles, leaving a 

vapour minimum above a saturated layer.  This mechanism can account for the final 

stage in the dehydration of air entering the stratosphere. 
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Absorption efficiency factor for ice spheres, spectral dependence 
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Radiative heating/cooling as a function of particle size, 
cloud top, 190 K, 0° solar zenith angle 

 
* The small ones absorb and evaporate quickly, the water molecules 

distilling over to the 10 - 100 micron particles. Accounts for  
the observed water vapour profiles. 
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Mean profiles of CH4 and , WB57F, (10°N, 84°W,Jan - Feb 2004 
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Stratospheric water and scaling at the tropical tropopause 

* The lowest water mixing ratios are attained in the lower 

stratosphere, via distillation of water molecules from small ice 

particles on to larger ones, which fall under gravity. 

 

* This air is recirculated into the upper troposphere, where the lower 

methane and water content have influence on climate via their infra-

red spectra. There will be no one-to-mapping of tropopause 

temperature to stratospheric water content, the PDFs of T and H2O 

have long tails from their scale invariance. 

 

* The methane variability and back trajectories below 12 km indicate 

a methane source over northern South America [jungle? petroleum 

industry?]. 
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Low frequency

“Macro” weather

Climate Weather

Transition from ‘weather’ to ‘climate’ in scaling régimes, 
Lovejoy & Schertzer book. Composite Greenland ice core data. 
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Greenland ice core (GRIP & 20CR) compared to GCM (IPSL)  
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Transition region: atmosphere(upper) and ocean (lower) compared. 



Lecture 4.2, Consequences [2]: Summary 

THEORY: Nonlinear interaction among high speed molecules 

subject to an anisotropy sustains vortices and the 

overpopulation of fast molecules in the PDF - fluid flow 

emerges from the Maxwellian ‘billiard balls’. Temperature 

remains defined but is not the mean of the Maxwell-Boltzmann 

distribution. The high speed molecules produce larger scale 

order (negative entropy), the ones near the mean are 

responsible for dissipation (positive entropy). 

 

EVIDENCE: Correlation of H1(windspeed) with horizontal and 

vertical measures of jet stream strength. Correlation of 

temperature intermittency with ozone photodissociation rate. 

Jet stream speeds reach Mach 0.7 - half the speed of the most 

probable speed of N2 molecules. 

Slide 192 

* Natural definition of ‘weather’ and ‘climate’ appears to  
emerge from generalized scale invariance analysis of 

Greenland ice core data, with a transition region between 
about 10 days and 10 - 100 years mediated by the ocean. 

[Lovejoy & Schertzer, 2012] 

 


