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Lecture 5.1:  Molecular dynamics, scale invariance and 
natural selection 

 
 

 

* Scale invariance occurs in atmospheric chemistry, aerosols, 
monomer sequences of amino acids in proteins, nucleotides  

in nucleic acids and their binding to lipids in membranes. 
 

* The folding of proteins and of a single loop in an RNA molecule 

obey fluctuation-dissipation theorems characteristic of  
maximum entropy production and power law behaviour. 

 
* Molecular clouds, the birth place of stars and solar systems,  

show scale invariance. Earth’s atmosphere, uniquely among  

astrochemistries, is a scale-free network.  
 

* Does the thermodynamic formulation of scale invariance cast 
light on these observed results? 

 

* Is there a context for natural selection?    
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Geophysical Considerations for Origin of Life 

¶ Distance from sun: allows presence of liquid water for aeons. 

 

¶ Initial geochemical conditions: elementary (atomic), as now;  

    molecular, evolved for atmosphere, ocean and surface. 

 

¶ Boundary conditions: anisotropies are gravity, rotation, solar 

    beam and surface topography. Crust recycled via tectonics and 

    volcanism. 

 

¶ Range of scales: 15 orders of magnitude from mean free path 

    in surface air to planetary circumference, i.e. molecules to  

    meteorology. 

 

¶ Non-equilibrium atmosphere: methane/ozone ratio is some 30 

    orders of magnitude from chemical thermodynamic equilibrium, 

    equilibrium would be 0.2M nitric acid in the ocean. Air is also 

    not at physical equilibrium (solar photons, winds, no LTE). 

 

¶ How to link molecular scale view of water and biology with the 

    macroscopic scales of the planet’s fluid envelope?  Equivalence 

    of statistical thermodynamics with statistical multifractal scale 

    invariance. Role of entropy and Gibbs free energy.  
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Composition of the 
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Prebiotic Environment 

* Wide, fluctuating range of radiation, temperature, humidity and wind 
fields. 

 

* Current atmosphere: 

– Temperature: -90°C to +40°C 

– Relative humidity: 0% to 100% 

– Solar radiation spectrum: 

• Virtually unattenuated from 175 nm to 1000 nm in upper 
stratosphere (residence time years) 

• 6 months of darkness at the winter pole, continuous visible light 
for months at the summer pole  
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Nett Shortwave: solar flux beam is low entropy 

Kiehl and Trenberth (1997) 
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Kiehl and Trenberth (1997)  
Greenhouse Effect  
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Aerosol from the Ocean 

Wave-breaking produces bubbles 

near the sea surface. 

fragments
film

flow
down
sides of
cavity

air

ocean water

film drains and thins
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Mass Spectra of Aerosols 

• WB57F Aerosol Mission  
(WAM); Houston, 1998. 

• Particle Analysis by 
Laser Mass 
Spectrometry (PALMS) 

• Individual particles are 
≈50% by mass organic 
material in upper tropical 
troposphere. P
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Elements Observed During WAM 

Flights (1998) 
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TOF-SIMS Spectra 
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• Successive negative  

ion spectra (120 s 

duration) of same 

marine aerosol. 

• Palmitic acid most 

abundant. 

• During gallium ion 

bombardment, C14-C18 

fatty acid peaks 
decline. 

• Outer parts of 
aerosol are composed 

of these fatty acids. 
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Changes Induced by 

Sputtering 
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• TOF-SIMS peaks of 

chlorine (35 & 37) and 

palmitic acid (255). 

 

• Vertical bars show 
signs and intensities of 

changes induced by 

sputtering. 

 

• Peaks from fatty 
acids on the surface 

decrease, 

accompanied by an 

increase of chlorine 

peaks in the interior. 
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Sea-Air-Sea Journey 
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Sq(r;) = x + r) - (x )q 

 qth order structure function S of variable (x) 

If a plot of logSq vs. log(r ) is linear with slope (q), 
then (q) is a scaling exponent for (x), which 

therefore has scale invariance and power law 

PDFs. 

Further define 
 

H = Hq + K(q)/q 
 

 

Define 
 

Hq = (q)/q 
 

 
 

 

Scale Invariance and Statistical Multifractality 

We will be interested in K(q) and H 
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To obtain K(q), consider (x)to have been  
observed at finite intervals x = 1,2,3….. xmax 

and define:- 
 

(1,x) = {(x + 1) - (x)/x +1x 

for x = 1,2,3. ….. xmax 

(r,x) = (1/r) j=x
x+r-1(1, j) 

for x = 1,2,3, ….. xmax  r 

then a plot of logr,x)q vs log r has slope K(q) 

and a plot of K(q) vs q shows a convex function 
with K(0) = K (1) = 0. 

 
We can now note equivalences between scale  

invariance and statistical thermodynamics. 
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Formal equivalences between scale invariant (r.h.s.) 

and statistical thermodynamic (l.h.s.) variables 

T = 1/qkBoltzmann  temperature 

f = eK(q)                   partition function 

G = K(q)/q                             Gibbs free energy 

This offers possible links:  

 

molecular scale   

  

statistical thermodynamics 

  

macroscopic scale invariant observables 
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Occurrences of Scale Invariance 

* Monomer sequences in proteins and nucleic acids. 

* Distributions of proteins and lipids in membranes. 

 

* Folding of proteins and their binding to lipid rafts. 

 

* Folding, unfolding & re-folding of a ‘hairpin’ in a  

    single RNA molecule. 

 

* All atmospheric variables observed to date. 

 

* Plankton spatial distributions. 

 

* Ocean waves and sea ice. 

 

* Earth’s atmospheric chemistry is a scale-free network, 

    like cellular biochemistry but unlike any other planet 

    and unlike interstellar molecular clouds. Solé & Munteanu,  

   Europhys. Lett. 68, 170 (2004). [Lovelock: Gaia Hypothesis] 

Tests:  Does K(q)/q converge? 

 Has it been minimized? 
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 SCALE FREE NETWORKS 
 
¶ Still under mathematical development 

 

¶ Molecules as nodes, reactions as connections 

 

¶ The probability P(k) of a node (molecule) having  

   k connections (reactions) is 

 

              P(k)   ck
  

 

 

   where typically    2 <  < 3 
 

 To work, need a few nodes (molecules) among many 
 that have many connections (reactions). 

 

Examples: 
 OH in current atmosphere 

 
 ATP, pyruvic acid in metabolic chemistry 
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Alder & Wainwright: MD and Hydrodynamics 
Phys. Rev. A, 1, 18-21 (1970) 
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Figure 47 

Evans & Searles  (2002), Adv. Phys., 51,1529-1585. The minority 

 high speed molecules, produce organization (‘flow’) while the  

average majority produce dissipation (‘temperature’). 
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Fast Molecules Generate Vorticity 

Under the action of a dis-equilibrating force, e.g. a flux, a thermalized 

population of Maxwellian molecules generates vortices (‘ring 

currents’). The fast molecules cause high number density ahead and 

leave low number density behind, causing a vortex. The over-

populated tail in the molecular speed PDF interactively sustains the 

vortex. Hydrodynamics has emerged from Maxwellian molecules 

reacting to a flux on molecular scales of time and space, 10 -8 m and 

10-12 s. [B J Alder] 

 

Consequence: no local thermal equilibrium. 

 

Recent work: molecular dynamics & fluid simulations have 

           same scaling. 
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* Molecules compete for a finite resource - translational energy 
 

* Variation - as the molecules collide and exchange energy 
 

* Memory - the emergent, organized fluid flow propagates 

 
 

* These are the 3 defining requirements of natural selection 
 

IS NATURAL SELECTION AN INHERENT MOLECULAR PROPERTY? 
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Hypothesis: scale invariance has utility in examining 

      the emergence of natural selection 

¶ Earth’s atmospheric chemistry is a scale-free network, like cell metabolism 

   but unlike any other known planetary atmosphere or astrochemistry. 

 

¶ If scaling exponent —K(q)/q exists for a set of observations, its minimization 

   can be a test for its thermodynamic status (Gibbs free energy criterion). 

 

¶ The most energetic molecules cause organization, while the average ones 

    accomplish dissipation and permit operational non-equilibrium temperature. 

 

¶ Scale invariance corresponds to dissipation: scale selectivity would correspond 

    to organization, which emerges after entropy production has been maximized. 

 

¶ The emergence of natural selection is an expression of the boundary conditions 

    combined with the operation of the above principles. 

 

 e. g. 

  aerosol fission & fusion, size distributions 

  propagation of organized flow 

  source & sink thermodynamics of atmospheric chemistry 

  monomer sequences in proteins & nucleic acids 

 

                 are examples from the present status of Earth. 
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Possible Experimentally Testable Phenomena 

¶ The propagation of organized behaviour by the most energetic molecules 

    constitutes a very simple form of selectivity and hence “memory”. Is this the 

    most primitive, molecular form of natural selection? 

¶ Scale invariance is a consequence of dissipation, linking microscopic  

    and macroscopic scales. Convergence and minimization of scaling 

    exponent ratio —K(q)/q constitutes sufficiency. 

¶ Do present day airborne bacteria and viruses mutate via atmospheric 

    photochemistry? (h, OH, HO2, NOx,O3, ROx, halogen chemistry). Do they 

    undergo fusion and/or fission? Do they interact with aerosols? 

¶ Can contemporary “one pot” chemistry experiments aimed at nucleic 

    acid and protein genesis be usefully examined by scale free network 

    and multifractal scale invariance analysis? 

 

¶ Is “junk” DNA simply the entropy price paid for the organized  

   (genetically functional) sequences? Recent evidence suggests not. 
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Lecture 5.1: Summary 
 

* Scale invariance exists on all scales from molecules to 
molecular clouds. 

 

* Scale free networks have been found only in cellular 
biochemistry and Earth’s atmosphere. [A new view of 

Lovelock’s Gaia hypothesis?] 
 

* Consistent with the thermodynamic formulation of  

scale invariance and the molecular dynamics 
interpretation of natural selection. 
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