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Abstract 
 

The aim of this  review is to consider optical  characteristics of terrestrial 
clouds. Both single  and multiple light scattering properties of water clouds are 
studied. The numerous results discussed  can be used for  solutions both inverse 
and direct problems of the cloud optics. 
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     1.  Introduction 
Water, ice, and mixed  clouds are major regulators of solar fluxes in the Earth 
atmosphere(Kondratyev and Binenko, 1984; Liou, 1992). They reflect a great 
portion of incoming visible  radiation back to outer space. The light energy 
absorbed by water droplets and ice crystals leads to the heating of atmospheric 
layers. Another interesting role of the cloudy media is to serve as a blanket to 
protect the Earth surface against  cooling at night. This is due to the fact that the 
maximum of the terrestrial emission is in the far infrared, where water droplets are 
highly absorbing. 
   Clouds, mists, and fogs are very common. They reduce the visibility of 
objects in the atmosphere and limit capabilities of atmospheric vision, remote 
sensing and detection systems(Zege et al., 1991). Thus, it is of a great importance to 
understand the peculiarities  of  light interaction with cloudy media, which can be 
considered as a  huge  ’’colloid ’’ , composed of liquid and solid water particles, 
dispersed in the air. It should be pointed out that water droplets and air around them  
can be contaminated  by various fine particles(e.g., soot and dust particles). These 
aerosol particles influence both light scattering and absorption properties of cloudy 
media, making the studies of  problem of light propagation in cloudy media  even 
more difficult(Menon et al., 2001). Note,  that the very existence of clouds is due to 
fine aerosol particles, so called cloud nuclei( Twomey, 1977). The   existence of 
clouds would be   not possible in  the environment, which does not have these fine 
aerosol nuclei, with typical radii between 5 and 200 nm (Mason, 1975). 

Studies of optical and microphysical properties of cloudy media have a long  
and fruitful history. The results of these investigations have been summarized in 
numerous books and papers(Kondratyev and Binenko, 1984; Zege et al., 1991;  
Liou, 1992; Kokhanovsky, 2001a). We can state that the  main properties of cloudy 
media    are well understood now.  However, this is not the end of the story. There 
are a lot unsolved problems. The most important are the account for the three 
dimensional shape of clouds(Macke et al., 1999,  Scheirer and Macke, 2000; 
Scheirer, 2001), their inhomogeneity in horizontal and vertical directions(Cahalan et 
al., 1994, 2001; Platnick, 2000, 2001). The  influence of  aerosols  presented  inside 
cloudy media, which can be one of explanations  of   the anomalous absorption 
paradox (Danielson et al., 1968; Rozenberg et al., , 1978), should be also  clarified. 
  Another hot issue is the   characterization of optical properties of  ice clouds, 
which  have  extremely complex microstructure(Liou, 1992; Macke et al., 1996; 
Yang and Liou, 1998; Yang et al., 2000,2001) and appear almost with the same 
frequency as water clouds. One can hardly find  two identical crystals  in  ice  
clouds,  which  often present in  the  terrestrial  atmosphere. Preferential shapes vary 
with temperature and pressure(Mason, 1975). Thus, they are different in different 
regions of cloudy media(Yang et al., 2001). It should be stressed that optical 
properties of a single particle are extremely influenced by its  shape (Mishchenko et 
al., 1995, 1996, 1999, 2000). And so do the optical properties of a cloud as a whole. 

It is virtually impossible to make a complete  review  across all fields of cloud 
optics, which is in a condition of a continious explosion , even  in a  book, not 
mention an  article. Thus, I will concentrate mostly on analytical results, which can 
be used for cloud optical properties studies.  The formulae presented can be applied 
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for rapid estimations of light fluxes in cloudy atmosphere. They are also of help in 
understanding  the information content of  transmitted and reflection functions of 
cloudy media in respect to  the microstructure parameters of clouds . 
 
 

2. Microphysics of clouds 
2.1 Water clouds 
2.1.1 Particle size distributions 

 
 Water clouds consist of small liquid droplets, which generally have the 
spherical shape. Particles of other shapes can appear due to different external 
influences. For instance, the deformation of large particles due to the  gravitation force 
is of importance for raining clouds with particles  having  radii   1 mm and 
larger(Macke and Grossklaus, 1998). The average radius  of droplets in non-raining  
water clouds is usually around 10  micrometers and the approximation of spherical 
particles works quite well. Natural clouds with droplets of the same fixed  size  
throughout its volume never occur due to the variability of physical properties of the 
atmospheric air both in space and time domains( Twomey, 1977). Thus, one can 
consider a radius of a droplet a as a random value, which is characterized by the 
distribution function ( )f a . This function is normalized   by the following condition: 
 

( )f a da
0

1
∞

∫ = .                                                      (2.1) 

 
It should be pointed out that the integral 
 

( ) ( )F a f a da
a

a

= ∫
1

2

                                                  (2.2) 

 
gives the fraction of particles with radii between a a1 2 and  in a unit volume of a cloud. 

The distribution function ( )f a  can be represented as a histogram, graphically or in a 
tabular form (Ayvazian, 1988). However, it is the most common to use an analytical 
form of this function. Analytical functions involving only two parameters are generally 
used (Deirmendjian, 1969). This is, of course, a great simplification of real situations, 
which occur in natural clouds. However, it was found that most of  optical 
characteristics  of a cloud as a whole practically  do not depend on the fine structures 
of particle size distributions (PSD) ( )f a . Even specific   types of analytical functions 
used  could be of a minor importance (Hansen and Travis, 1974) in most of cases.  

It was found (McGraw et al., 1998)  that the local optical properties of 
polydispersions can be modeled with high accuracy by just first six moments of the 
particle size distribution. The use of certain combination of moments can reduce the 
number of parameters involved even  further. 

 In most of cases the function ( )f a   can be  represented by the gamma 
distribution: 
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( )f a Aa e
a

a=
−

µ
µ

0 ,                                                 (2.3) 
 
where 
 

( )A
a

=
+

+

+

µ
µ

µ

µ

1

0
11Γ

                                                 (2.4) 

 
is the normalization constant  and ( )Γ µ + 1  is the Gamma function. It follows that 

( )f a′ =0 0  and ( )f a′′ <0 0 . Thus, the function (3) has the  maximum at a a= 0 . Note, 
that  Eq. (2.4)  follows from Eq. (2.1) and the definition of the Gamma function: 
 

( )Γ µ µ= − −
∞

∫ x e dxx1

0

.                                                  (2.5) 

One can see that the parameter   µ  characterizes the width of the particle size 

distribution ( )f a . It is smaller for wider distributions. Moments 
 

( )a a f a dan n=
∞

∫
0

                                                 (2.6) 

 
of the distribution (2.3) are calculated from the following simple equation 
 

( )
( )a

a n
n

n

=










+ +
+

0 1

1µ
µ

µ
Γ

Γ
.                                          (2.7) 

 
Eq. (2.7) can be used to  find the average volume of particles 
 

( )V a f a da=
∞

∫
4

3
3

0

π
,                                               (2.8) 

 
the average surface area 
 

( )Σ =
∞

∫4 2

0

π a f a da ,                                                (2.9) 

 
the average mass of droplets 
 

W V= ρ ,                                                       (2.10) 
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where ρ = 106 3g m  is the density of water, and other important physical 
characteristics.  Namely , it follows: 
 

( )
( )V v=

+
+

Γ
Γ
µ

µ µ
4

13 0 ,                                                (2.11) 

 

( )
( )Σ

Γ
Γ

=
+

+
µ

µ µ
3

12 0s ,                                                (2.12) 

 

( )
( )W w=

+
+

Γ
Γ
µ

µ µ
4

13 0 ,                                              (2.13) 

 
where 
 

v
a

a w v0
0
3

0
2

0 0

4

3
4= = =

π
π ρ,  s ,  0                                     (2.14) 

 
are correspondent parameters for monodispersed particles with radii a0 . One can 
obtain in the case of the most often employed cloud model with a m0 4= µ , 
µ = 6(Cloud C.1 model of Deirmendjian, 1969): 
 

0 0 0

7 14 7
, < , <

3 9 3
V v s W w< >= Σ >= >=                                     (2.15) 

  
where gwsv 10

0
2-12

0
3-16

0 107.2 ,m102 ,m102.7 −×≈×≈×≈ . One can see how small 
these numbers are. What makes cloud droplets so important in atmospheric studies are  
their numbers(see next Section). 
 Eq. (2.3) allows to characterize the cloud microstructure only by two 
parameters: a0  and µ . However, it should be remembered that both of them are not 
constant and can vary inside the body of a cloud. Thus, their values depend on the 
averaging scale. Naturally, large averaging scales produce more broad particle size 
distributions with smaller values of µ . The value of µ  = 2 was found to be rather 
representative in this case (  Khrgian and Mazin, 1952 ). Thus, this value is advised to 
be used in low resolution cloud satellite retrieval algorithms.  The parameter µ  = 6 
(Deirmendjian, 1969) ,  used  in the derivation  of  Eq. (2.15)  ,  is typical  only for 
small averaging scales (Fomin and Mazin, 1998).  The general features of the droplet 
spectrum in water clouds were studied in detail by Warner(1973). 

The parameters a0  and µ  are defined in terms of the specific  uni-modal cloud 
droplet distribution (2.3). However, there is a necessity for characterizing cloud 
particle size distributions by their moments, which can be retrieved from optical  
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measurements, not referring to specific distributions (McGraw et al., 1998). It was 
found (Hansen and Travis, 1974) that the effective radius 
 

a
a

aef =
3

2
                                                     (2.16)  

 
is one of the most important parameters of any particle size distribution. It is 
proportional to the average volume/surface ratio of droplets. The parameter (2.16) can 
be also defined for nonspherical particles as we will see later.  The coefficient of 
variance (CV) of the particle  size distribution 
 

∆ =
s

a
                                                        (2.17) 

 
where 
 

( ) ( )s a a f a da= −
∞

∫
2

0

,                                           (2.18) 

 
is also of importance ( especially for narrow droplet distributions ). The value of s is 
called the standard deviation. Thus, the CV is equal to the ratio of the standard  
deviation to the mean radius a . It is often expressed in percent.   It follows for the 
PSD (2.3): 
 

a aef = +








 =

+0 1
3 1

1µ µ
,  ∆                                        (2.19) 

 
or 
 

µ = − =
−

+
1

1
1

1 22 0

2

2∆
∆
∆

,  a aef .                                       (2.20) 

 
For instance, it follows at µ  = 3: a a s aef = = =2 05 20 ,  ,  ∆ . . One can see that the 

effective radius is always  larger than the mode radius a0 . 
      Eq.  (2.20)  gives   the  meaning  of  the parameter  µ   in  the  PSD  (2.3). In situ 
measurements show that the value of a0  often varies from 4 to 20 micrometers 
(Mason, 1975)  and µ ∈[2,8] in most of cases. It should be pointed out that clouds  
with smaller droplets are not stable due to the coagulation and condensation  processes 
(Twomey, 1977). Particles with a large radius can not reside in atmosphere for a long 
time due to the gravitation force.  Thus, several physical processes lead to the existence 
of the most frequent mode radius  range. One can obtain from Eq. (2.19) and inequality 
2 8≤ ≤µ  that the value of ∆ ∈[ . , . ]0 3 0 6 . Thus, it follows that the standard deviation of 
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the radius of particles in water droplets is from 30 to 60 percent of an average radius in 
most of cases. Smaller and larger values of ∆  do occur sometimes. However, values of 
∆  smaller than 0.1 were never  observed (Twomey, 1977). Larger values of ∆  may 
indicate the presence of the second mode in the range of large particles(Ayvazian, 
1988). 
        Eq. (2.19) and results for a0  and µ  just reported lead to    the effective radius aef  

of water droplets  in the range from 5 to 50 micrometers, depending on the cloud type.  
Near-global survey of the value of efa , using satellite data,  shows that typically 

5   15efm a mµ µ≤ ≤  (Han et al. 1994).  We see that water clouds with 15efa mµ>  is of 

a rare occurrence. This is can be used to discriminate pixels with ice crystals even at 
wavelengths, where ice and water  absorption coefficients  are of about the same size. 
Such a possibility of discrimination is  due to much larger (e.g., in 5-10 times)  
effective sizes of ice crystals as compared to droplets. The large size of ice crystals   
will reduce the reflection function in near infrared considerably  as compared to 
droplets. This reduction can be easily detected. 
     In conclusion, it should be pointed out that some authors prefer to use the 
representation of the particle size distribution by the following analytical 
form(Ayvazian, 1988):  

                                       f a
a

a

am( ) exp

ln

= −



















1

2 2

2

2πσ σ
                                         (2.21) 

 which is called the log-normal distribution. The relations between values of aef , a  ,  

∆   and parameters of the gamma and lognormal particle size distributions are 
presented in Table 1. The last column of this Table represents the effective variance, 
defined as   
 

( ) ( )

( )
∆ ef

ef

ef

a a a f a da

a a f a da
=

−
∞

∞

∫

∫

2
2

0

2 2

0

. 

This  value is often  used  instead of the coefficient of variance ∆ (Hansen and Travis, 
1974). This is mostly due to  a special importance, attached to the value of the effective 
radius  of  droplets efa   in a cloudy medium as compared to the average radius  <a>  

of droplets. For instance, light extinction in clouds is governed mostly by values of  

efa  and liquid water content independently on the particle size distribution. 

 
2.1.2. The concentration of droplets 
 Clearly, not only the size of particles but also the number concentration of 
droplets N  is of importance for the  optical  waves  propagation, scattering, and 
extinction  in cloudy media. The concentration of droplets depends on the 
concentration CN  of atmospheric condensation nuclei in the atmospheric air. The 
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value of CN  is smaller over oceans than over continents. Thus, the concentration of 
droplets  in marine clouds are in average larger then in the case of   water clouds over 
continents. Generally, the smaller concentration of droplets N  means that they can 
grow larger, producing clouds with larger droplets over oceans(Han et al., 1994). 
Svensmark and Friis – Christiansen (1997) and Marsh and Svensmark(2000) have 
speculated that cosmic ray ionization could influence the production of condensation 
nucleii and, therefore, cloud properties(Swensmark, 1998).  The dimensionless 
volumetric concentration of droplets C N Vv =  and liquid water content (LWC) 

C Cw v= ρ  or ( see Eq. (2.10)) C N Ww =  are often used in cloud studies as well.  
 The typical variability of N, Cv , and Cw  in water clouds is presented in Table 2 
(Mason, 1975; Fomin and Mazin, 1998). It should be remembered that these values can 
change in broader range in real situations. Thus, numbers in   Table 2 are given only 
for a  general orientation.  The liquid water content is not constant through out the 
body of a cloud. It has larger values near the  tops of clouds(Feigelson, 1981; Paul, 
2000; Yum and Hudson, 2001).  
 The liquid water path (LWP) w  is defined as 

( )
2

1

z

w

z

w C z dz= ∫ ,                                                     (2.22) 

where 12 zzl −=  is the geometrical thickness of a cloud. It follows at C constw = : 

ww C l=                                                        (2.23) 

The geometrical thickness of clouds varies, depending on the cloud type (Landolt-
Bornstein, 1986). Usually it is in the range 500 - 1000m for stratocumulus clouds. Near 
global data, obtained by Han et al. (1994) from satellite measurements show that the 
liquid water path is typically in the range 50-150 g m2 .   The annual mean is equal to 

86  g m2 (Han et al., 1994).  

      Cloud systems can easily cover area s km≈ 103 2 (Kondratyev and Binenko, 1984) 
The total amount of water tw ws=  stored in such  a water cloud system is equal to 

108 kg  at 2100w g m= . This underlines the importance of clouds both for climate 
problems and human activity(e.g., crops production, etc.). 
 
 
2.1.3. Refractive index of liquid and frozen droplets.  
 The complex refractive index of particles suspended in the atmosphere is 
another important parameter in atmospheric optics studies(Liou, 1992). This  is due to 
the fact that not only the size of particles,  their shape and  concentration influence the 
light propagation in atmosphere. The chemical composition and thermodynamic phase 
of particles is of importance as well. The refractive index of water droplets and ice 
crystals  varies with the  temperature. It is tabulated by many authors (see, e.g., Halle 
and Querry (1973) for liquid  water and Warren(1984) for ice). 
 Spectral dependencies of real and imaginary parts of the complex refractive 
index of water  and ice are presented in Figs. 1, 2. The differences in light absorption 
by liquid and solid water are considerable. This fact can be used for the retrieval of the 
cloud thermodynamic phase(liquid, ice  or mixed phase  clouds ) from satellite 
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measurements. In particular, we see that the absorption band around the wavelength 
λ = 1.55 mµ   for ice  is shifted to larger wavelengths as compared to liquid water. This 
shift in the absorption band position can be easily detected with the use of modern 
spectrometers(Bovensmann et al., 1999). 
  It follows that the real part of the refractive indices of water nw  and ice ni  do 
not vary considerably in the visible and near-infrared regions of electromagnetic 
spectra. One can see  that generally ( ) ( )n ni wλ λ< . The value nw  is in the range 1.33 - 
1.34 for λ µ= −0 4 1. m  and it is in the range 1.30 - 1.32 for ice  within  the same 
spectral band. Larger values of refractive indices occur  at shorter wavelengths.  
 The spectral  variability of  the imaginary  part of the refractive index of water, 
which is responsible for the level of  absorption of solar  radiation  by clouds ,  is much 
higher(see Fig.2). It changes  six  orders of magnitude in the spectral range 0.4 2 mµ−  
both for liquid water and ice. 
  It should be pointed out that different impurities in water droplets (mainly soot 
(Markel, 2002) and various aerosol particles (Twomey, 1977)) can change the 
imaginary part of the refractive index of droplets (especially in visible, where water is 
almost transparent).  This can  influence the accuracy of modern cloud remote sensing 
techniques( Nakajima et al., 1991; Schuller et al., 2000). 
 
2.2. Ice clouds 
 Microphysical properties of crystal clouds can not be characterized by a single 
particle size distribution curve as it is in the case of liquid clouds even if one considers 
relatively small volumes of a cloudy medium. This is due to extremely complex shapes 
of ice particles in crystals clouds. Major shapes of ice crystals are plates, columns, 
needles, sheaths, dendrites, stellars and bullets(Mason, 1975; Liou, 1992; Yang et al., 
2001). Combinations of bullets and needles are also common. The Magano-Lee 
classification of natural crystals includes 80 shapes(Magano and Lee, 1966), ranging 
from the elementary needle (the classification index N1a) to the irregular germ (the 
classification index G6). 
 The concentration of crystals N varies with height. It is often  in the range 50-
50000 crystals per cubic meter . The ice water content 
 

C N Ws = ,                                                    (2.24) 

where W  is average mass of crystals, is usually   in the range 10 104 1 3− −− g m . 

Thus, the average mass of a crystal is in the range 2 10 2 103 9⋅ − ⋅− −  gram. Note that 
most of crystals have a bulk  density ρ , which is  less than that of the  bulk ice 

( ρ = −0 3 0 9 3. . g cm ). This is due the presence of impurities and bubbles inside ice 
particles(Landolt-Bernstein, 1988).  The size of crystals is usually characterized by 
their maximal dimension D. It is usually in the range 0.1 - 6mm for single crystals and 
1 - 15mm  for snow crystal aggregates. The smaller crystals(e. g., with maximal sizes 
around 20 micrometers), however,  also  present in ice clouds (Yang et al., 2001). The 
mode D0  of distribution curves ( )f D  depends on the shape  of crystals. Characteristic 
values of D0  are 0.5mm for plates and columns, 1mm for needles, sheaths and stellars, 
and 2mm for dendrites. Distribution curves can be modeled by gamma distributions 
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with different half-widths. Half-widths of distributions ∆1 2  are larger  for larger values 

of D  and often  it holds: ∆1 2 ≈ D , where D  is the average size of crystals. 

 Simple shapes of ice crystals (e.g., hexagonal prisms) can be characterized by 

two dimensions: the length of the prism L and the diameter D
a

=
3

2
, where a is the 

side of a hexagonal cross section. Even in this most simple case one should deal with 

two-dimensional distribution functions ( )f D L, . Note, that functions ( )f D L,  can be 

approximately reduced to one-dimensional functions ( )f D  due to the existence of 
empirical relationships between the length of  crystals and their diameter in natural 
clouds (Auer and Veal, 1970). For instance, it holds approximately that L D = 4  for 
long (L > 2D) solid columns. 
 It should be pointed out, however, that the whole conception of particle 
distribution functions is broken for ice clouds.  Indeed, these functions are introduced  
for the sake of simplicity. For instance, it is often suffice to use only two numbers, the 
mode of the PSD and its dispersion for the characterization of statistical properties of 
water droplets distributions in warm clouds(Deirmendjian, 1969).  
 The  crystalline clouds should be characterized at least by 80 multi-dimensional 
particle size distributions, if one would like to use the classification of crystals, 
developed by Magano and Lee(1966). There is not much use of such an approach, of 
course. Thus, there is a necessity of introduction of a new way for particle 
characterization of complex particulate systems such as ice clouds. The same problem 
arizes in the optics of mineral aerosol (Volten et al., 2001) 
 One of possible solutions of the problem  lays  in the characterization of ice 
crystals in an elementary volume of a cloudy medium by the function 
 

( ) ( ) ( )f a b c f a c f br
r

N

r i
i

M

i

�

�

�

�

, = +
= =
∑ ∑

1 1
,                                    (2.25) 

     
where ( )f ar

�

 is the  size distributions of particles of a regular shape  (e.g., hexagonal 

plates or columns), ( )f bi

�

 is the statistical distributions of particles with random 

surfaces or so-called irregularly shaped particles. Actually, functions ( )f bi

�

 present 

statistical distributions of some statistical characteristics of particles (e.g., average 
radii, correlation lengths, etc.). Values of  c ci r and  present concentrations of different 

crystal habits. Clearly, the simplest case is to consider the function ( ),f a b
�

�

  as a sum 

of two functions: 
 

( ) ( ) ( )f a b c f a c f b
�

�

�

�

, = +1 1 2 2 ,                                        (2.26) 
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where function ( )f a1

�

 presents particles of a regular shape (say, hexagonal cylinders) 

and the function ( )f b2

�

 presents statistical parameters of a single particle of irregular 

shape.  
 This irregularly  shaped  particle can be presented, e.g.,  as a fractal ( Macke 
and Tzchiholz, 1992; Macke et al., 1996). It should be pointed out that the function 

( )f b2

�

 in this case represents  “fictive” particles, which does not exist in a cloud at all. 

However,  ice cloud optical characteristics, calculated using ( )f b2

�

,   indeed represent 

the optical characteristics of particles with extremely diverse shapes quite good(Macke 
et al., 1996). 
  Similar  approach to the optical characterization of irregularly shaped particles 
was developed by Peltoniemi et al. (1989), Peltoniemi(1993) and Muinonen et al., 
1996. It is based on Monte-Carlo calculations of light scattering by a large particle 
with a rough surface. The model of spheres with rough surfaces was successfully 
applied to  the optical characterization of    irregularly  shaped aerosol particles (Volten 
et al., 2001). No doubt that this model the model  can be extended  for the case of 
crystalline clouds as well. For this one needs to change the index of refraction, which 
is somewhat  lower for ice than for mineral fraction of the atmospheric aerosol. Also 
the parameters of the irregularity of  a ‘’fictive’’ particle should be changed 
accordingly. This is due to different morphology of ice crystals (Magano and Lee, 
1966)  as compared to mineral aerosol (Okada et al., 2001) 
 
 
3. Local optical characteristics of cloudy media 
3.1 Water clouds 
3.1.1 Extinction coefficient 

The information presented in the Section 2  can be used as an input for studies 
of light interaction with cloudy media on a global or local scale. In particular, the 
attenuation of a direct light beam with the intensity I0  in a cloudy medium  is governed 
by the following equation: 

I I= −0 0exp( / cos )τ ϑ ,                                       (3.1) 
where I0  is the intensity of an incident light, I  is the  intensity of the transmitted 
direct light, ϑ0  is the solar zenith angle and  
 

( )τ σ= ∫ ext z dz
0

Η

                                                     (3.2) 

 
is the optical thickness of a cloud. Here H    is the geometrical thickness of a cloud, 
σ ext  is the extinction coefficient. It is assumed that a cloud is contained inside 
horizontally infinite homogeneous plane-parallel layer, which is, of course, a great 
simplification of a real cloud field (Cahalan at el., 1994, 2001). The value l ext= 1 σ  is 
called the photon free path length. It gives us the average distance between photon 
scattering events in the cloud. Knowing the average number of scattering events n, it is 
easy to find the average distance  L=nl, which photon  travels in the medium before 
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escape. The average  total time  T=L/c  (c is the group speed of light in a cloud) , 
which  photon spends in a cloud  ,  can be also easily estimated.  
  Note, that the value of l  is often  in the range 10 - 200 meters  for  water 
clouds.  Thus,  the value of σ ext  is in the range 10.005 0.1m−− , depending on the cloud 
type. It could be even larger for dense fogs. Note, that the value of σ ext  determines the 
meteorological range of visibility (Zege et al., 1991; Liou, 1992), which is defined as 

3.91
m

ext

S
σ

= . In particular, we have at σ ext =0.1 1−m : 39.1mS m= . In the cloudless 

atmosphere this number is approximately 1000 times larger. Thus, the small range of 
visibility in clouds and fogs effects, e.g., the air traffic in lower atmosphere. It also 
influences the vision and detection systems and  makes  the  transportation on the 
ground level more difficult. 
 The more advanced understanding of the  image  reduction by cloudy media 
can be achieved  on the base of the image transfer theory (Zege et al., 1991; Zege and 
Kokhanovsky, 1994, 1995; Barun, 1995, 2000;  Zuev et al., 1997; Katsev et al., 1998). 
This theory treats a cloud as a high-frequency  spatial filter. This filter reduces high 
spatial frequencies of observed objects in a great extent. It means, that fine features of 
objects are lost due to multiple light scattering process. It is interesting to note, that 
clouds with larger particles, have ‘’better’’ optical transfer functions(higher values) as 
compared to  clouds with very fine droplets. This fact can be used for cloud 
microstructure monitoring purposes (Zege and Kokhanovsky, 1992). However, we will 
not go in any details here and refer to an excellent monograph by Zege et al(1991),  
where the subject is considered at a considerable length. 
 The extinction coefficient varies with the height  in a cloud body (see Eq. 
(3.2)). It can be calculated from the following equation at a given value of the vertical 
coordinate z 
 

( )σ ext extN f a C da=
∞

∫
0

,                                               (3.3) 

  
where N is the number concentration of particles. The value of the extinction cross 
section Cext   is obtained on the base of  the Mie theory, which is quite complicated 
(Shifrin, 1951; van de Hulst, 1957; Kerker, 1969; Bohren and Huffman, 1983). 
Fortunately, it was found that it holds approximately(Shifrin, 1951): 
 

Cext = Σ 2                                                         (3.4) 
 
for water droplets in the visible range of the electromagnetic spectrum. Here Σ  is the 
surface area of a droplet. One obtains from Eqs. (3.3), (3.4): 
 

σ ext

N
=

Σ
2

.                                                      (3.5) 
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Thus, the extinction coefficient depends on the product of the number concentration of 
particles and their  average surface area. The value of N is related to the volume 
concentration of particles Cv  by the following formula: 
 

N
C

V
v= ,                                                        (3.6) 

 
where V  is the average volume of particles. Thus, it follows from Eqs. (3.5), (3.6): 
 

σ ext
v

ef

C

a
=

3

2
,                                                      (3.7) 

 
where we introduced the effective radius 
 

a
V

ef =
3

Σ
.                                                       (3.8) 

 
One can see that the extinction coefficient decreases with the size of particles at 
C constv = . The extinction coefficient can be also expressed via  the liquid water 
content Cw , which is often measured in cloudy media: 
 

σ
ρext

w

ef

C

a
=

3

2
,                                                     (3.9) 

 
where ρ = 106 3g m  is the density of water. It follows for  typical values a mef = 6µ  

and C g mw = 0 4 3. : σ ext m= −01 1. . This is rather dense cloud with the ratio 
I I e0 / = already at the distance 10m(see Eq. (3.1)). 
 We should underline two peculiarities of water clouds, which follow from Eq. 
(3.9). First of all the extinction does not depend on the wavelength λ and secondly it 
depends only on the ratio  of liquid water content to  the effective radius aef . The first 

point leads to the conclusion that clouds do not change the spectral composition of a 
direct light beam in visible. Thus, spectral transmittance methods of particulate media 
microstructure determination(Shifrin and Tonna, 1992) can not be applied in cloud 
optics. Another important property, which follows from Eq. (3.9), is independence of 
the value of σ ext  on the type of particle size distribution. Even the width of the PSD is 
of no importance at a given value of the effective radius of particles. This is the 
genuine reason why the satellite methods of cloud microstructure determination 
(Arking and Childs, 1985; Nakajima and King, 1990; Han et al., 1994) are concerned 
mostly with the retrievals of values aef  and the liquid water path(see Eqs. (2.22), 

(3.9)): 
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2

3 efw aρ τ=                                                   (3.10) 

  and not the droplet size distribution itself. 
 The  type of the particle size distribution in clouds  is not possible  to find from 
extinction  measurements in visible. On the other hand, this has an advantage. One can 
calculate the extinction coefficient of a cloudy media even   with  limited information 
on statistical properties of  a particulate medium. This is especially important for ice 
clouds,  as we will see later. 
 Simple Eq. (3.9) is valid only in the  visible range of  the electromagnetic 
spectrum. Calculations for larger wavelengths should be performed with the Mie 
theory. However, a simple correction of Eq. (3.9)  allows for its use  also in the near-
infrared region of the electromagnetic spectrum(Kokhanovsky and Zege, 
1995;1997a;1997b;Kokhanovsky, 2001a): 
 

( )σ
ρext

w

ef
ef

C

a

A

ka
= +

















3

2
1 2 3 ,                                       (3.11) 

 
where k = 2π λ  and A is parameter,  which only  slightly depends on the dispersion of 
the particle size distribution.  It follows that for most typical  widths of particle size 
distributions in clouds: 1.1=A ( Kokhanovsky and Zege, 1997b). It follows from Eq. 
(3.11) that  the extinction coefficient of cloudy media increases with the wavelength in 
the visible and near infrared. The spectral dependence  of σ ext  for the gamma PSD 

(2.3) at 4 ,  =6efa mµ µ=  is presented in Fig. 3. The data  were obtained with simple 

Eq. (3.11) and the Mie theory, assuming that   30.1  wC g m= . The value of A was 

equal to 1.1. One can see that the accuracy of Eq. (3.11) decreases with the 
wavelength/size ratio. However,  the error is smaller than  5 % at 2 mλ µ<  and 

4efa mµ>  . Smaller values of aef  are of a rare occurrence in natural clouds(Han et al., 

1994). Note, that simple Eq.(3.9) gives a constant value equal to 0.375 1m−  in the case, 
presented in Fig.3. We see that Eq.(3.11)  increases the accuracy of calculations  and 
provides us with correct wavelength dependent of the extinction coefficient (at least till  
the wavelength equal to 2 mµ ). 
 The accuracy of Eq. (3.11) at larger wavelengths  can be increased if one 
accounts for the dependence of the extinction cross section on the refractive index of 
particles. It could be done, for instance, in the framework of the van de Hulst 
approximation (Ackerman  and Stephens, 1987 ).  Parametrizations, developed by 
Mitchell (2000),  and Harrington and Olsson(2001) can be used  even outside the 
geometrical optics limit. 
 Clearly, the accuracy of Eq. (3.11) increases with the value of  aef . Thus, the 

case presented in Fig. 3  provides us with the maximal error of the approximation 
(3.11)  for terrestrial clouds, having aef >4 mµ . 

 
3.1.2.Absorption coefficient 
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 Clouds both scatter and absorb incident radiation. The probability of photon 
absorption β   is defined by the following equation: 
 

β
σ
σ= abs

ext

,                                                      (3.12) 

   
where σ abs  is the absorption coefficient and extσ  is the extinction coefficient(see, e.g., 

Eq.(3.11)). The value of β  is close to zero in visible and near infrared which allow to 
obtain simple equations for reflection and transmission functions of cloudy media in 
terms of series β n 2  , where n is an  integer number (Rozenberg, 1962, 1967; van de 
Hulst, 1980, Minin, 1988). The absorption coefficient is  found from the following 
equation: 
 

( )σ abs absN C f a da=
∞

∫
0

,                                            (3.13) 

 
where Cabs  is the absorption cross section. It follows for the scattering coefficient: 

sca ext absσ σ σ= − . The absorption cross section  can be calculated from the Mie theory 

for spherical particles. Another way to calculate the absorption cross section, which is 
valid for nonspherical particles as well, is to use the integral(Kokhanovsky, 2001a, 
Markel, 2002): 

( ) ( ) ( ) ( )C
k

E
n r r E r E r d rabs

V

= ∫
2

0

3
�

� �

�

�

�

� �χ * ,                                 (3.14) 

where 
�

E0  is the electric field of an incident wave, 
�

E  is the electric field inside a 
particle, k = 2π λ  is the wave number, m n i= − χ  is the refractive index, V is the 
volume of a particle. The first coarse approximation is to assume that the value of   
 

                                                  ( ) ( ) ( ) ( ) ( )**
0 0E r E r B n E r E r≈

� � �

� � � �

                     (3.15) 

 
due to the weakness of absorption. Thus, it follows in this case    
 

( )absC B n Vα= ,                                                  (3.16) 

 

where α
πχ
λ

=
4

 and we assumed that a particle is uniform. Clearly, we have as 

n 1→ : 1B →   for arbitrarily shaped particles.  It follows from Eqs. (3.13), (3.16): 
 

( )abs B n N Vσ α=                                                (3.17) 

 
or 
                                                     ( )abs vB n Cσ α=   .                                               (3.18) 
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We have calculated the value abs vB Cσ α=  for the PSD ((2.3) with 6µ =  and 

4efa mµ=   with the Mie theory and presented it in Fig.4 as the function of the light 

wavelength.  One can see that indeed in a full correspondence with approximate Eq. 
(3.18) the  value of B almost does not depend on the imaginary part of the refractive 
index and the effective diffraction parameter ef efx ka=  of  water droplets till 

λ ≈ 1.8 mµ . For larger values of λ  Eq. (3.15) becomes invalid due to higher  
absorption of light by droplets or crystals. We have from Fig.4: 5 / 3B ≈ .                        
           The accuracy of approximation (3.18) is better than 5% till λ =  1.8 mµ  for 

values of efa  in the range 4 – 6 mµ  . For larger particles the accuracy reduces due to 

the neccesity to account for terms proportional to 2α  and higher in Eq. (3.18) 
(Kokhanovsky and Macke, 1997; Kokhanovsky, 2001a).   
                  Eq. (3.18) can be written as  

( ) w
abs

B n Cα
σ

ρ
= ,                                                (3.19) 

where wC  is the liquid water content  and ρ  is the density of water. One can see that 
the spectral variation of the absorption coefficient of cloudy media  approximately  
coincides with the spectral dependence of the absorption coefficient of liquid water 
itself at least up to 1.8 mµ . The same applies to ice  crystals. This feature can be used 
for the cloud thermodynamic phase determination by remote sensing techniques.  
                  It should be pointed out that water droplets can collect absorbing particles 
from surrounding air. Liquid aerosol particles can penetrate into droplets. They 
dissolve and change the value of α  in Eq. (3.18). Soot particles can form a 
discontinuous layer on the surface of a droplet. All these effects will produce an 
enhancement of the absorption coefficient as compared to simple  Eq. (3.18) 
(Prishivalko et al., 1984). Note, that effects of aerosol particles (e.g., soot) can be 
modelled by inserting into Eq. (3.18) the value of 
 

α α α= +
=
∑W i
i

N

ic
1

,                                                 (3.20) 

  
where αW  and αi  are absorption coefficients of water and impurities respectively, ci  is 
the relative concentration of impurities. The problem of black carbon influence on the 
light absorption in cloud was studied in detail by Chylek et al.(1996). 
         The parameter of considerable importance in the radiative transfer problems is 
not the absorption coefficient itself but the ratio of the absorption and extinction 
coefficients. It follows from Eqs. (3.11), (3.18) 
 

efB aβ α= � ,                                                     (3.21) 
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where ( )( ) 12 32
1

3 efB B n Ax
−−= +� .   The value of β   is  obtained from the measurement 

of the reflection function of clouds in the infrared (Nakajima and King, 1990). Thus, 
Eq. (3.21) can be used to find the effective radius of droplets, which corresponds to a  
given value of  β . The uncertainty in the value of α  (see Eq. (3.20))  can introduce 
additional  errors in the retrieved values of the effective radius of droplets : 
 

a
Bef =
β
α

.                                                     (3.22) 

For instance, it follows: 
δα
α

δα
α

ef

ef

= − . We see, therefore, that  additional aerosol 

absorption makes the value of α  larger and the effective radius aef  (as obtained from 

Eq. (3.22)) smaller as compared to values, obtained from in-situ measurements(e.g., 
using laser diffractometers). This was found also experimentally(Nakajima et al., 
1991). To correct for this effect, one should use the value of α  (3.20) in Eq. (3.22). 
The problem is, however, complicated by the fact that values of absorption coefficients 
and concentrations of impurities are not known a priori.  On the other hand, one can  
formulate the inverse problem in such a way that they can be derived from measured 
spectral reflectances (Zege et al., 1998) simaltaneously with the value of the effective 
radius of droplets. 
              Eq. (3.18) is limited to the case of weak absorption. It can be generalized to 
account for larger  absorption of light by water droplets. We found, parametrizing the 
Mie theory results, that      

                                                           1abs v efB C aσ α α = −  .                                 (3.23) 

Eq. (3.23) transforms to (3.18) for small values of absorption. 
  In conclusion, we present the spectral dependence of the probability of photon 
absorption in Fig.5.  Data were obtained using the Mie theory  and  approximate 
solutions, given by Eqs. (3.23), (3.12), (3.11).  The effective radius of particles was 
equal to 4 and 16 micrometers. The accuracy of the approximation is better than 10% 
at wavelengths smaller than 2 micrometers(see Fig.6). 
 
 
3.1.4. Phase function 
         Until now we have considered only the extinction and absorption   characteristics 
of cloudy media. However, clouds not only attenuate propagated sygnals and absorb 
light. They also scatter incident light in all directions. Generally speaking, the 
probability of photon scattering by a droplet depends on the size of the droplet and the 
energy of the incident photon(or the light wavelength).  
            Now we should characterize the probability of photon scattering in a given 
direction, specified by the scattering angle θ (θ =0 corresponds to the forward 
scattering). It is known ,  that the intensity of light scattered by water droplets is much 
larger in the forward hemisphere than it is in the backward directions(Deirmendjian, 
1969; Kokhanovsky et al., 1998a). 
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 Let us introduce the probability dP of light scattering in the direction, specified 
by the vector 

�

Ω  inside the solid angle dΩ . Clearly, this probability will be 

proportional to the value of 
dΩ
4π

. Namely, we have: 

 

π4
)(

ΩΩ= d
xdP ,                                                    (3.24) 

  
where )(Ωx  is the coefficient of proportionality. It follows from Eq. (3.24): 
 

( )x
d

PΩ
Ω

4 4π π∫ = .                                                  (3.25) 

 
The value of P represents the probability of photon survival in the scattering process. It 
is equal to 1 if there is no absorption of light by a particle and it is smaller then 1 if 
some photons are absorbed by a particle. Clearly, the probability of photon survival P 
is equal to the single scattering albedo(Chandrasekhar, 1950): 
 

0
sca

ext

w
σ
σ

= ,                                                       (3.26) 

 
where σ σ σsca ext abs= − . It should be pointed out that β σ σ= abs ext  is a small 

parameter for water clouds (see Fig.5) in visible and 0 1 1P w β≡ = − ≈  in this case. 

The value ( ) ( ) Pxp Ω=Ω  is called the phase function. It is equal to one if the 
probability of light scattering does not depend on the angle(see Eq. (3.25)). Note, that 
the value of ( )x Ω  is sometimes also called the phase function or the scattering 
indicatrix(Ishimaru, 1978; van de Hulst, 1980). Thus, one should be careful with 
normalization factors. 
 The light scattering by water droplets is azimuthally symmetric due to their 
spherical shape. Thus, one can simplify Eq. (3.25) and obtain after integration with 
respect to the azimuth angle: 
 

( ) 1sin
2

1

0

=∫ θθθ
π

dp .                                              (3.27) 

  
The phase function (or the scattering indicatrix) can be calculated from the Mie 
theory(Shifrin, 1951). It  does not depend on the concentration of particles by the 
definition. It depends, however, on their refractive index and size. Functions ( )θp , 
obtained from the Mie theory, for different particle size distributions are presented in 
Fig. 7 at mµλ 65.0= . Main features of the phase functions of water clouds in visible 
are: 
• sharp forward-backward asymmetry ; 
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• weak dependence on the size of droplets in the region of scattering angles from 20 

till 60 degrees; 
• enhanced scattering near rainbow  rθ  (approximately 138 degrees for water 

droplets)  and glory gθ   (180 degrees) scattering angles ( Tricker, 1970; Greenler, 

1980; Konnen, 1985; Spinhirne and Nakajima, 1994); 
• strong forward peak. 
 Amplitudes of peaks at  angles πθθ ,,0 r=  can be used as indicators of the size 
of droplets (van de Hulst, 1957; Shifrin and Tonna, 1992).   
 Approximate equations for the phase functions of water clouds were presented 
by many authors (e.g., see Shifrin(1951), van de Hulst(1957), Nussenzweig(1992),  
Zege et al.(1993); Kokhanovsky and Zege(1997b);  Grandy(2000)). We found, 
parametrizing the Mie theory results, that the phase function of a cloud can be 
presented by the following simple equation: 

( )
5

2

1

exp( ) exp( ( ) )i i i
i

p Q s bθ θ β θ θ
=

= − + − −∑ , 

where Q=17.7, s=3.9, θ  is given in radians   and constants ,i iβ θ  are given in Table 3.  

The shortcoming of this equation is that it does not account for the influence of the size 
of droplets on the phase function. However, it can be useful if one is interested not in 
precise numbers but in general understanding of multiple light scattering in cloudy 
media (Zege et al., 1993, 1995; Katsev et al., 1998). 
  The solution of the radiative transfer equation, which describes the 
radiative transfer through cloudy media, is simplified if one uses the expansion of the  
phase function in series: 

( )
0

(cos )s s
s

p a Pθ θ
∞

=
=∑ .                                         (3.28) 

Here (cos )sP θ  is the Legendre polynomial. Note, however, that  in practice the 

number of coefficients sa  could be taken to be finite. It is approximately equal  to  

2kd, where d is the average diameter of particles and k  is the wavenumber 
(Kokhanovsky, 1997). The coefficients sa  for cloudy media calculated with the Mie 

theory at 0.65 mλ µ=  for the PSD (2.3) with 6µ =  are presented in Fig.8. 
Approximate results for them, based on the combination of the geometrical optics and 
the Fraunhofer diffraction,  were obtained by Kokhanovsky(1997, 2001a).  They can 
be used to avoid long numerical calculations with the Mie theory as .efx → ∞  

 We would like to underline,  that both geometrical optics results 
(Kokhanovsky, 1997)  and data, presented in Fig.8, show that the  number  maxs ,   
which corresponds to  the largest coefficient  max

sa   , is equal  approximately to 4 efx /5. 

Also we have approximately: maxs = max
sa /2. 

 It follows from Eq. (3.28), using the orthogonality of  Legandre polynomials: 
 

θ,
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( )
0

2 1
(cos )sin

2s s

s
a p P d

π

θ θ θ θ+= ∫  .                         (3.29) 

In particular, we have: 0a =1 (see Eq. (3.27)) and ga 31 = , where  

( )g p d= ∫
1

2 0

θ θ θ θ
π

sin cos                                      (3.30) 

is the so-called asymmetry parameter. It gives the average cosine of the photon 
scattering angle inside the cloud. Note, that the value of g determines(together with the 

extinction coefficient) the coefficient of photon diffusion [ ] 1
3 (1 )extD gσ −= −  in a 

cloudy medium. 
            We stress that  it is the value of integral (3.30) (and not the  phase function 
itself), which determines a number of  important  radiative characteristics of clouds 
(Zege et al., 1991). For instance, we have for the value of the total cloud reflectance  or 

the spherical albedo (Kokhanovsky, 2001a): exp( 4 / 3(1 ))r gβ= − − . Here we 

assumed that the cloud is semi-infinite. Thus, the asymmetry parameter needs a special 
attention. We will consider this parameter in   next Section in more detail. 
 
3.1.4 The asymmetry parameter 
Let us represent the phase function ( )p θ  as 

( ) ( ) ( )D D G G
sca sca

D G
sca sca

p p
p

σ θ σ θ
θ

σ σ
+

=
+

.                           (3.31) 

Here ( )Dp θ  is the phase function associated with the Fraunhofer diffraction of light by 

a droplet,  ( )Gp θ  is the phase function, associated with rays, which penetrate the 

particle, reflect and refract inside the droplet,  and G d
sca scaσ σ  are scattering  coefficients, 

associated with these  processes. Note, that Eq. (3.31) corresponds to the van de 
Hulst’s(1957) localization principle. It holds only approximately and ignores the 
possible interference of  waves ( Glautshing and Chen, 1981) , which originate due to 
separate diffraction and geometrical optics scattering processes. 
              It follows from (3.30), (3.31): 

                                             
D D G G
sca sca

D G
sca sca

g g
g

σ σ
σ σ

+=
+

,                                         (3.32) 

where 

                                       ( )g p dD D= ∫
1

2 0

π

θ θ θ θsin cos ,                                 (3.33) 

                                        ( )g p dG G= ∫
1

2 0

π

θ θ θ θsin cos .                                 (3.34) 

One can obtain (van de Hulst, 1957; Kokhanovsky, 2001) that g D ≈ 1. Note, that the 

function ( )pG θ  does not depend on the size of large particles in visible(van de Hulst, 

1957; Kokhanovsky and Nakajima, 1998). Thus, g G  depends on the refractive index n 
of water only in this case. The value of n does not change considerably in the visible 
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region of the electromagnetic spectrum. We will assume that n = 1.333. Then it 
follows: g G = 0 7686.  (Kokhanovsky, 2001a) and g = 0.8843 according to Eq. (3.32),  

where we accounted for the equality σ σsca
D

sca
G= , which also holds  in the visible region 

of the electromagnetic spectrum(van de Hulst, 1957). The value of asymmetry 
parameter g of water clouds on practice weakly depends on the size of particles and 
wavelength. This dependence can be approximated by the following 
equation(Kokhanovsky, 2001a): 

                                                        0 2 3
ef

C
g g

x
= − ,                                               (3.35) 

  
where C is the constant, which does not depend on the size of droplets(but possibly 
depends on their shape). Results of calculations of the value ( ) 2 3

0C g g x= −  with the 

Mie theory are presented in Fig.9  for  the particle size distribution (2.3)  at 

6,µ = 4efa mµ=  and 1 mλ µ≤ .  One can see that 
1

2
C ≈ . Thus, we have from Eq. 

(3.35) for the value of G =1-g, which is often called the co-asymmetry parameter: 

                                                  
2 / 3

1
0.12

2 ef

G
x

= + .                                                   (3.36) 

This  is the  value of G  and not g itself,  which plays an important role in the radiative 
transport in cloudy media. For instance, values of g equal to 0.7 and 0.8  are 
comparatively close to each other. However, correspondent values of  G (0.3 and 0.2 
respectively) differ considerably. One should   remember this fact, while comparing 
cloudy media with different values of the asymmetry parameter.  
 It is important to understand the physical meaning of the parameter G. This 

meaning  can be established using the expansion of  
2

cos 1 ...
2

θθ = − +  in Eq. (3.30). 

Then it follows: 
2

2
G

θ
= , where 2 2

0

1
( )sin

2
p d

π

θ θ θ θ θ= ∫  is the averaged square of 

the scattering angle. Note, that  we neglected high  order terms in the expansion of  
cosθ , which is possible due to a peaked character of the phase function in Eq.(3.30).         
               Thus, we see that it is the average value of the squared scattering angle, 
which is responsible for the radiative transport in cloudy media. In particular, semi-

infinite clouds with similar values of  ratios 2/β θ  have also close values of the total 

reflectance. The smaller values  of  2θ   means that photons  penetrate   to larger 

depths in  cloudy media before their   escape back to the free space, where the source 
of radiation is located. This also makes the total path  lengths of  photons  in cloudy 
media larger, which in turn produces the larger total absorption of radiation inside 

clouds with larger values of  2θ .  

 The total fraction of radiation, absorbed by a semi-infinite cloud is given by the 
following expression (Kokhanovsky, 2001a):   
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1 exp 4
3(1 )

A
g

β  = − − −  
 

or 

2

2
4

3
A

β
θ

=  

as 0.β →  Clearly, the ratio  

2

A
n

ν
β β θ

= ≈ , 

where 4 2 / 3ν =  can be used as an estimation of the average number of photon 

scattering events in a cloud layer. It is inversely proportional to 2β θ . So smaller 

values of β  and  2θ   give us larger values of  n as one might expect. 

 Eq.(3.36) can be used only for nonabsorbing channels (e.g., in visible). 
However, it can be modified  in  a full analogy with Eq. (3.23) to account for light 
absorption at 1 mλ µ≥ (Kokhanovsky, 2001a): 

                                                  
2 /3

1
0.12 0.15

2 ef
ef

G a
x

α= + − .                                 (3.37) 

 Comparisons of calculations with simple Eq. (3.37) and the Mie theory are 
presented in Fig.10. They  were performed  for the particle size distribution (2.3)  at  

6,µ = 4  and 6ef efa m a mµ µ= =  for wavelengths  2.4 mλ µ≤ .    It follows that the 

accuracy of Eq.(3.37) is better than 5%   at 6efa mµ=   in visible and near infrared till 

2.3 .mλ µ≤  It is also better than 5% for droplets with 4efa mµ= , but for values of 

2.0 .mλ µ≤  
 Another important characteristic of the phase function of a cloudy medium  is 
the probability of light scattering in the backward hemisphere: 

                              ( )
/ 2

1
sin cos

2
F p d

π

π

θ θ θ θ= ∫ .                                 

It was shown (Kokhanovsky et al., 1998)  that it holds approximately for water clouds: 

2 3

1
0.03

5 ef

F
x

= + . 

 It suggests that  approximately  97% of light is scattered by a local volume of a 
cloudy medium  in the range of angles smaller than 90 degrees. The backscattering 
signal is, therefore, quite low. It increases, however, due to multiple scattering 
processes, which take place  inside a cloud. 
 
3.2. Ice clouds 
3.2.1. Extinction coefficient 
 Local optical characteristics of ice and mixed clouds can not be calculated so 
easy as it could be done for water clouds. In particular, one can not rely on the Mie 
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theory (Shifrin, 1951) anymore. This is related to the complex shape and internal 
structure of ice crystals (Takano and Liou, 1989; Macke, 1993, 1994; Macke et al., 
1996, 1998;  Mitchell and Arnott, 1994; Yang and Liou, 1998, 2000, 2001). Main 
results obtained in the optics of crystalline media were summarized by Volkovitsky et 
al. (1984) and Liou (1992). 
 The size of ice crystals is usually much larger than the wavelength of the 
incident radiation. Thus, the extinction cross section Cext  does not depend on the 
wavelength and the refractive index of particles(Shifrin, 1951; van de Hulst, 1957): 
 

C sext = 2 ,                                      (3.38) 
 
where s is the cross-section of a particle, projected on the plane perpendicular to the 
incidence direction. It follows for N identical crystals in a fixed orientation: 
 
                                                                            σ ext Ns= 2 ,                                  (3.39) 
 
where N is number concentration of particles and σ ext  is the extinction coefficient. 
However, identical crystals do not exist in ice clouds. They differ by their shape, size 
and orientation.  The extinction coefficient can be calculated as 
 
                                                                           σ ext Ns= 2 ,                                  (3.40) 
  
where s  is the average cross section of particles. This equation can be written in the 
following form: 
 

V

s
Cvext 2=σ ,                                (3.41) 

 
where Cv  is the volumetric concentration of crystals and V  is the average volume of 

crystals ( C NVv = ). It follows for convex crystals of the same shape in random 

orientation(van de Hulst, 1957): Σ = 4s , where Σ  is the average surface area of 
particles. Thus, one can obtain: 
 

σ ext
v

ef

C

a
=

3

2
,                                  (3.42) 

  

where 
Σ

= V
aef

3
 is the effective radius of particles. This result is similar to Eq. (3.7). 

Only a portion of ice crystals (e.g., hexagonal plates and columns) are convex. For this 
and other reasons one should expect that Eq. (3.42) will provide us with only  a  coarse 
approximation. Let us introduce the equivalent size of crystals: 
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ext

v
e

C
a

σ2

3
= .                                           (3.43) 

 
Then it follows instead of Eq. (3.42): 
 

                                                                      σ ext
v

e

C

a
=

3

2
.                                         (3.44) 

 
Crystal media with particles of different shape, orientation and size can be 
characterized in this case just by one number, namely the equivalent size ae . This size 
is equal to the effective radius  for spherical polydispersions or convex crystals. 
  
3.2.2 Absorption coefficient    
 The absorption cross section of a single crystal can be found in a full analogy 
with Eq.(3.16): 

absC B Vα= ,                                        (3.45) 

where V is the volume of a crystal, α πχ λ= 4  and B  is the coefficient 
proportionality, which depends on the shape and real part of the refractive index of 
particles, but not on their size.This follows from Eq. (3.14). 
 It follows for the ensemble of crystals of identical shapes: 
                                                                    abs vB Cσ α=  .                                      (3.46) 
Let us suppose now that we have N distinct shapes of crystals in a cloud. Clearly, it 
follows  instead of  Eq. (3.46) in this case: 

                                                                    
1

.
N

abs j v j
j

B Cσ α
=

= ∑                                 (3.47) 

The values of jB  do  not depend on the imaginary part of the refractive index and the 

size of crystals. They depend only on the real part of the refractive index n of crystals 

and their shapes. Thus, the most probable values of B
1

1
.

N

j v j
jv

B C
C =

= ∑  in crystalline 

clouds  can be found from experimental measurements of ratios σ αabs vC  in ice 
clouds of different microstructures. 
  The probability of photon absorption β σ σ= abs ext  can be found from Eqs. 
(3.44), (3.47). Namely, it follows: 
 

eaβ α= Ξ ,                                    (3.48) 

where   

                                                                           
1

2

3

N

j vj
jv

B C
C =

Ξ = ∑                            (3.49) 

It is readily apparent from this equation that the single scattering albedo 
 

0 1 ew aα= − Ξ                                    (3.50) 
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for crystalline media. The generalization of these equations on the case of  arbitrary 
light absorption by droplets was given by Kokhanovsky and Macke(1998). 
 
 
3.2.3 Phase function 
 The phase function of ice clouds in visible is again the average on the ensemble 
of phase functions of crystals with  different shapes. It depends on the size of crystals 
in the small-angle scattering region. Mostly  shape and structure  of crystals is 
important at larger scattering angles. The phase function of  hexagonal crystals outside 
the diffraction region  is  presented in Fig.12. This phase function was obtained using 
the Monte-Carlo ray tracing approach (Macke, 1994) for hexagonal ice cylindres in 
random orientation at the wavelength 0.5 mµ . All cylinders were assumed to be 
identical and having  the length 0.5 mm. The side of the cross-section was taken to be 
equal to 0.08 mm.  One can see that the main feature of phase functions of this type are 
halos near the scattering angle 22 and 46 degrees. Greenler (1980) states that he 
observes 22�  halos in Wisconsin on 70 to 80 days of a typical year. So these halo often 
appear in natural conditions. The second halo at 46 � is  of a rare occurrence in natural 
conditions due to the presence of crystals of other shapes, which wash out halo 
phenomena. Both rainbow and glory (Tricker, 1970; Greenler, 1980; Konnen, 1985) 
are absent for ice clouds. 
  These features  can be used to find the thermodynamic phase of clouds from 
space on a global scale. The knowledge on the thermodynamic phase of  clouds  is of 
practical importance for climate studies. This is due to the fact that warm and ice 
clouds behave differently in respect  to both   solar and terrestrial radiation(Liou, 
1992).  
 More realistic  phase function of a crystalline cloud, which accounts also for the  
diffraction of light at small angles and size/shape distribution of crystals is tabulated by 
Takano and Liou(1989) and Liou(1992). It is characterized by  the value of the 
asymmetry parameter g=0.75. 
 One of possibilities to avoid the calculation of phase functions of crystals of 
different shapes is to introduce the single “fictive” particle with the phase function, 
which is similar to the phase function of an ensemble. Clearly, the statistical properties 
of the surface of this particle should be somehow related to the statistical properties of 
an ensemble of scatterers. Particles with random stochastic surfaces were studied by 
Peltoniemi (1993), Macke(1994) and Muinonen et al., 1996. Depending on the 
parameters of roughness, they can quite well describe the phase functions of ice 
crystals(Macke, 1994) and mineral fraction of the atmospheric aerosol(Volten et al., 
2001).  
 Th phase functions  of a “fractal” particle  is  presented in Fig.13(Macke et al., 
1996). It is characterized almost the same value of the asymmetry parameter as the 
phase function, presented in Fig.12 ( )0.74g ≈ .  However, it is better suited to the 

description of complex systems such as crystalline clouds. In practice, one can use 
linear combinations of  functions presented in Figs. 7, 12, 13. The weights of different 
contributions depend on the  concentration of spherical particles, hexagonal cylinders 
and irregularly shaped particles in the cloud. Note, that other regular shapes such as 
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plates can also contribute to the total phase function of an elementary volume of a 
cloudy medium. 
 Another complication is related to the horizontal orientation of crystals, which 
was found to be the case at least in 40%  of ice cloud pixels studied, using satellite 
data, by Chepfer et al.(1999). The radiative transfer in  ice clouds with  horizontally 
oriented crystals  was studied in detail by Liou(1992). 
 
3.2.4 Asymmetry parameter 
 Asymmetry parameters of phase functions of ice crystals in visible  depend on 
their shape, but not on the size of crystals (Macke et al., 1996; Kokhanovsky and 
Nakajima, 1998). This is due to large size of ice crystals in comparison with droplets. 
So wave corrections, such as given by the second term in Eq. (3.36), can be neglected.  
The real part of the refractive index of ice crystals is also of importance. However, it 
varies only slightly in the visible and this dependence can be   neglected. Thus, the 
asymmetry parameter of the phase function of ice clouds  will be the average value for 
an ensemble of particles of different shapes. Macke et al. (1998) found  from extensive 
numerical calculations that the asymmetry parameter g  is in the range 0.79 – 0.85 for 
columns, 0.83-0.94 for plates and 0.74 for polycrystals, represented by a ‘’fictive’’ 
fractal particle, in visible.  It is in the range 0.83-0.87 for spherical droplets. We see, 
therefore, that the value of g for  cloudy media  with ice crystals should be somewhere 
between 0.74 and 0.87 . The larger values of g  mean that ice clouds are  composed of 
plates only, which is never the case in natural conditions.  We see  that the co-
asymmetry parameter   G=1-g changes by 100% from 0.13 for water clouds  till   0.26  
for irregularly shaped particles. These numbers are given  only for the general 
orientation. What is the actual value of  g  for a given cloud  can be found   only from 
direct measurements in natural ice clouds. Such measurements were performed, e.g., 
by Garett et al.(2001), who found that the value of g is in the range 0.73-0.76, 
depending on the cloud area under investigation. Values of g  were obtained  from 
measurements  of the phase function inside the ice  cloud  in the range of angles 10-
175 degrees. In  one case the value of g was appeared to be equal to 0.81. However, the 
crystals were evaporating in that area. So it can be   considered  as untypical case.  We 
see that the asymmetry parameter of ice clouds does not vary considerably in visible  
and in average it is equal to 0.745, the value, which is  close   to that for a ‘’fractal’’ 
fictive particle. It is also close to the value of g   hexagonal crystals, which give the 
phase function, presented in Fig.12.  
 It is our believe, that the asymmetry parameter of crystal clouds  should be 
taken as equal to 0.74 for the theoretical modeling  of light propagation in crystal 
clouds. The correspondent value of G is equal to 0.26. This number does not depend on 
the size of crystals due to  their large size as compared to the wavelength. It does not 
depend on the shape of crystals, because for a given cloud we have a statistical  and 
very broad distribution of shapes, which produce  in the end  a saturated value of g for 
a completely chaotic scattering. This scattering can be modeled  by a single  fractal 
‘’fictive’’ particle. It should be stressed, however, that  the calculation of g involves  
the averaging on the  scattering angle(see Eq. (3.30)). Thus, the  model of a chaotic 
scattering  is more appropriate for the value of g than for the phase function itself. The 
phase function should be modeled as a combination  of light scattering by regular and 
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irregularly shaped particles with different weights as discussed above. Again such a 
model can be established only from measurements, performed in natural clouds. 
 Now we consider briefly  the case of mixed ice – water clouds. Then we have 
for the value of G: 
                                                                i W WG G c G= + ,                                    (3.51) 
 
where iG  and WG  are co-asymmetry parameters of ice and water particles  

respectively, Wc  is the  fraction of water droplets in a mixed cloud, defined as the ratio 
of number of droplets to a total number of particles in a mixed cloud. We see that one 
can obtain  the  value of  Wc   from measurements  of G. This is an important parameter  

not only for cloud , but also for Earth climate research.  The variability of  WG  in 
mixed clouds is  not very large. So, in the first approximation, we can assume the 
constant value of  WG . Measurements of  Garett et al. (2001) suggest that 0.26iG =  

and WG =0.13.  Then we have from Eq. (3.51): 

                                                                    2
0.13W

G
c = −                                        (3.52) 

or approximately: 

                                                                      
2

2
4Wc

θ
= −   .                                (3.53) 

The correlation between values of  G and  Wc  were confirmed experimentally with the 
square of the correlation coefficient equal to 0.52 (Garett et al., 2001). 
 It is evident ( Kokhanovsky and Macke, 1998; Kokhanovsky, 2001a) that  in 
the near-infrared range of the electromagnetic spectrum  the size of crystals generally 
influences  the asymmetry parameter in such a way that  the asymmetry parameter 
becomes larger. Detailed calculations of optical characteristics of ice crystals in 
infrared  for  different shapes  of crystals  were performed by Zhang and Xu(1995) and 
Macke et al.(1998). Different parametrization schemes for local optical characteristics 
of ice clouds were developed by Ebert and Curry(1992), Fu and Liou(1993), Fu(1998), 
Kokhanovsky and Macke(1998), Yang et al.(2000), Harrington and Olsson(2001). 
 
4. Global optical characteristics of cloudy media 

4.1 The visible range  
Let us consider now the global optical characteristics of clouds, such as 

their reflection and transmission functions(van de Hulst, 1980). They  can be measured 
remotely by airborne, satellite and ground-based radiometers and 
spectrometers(Kondratyev and Bunenko, 1984). The task of this Section is to introduce 
simple formulae, which can be used for the cloud global optical characteristics 
calculations. We will start from the reflection function of a cloudy medium under  an 
assumption that the cloud can be represented as a  homogeneous plane-parallel layer. 
The absorption of  light by particles is neglected.  

The reflection function of a cloud ( )0 , ,R ϑ ϑ ϕ  is defined as the ratio of reflected light 

intensity ( )0 , ,I ϑ ϑ ϕ  for the case of a cloud to that of an ideal  Lambertian  white reflector 
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( ) ( )
( )

0
0 *

0

, ,
, ,

I
R

I

ϑ ϑ ϕ
ϑ ϑ ϕ

ϑ
= ,                                                             (4.1) 

where 

( )*
0 0cosI Fϑ ϑ=                                                                    (4.2) 

is the intensity of light reflected from the ideally white Lambertian  reflector, Fπ  is the solar 
flux on the area perpendicular to the direction of incidence, 0ϑ  is the solar angle, ϑ  is the 

observation angle and ϕ  is the relative azimuth between solar and observation directions. 

Also 0 0cos , cosµ ϑ µ ϑ= = .  It follows for the Lambertian ideally white reflector from Eq. 
(4.1): 1R ≡ . This result does not depend on   the viewing geometry by definition. 
  Although clouds are white when looking from space, their reflection 
function ( )0 , ,R ϑ ϑ ϕ  is not equal to one. It depends on the viewing geometry. The results of 

calculations  of the reflection  function of an idealized semi – infinite nonabsorbing water 
cloud ( )0

0 , ,R ϑ ϑ ϕ∞  at the wavelength λ  = 650 nm  and the nadir observation are presented in 

Fig.13. Calculations were performed for the  gamma particle size distribution (2.3) at 6.µ =  
The values  of the effective radius in Fig. 13 were  6 and 16 micrometers. This covers  the 
typical  range of variability of  the  effective radius in  natural water clouds. We see that the 
function ( )0 , ,R ϑ ϑ ϕ   can   be   smaller  and larger than 1  depending on the  incidence angle. 

This implies  that  for particular viewing  geometries  cloud is even more reflective than the 
ideally white Lambertian surface.  This is mostly  due to peculiarities of the phase function of 
cloudy media (e.g., in the backscattering  ( )0 ,   ϑ ϑ ϕ π≈ ≈  region ) for comparatively thick 

clouds. It follows from Fig.14 that in the range of solar angles 30 – 60 degrees and nadir 
observation the reflection function of a water cloud is almost equal to the reflection function 
of an ideally white Lambertian reflector. It differs from 1 not more than by 10% for these 
geometries. 

The reflection function ( )0
0 , ,R ϑ ϑ ϕ∞  can be represented by the following simple 

approximate equation (Kokhanovsky, 2002): 

( ) ( )
( )

1 2 00
0

0

cos cos
, ,

4 cos cos

b b p
R

ϑ ϑ θ
ϑ ϑ ϕ

ϑ ϑ∞

+ +
=

+
                             (4.5) 

where ( )0 0arccos cos cos sin sin cosθ ϑ ϑ ϑ ϑ ϕ= − +  is the scattering angle, ( )p θ  is the phase 

function of a cloudy medium, 1 2 and  b b   are constants. Eq. (5) obeys to the reciprocity 
principle (Zege et al., 1991). We have  for nadir observations (Kokhanovsky, 2002): 

1 21.48, 7.76b b= = . The comparison of approximate and exact data in Fig. (13)  shows  that 

the  accuracy of Eq. (4.5) is better than 2% at 0 85ϑ < � .  Constants 1 2 and  b b   for other 

viewing  geometries  can be found using parametrizations of results obtained from the exact 
radiative transfer codes (see, e.g., Mishchenko et al., 1999). Approximations for the function 

( )0
0 , ,R ϑ ϑ ϕ∞  were also obtained by Melnikova et al.(2000). 

 Eq. (4.5) can be also  used  to find the reflection function of a  finite cloud 

( )0, , ,R µ µ ϕ τ  via the following equation (Germogenova, 1963; van de Hulst, 1980, Minin, 

1988): 
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( ) ( ) ( ) ( ) ( )0
0 0 0 0 0, , , , ,R R t K Kµ µ ϕ τ µ µ ϕ τ µ µ∞= − ,                                 (4.6) 

where 

( )
1

0.75 1
t

gτ α
=

− +
                                                                 (4.7) 

is the global transmittance of a cloud, ( )0K µ  is the escape function. The escape function is 

defined via the solution of the characteristic integral equation (van de Hulst, 1980). Note that 
parameters α  and g in Eq. (4.7) are defined as follows(Sobolev, 1972): 

( )
1

2
0

0

3 K dα µ µ µ= ∫ ,                                                                 (4.8) 

( )
0

1
sin cos

2
g p d

π

θ θ θ θ= ∫ .                                                            (4.9) 

It should be pointed out that the escape  function ( )0K µ  only weakly depends on the 

cloud microstructure and can be presented by the following simple equation (Zege et al., 1991; 
Kokhanovsky, 2001a): 

( ) ( )0

3
1 2

7
K µ µ= + .                                                              (4.10) 

The function  ( )0K µ  calculated with exact radiative transfer code for g  equal to 0.75, 0.85, 

and 0.9  in the case of Heney-Greenstein phase function is presented in Fig.14. We see that 

( )0K µ  almost  does not depend on  g at 0.2µ ≥ ( 78ϑ < � ) . This is the case even  for g=0 and 

for the Mie-type phase functions.  At the range of observation angles 80 90ϑ = −� �  there is 
some dependence of the escape function  on the microstructure of the cloud. However, the 
cloud top nonhomogenity  plays a role at such grazing observation angles. So the problem can 
not be solved in the plane-parallel layer approximation in this case anyway.  

The variability  of  ( )0K µ   at 0.2 1.0µ = −  for different values of the average cosine 

of the scattering angle g=0.75 – 0.9  is well inside 2% sensitivity  corridor. This coincides 
with the error of Eq. (4.10) at 0.2µ ≥  is smaller than 2%.  Our  discussion confirms the wide 
range of applicability of Eq. (4.10) in cloud optics. Note, that function (4.10)  also describes 
the angular distribution of  solar light transmitted by a cloud(Kokhanovsky, 2001a). 

The substitution of  Eq.( 4.10) into Eq. (4.8) yields: 

 
15

1.07
14

α = ≈                                                                     (4.11) 

independent  of cloud microstructure. It should be pointed out that the value of α , numerically 
calculated by King (1987),  assuming the fair weather cumulus cloud model,  is given 
approximately by 1.07α = , i.e., in agreement with our estimation. King(1987)  used the Mie 
theory to find the phase function of a cloudy medium. Yanovitskij (1997) found the same 
value of α  for Heney-Greenstein phase functions with asymmetry parameters in the range 
0.0-0.9. This supports the approximation of using a   fixed  value of  α  in Eq. (4.7) ,  given by 
(4.11), independent  of a   cloud microstructure. 

The accuracy of Eq. (4.6)  is illustrated in Figs.15a,b. The error is less than 3% at 
5τ ≥  and 0.65 .mλ µ=  This range of optical thicknesses is that  most frequently observed   in 

water clouds both with satellite and ground-based techniques (see Fig. 16, prepared from data 
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given by   Trishchenko et al.(2001).  The small almost constant error at 30τ ≥  is mostly due 
to the error of approximation (4.5) for a semi-infinite cloud. Errors are negligibly small for all 
practical purposes for  optically thick cloud fields. 

Eq. (4.6) is readily can be easily modified to account for the Lambertian light 
reflection from the underlying surface (Sobolev,1972): 

( ) ( ) ( ) ( )0
0 0

ˆ , , , , , ,
1

AT T
R R

Ar

µ µ
µ µ ϕ τ µ µ ϕ τ= +

−
,                                         (4.12) 

where R̂  is the reflection function of a Lambertian surface-cloud system, A is the spherical 

albedo of the Lambertian surface, which may  depend  on the wavelength,  ( )ˆ 0R R A≡ = ,  

( ) ( )0T tKµ µ=                                                   (4.13) 

 is the diffuse transmittance  of a cloud layer (Sobolev, 1972) and r is the spherical albedo of a 
cloud. Due to the  energy conservation law we have that  r = 1 – t  in visible, where we 
neglect small  light absorption in a cloud body.  Note, that we have neglected the direct solar 
light term in Eq. (4.12). This is possible due to a large thickness of  clouds under 
consideration. 
 Finally, substituting Eq. (4.6) and Eq. (4.13)  into Eq. (4.12) we have for the reflection 
function of a Lambertian surface-cloud system: : 
 

( ) ( ) ( ) ( ) ( )0
0 0 0 0 0

1ˆ , , , , ,
1 (1 )

t A
R R K K

A t
µ µ ϕ τ µ µ ϕ µ µ∞

−
= −

− −
. (4.14) 

 
This  formula can  be used as a basis for the semi-analytical cloud retrieval algorithm . 

Note, that ( ) ( )0
0 0

ˆ , , , , ,R Rµ µ ϕ τ µ µ ϕ∞≡  at A=1. 

 
4.2 The near-infrared range. 

Unfortunately, relatively  simple Eq. (4.6) can not be applied to the 
calculation of the reflection function of a finite cloud in the near-infrared region of the 
electromagnetic spectrum because of due to the presence of absorption bands of liquid 
water. Alternatively, the following formula applies (Germogenova, 1963; van de Hulst, 
1980;  King, 1987; Nakajima and King, 1992): 

( ) ( ) ( ) ( )
2

0 0 02 2
, , , , ,

1

mle
R R K K

l e

γτ

γτµ µ ϕ τ µ µ ϕ µ µ
−

∞ −= −
−

,                         (4.15) 

where γ  is the diffusion exponent, ( )K µ  and R∞  are the escape function and the reflection 

function of an absorbing semi-infinite medium with the same local optical characteristics as a 
finite layer under study. Eq. (4.15) accounts for the influence of  light  absorption  on the 
reflection function of  clouds. Clearly, the reflection function decreases if additional absorbers 
are present in cloud droplets.  

Constants l and m are defined by the following integrals(van de Hulst, 1980): 

( )
1

2

1

2l i dη η η
−

= ∫ ,                                                                  (4.16) 

( ) ( )
1

0

2m K i dη η η η= −∫ ,                                                            (4.17) 
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( )i η  being the angular distribution of light  in deep layers of a cloud , where so-called 

asymptotic regime takes place (Sobolev, 1972).  
Functions ( ) ( )0, , , R Kµ µ ϕ µ∞  and constants m and l have the following asymptotic 

forms  when light absorption by droplets is relatively small( 0 1ω → ) (van de Hulst, 1980): 

( ) ( ) ( ) ( ) ( )0 0
0 0 0 0 0

1-
, , , ,   -  4  

3 1-g
R R K K

ωµ µ ϕ µ µ ϕ µ µ∞ ∞= ,                                    (4.18) 

 

( ) ( ) ( )
0

0

1-
1 2   

3 1-g
K K

ωµ µ α
 

= − 
 
 

,                                                     (4.19) 

 

( )
01-

8
3 1-g

m
ω= ,                                                                   (4.20) 

 

( )
01-

1 4
3 1-g

l
ωα= − ,                                                                (4.21) 

and ( ) ( )0 03 1- 1-    as the single scattering albedo  1gγ ω ω→ → . Thus, at 0 1ω = : 

( ) ( )0
0,    R R K Kµ µ∞ ∞= = ,   m=l=0  and Eq. (4.15) transforms into Eq. (4.6).  

Note, that Eqs. (4.18) – (4.21) follow from the asymptotic analysis of the radiative 
transfer equation. The integration of Eq.(4.18) with respect to all angles yields: 1 ,r y∞ = −  

where 01
4

3(1 )
y

g

ω−=
−

 and  r∞  is the spherical albedo of an absorbing semi-infinite cloud (van 

de Hulst, 1980). Thus, the parameter y can be interpreted as a fraction of photons, absorbed in 
a weekly absorbing semi-infinite cloud. It depends both on the single scattering albedo and the 
asymmetry parameter. Clouds having larger values of g, therefore, absorb more light. Larger 
values of g imply that  photon scattering increases at small angles. Thus  the photon path 
length before its escape from the medium is also increased. As a consequence, this results in 
increased  light absorption in the medium. Media  having different values of 0ω  and g, but the 

same values of y, have the same values of r∞ . The parameter y  (devided by four)  is called the 
similarity parameter(van de Hulst, 1980). It is a useful parameter, describing the optical 
properties of clouds. Substituting y into Eqs. (4.18) – (4.21) yields: 

( ) ( ) ( ) ( )0
0 0 0 0 0, , , , -R R yK Kµ µ ϕ µ µ ϕ µ µ∞ ∞=  ,                                           (4.22) 

( ) ( )0 1
2

y
K K

αµ µ  = − 
 

   ,                                                        (4.23) 

2m y=     ,                                                                     (4.24) 
and 

1l yα= − .                                                                       (4.25) 

Eqs. (4.22) – (4.25) were derived assuming that 0 1ω → . Alternatively, the right-hand sides  of 
Eqs. (4.22) – (4.25)  give  us  the first terms  of the expansion  of  correspondent  functions 
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with respect to y. The accuracy of equations decreases with 0ω . The higher  terms of the 
expansions are  not known  or quite complex (Minin, 1988). However, it has been shown that 
the following  equations  account approximately  for higher order terms    ( Rozenberg, 1962; 
Zege et al., 1991; Kokhanovsky et al., 1998): 

( ) ( )( )0
0 0, , exp , ,R R yuµ µ ϕ µ µ ϕ∞ ∞= − ,                                                (4.26) 

( ) ( ) ( ) ( ) ( )-2y
0 0 0 0= 1-emK K K Kµ µ µ µ ,                                                         (4.27) 

( )expl yα= − ,                                                                   (4.28) 

where a  viewing function  is defined by 

( ) ( ) ( )
( )

0 0 0
0 0

0

, ,
, ,

K K
u

R

µ µ
µ µ ϕ

µ µ ϕ∞

=                                                       (4.29) 

and   does not depend on 0ω  and τ . The viewing  function  has a small dependence  on the 

microstructure of clouds (e. g.,  the droplet size distribution). This follows from the low 
sensitivity  of  the functions ( ) ( )0

0 0, , ,    R Kµ µ ϕ µ∞   in Eq. (4.29)  on  the microstructure of 

clouds (see   Figs. 13, 14) . 
 It should be stressed that the approximations, which lead to  Eqs. (4.26) – (4.28) , 
avoid the solution of integral equations (van de Hulst, 1980; Yanovitskij, 1997)  for the 
determination of functions  ( ) ( )0, ,    and   R Kµ µ ϕ µ∞  in Eq. (4.15). Eqs. (4.26), (4.28) yield 

the  transform to exact asymptotic results (4.22) , (4.25) as 0y → . 
 Substituting  Eqs. (4.27) - (4.28)  into  Eq. (4.15),  we have: 

( ) ( ) ( ) ( )0 0 0 0 0, , , , , x yR R te K Kµ µ ϕ τ µ µ ϕ µ µ− −
∞= − ,                        (4.30) 

a new parameter  x γτ=  and the global transmittance  t is given by: 

( )
sinh

sinh

y
t

y xα
=

+
                                                     (4.31) 

Eq. (4.31) yields Eq. (4.7) at 0 1.ω =  Note, that the value of    exp( - x )  describes the 

attenuation of light field in deep layers of a cloud (van de Hulst, 1980).  
Eq. (4.30)  was first proposed  by Rozenberg(1962, 1967). However, his derivation 

differs from that presented here. Also he assumed that 1α = , which is not consistent with the 
exact asymptotic result, given by Eq. (4.7). 
 The range of applicability of Eq. (4.26) with respect to higher values of   y   can be 
readily extended using the  following simple correction: 

( ) ( ) ( ) ( )( )0
0 0 0, , , , exp 1 , ,R R y cy uµ µ ϕ µ µ ϕ µ µ ϕ∞ ∞= − − .                          (4.32) 

where c = 0.05. The value of  c was obtained by the parametrization of calculations with exact 
radiative transfer  code (Mishchenko et al., 1999).  The accuracy of Eqs. (4.30) - (4.32)  (see 
Eqs. (4.5), (4.10), as well) for the wavelength 1.55 ,mλ µ=  where water weakly absorbs 
radiation,  has been investigated and the results are presented in Figs. 15 a, b. It was assumed 
that the effective radius of droplets is equal to 6 micrometers and the parameter µ =6 in Eq. 

(2.3). The Mie calculations for this case  yield: 0 0.9935ω =  ,  g =0.8214. It follows from 

Figs. 15 a, b  that Eq. (4.30)  is an accurate representation for 5τ ≥ . The error is less than 2.5 
% for  this case, which is  a relatively small error, compared to the uncertainty in cloud model 
used (e. g., vertically and horizontally homogeneous cloud field). The constant error at 30τ >  
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is mostly due to the error of the approximation  for the reflection function of a semi-infinite 
cloud, given by Eq. (4.32).  
 The comparison of data for wavelengths 0.65 and 1.55 micrometers, presented in Fig. 
15a, show us that the limit of the semi-infinite cloud is achieved more rapidly for infrared 
absorbing wavelengths.  This result  can be used in  the estimation of the droplets size even if 
the optical thickness of clouds itself  is  not   retrieved. The larger absorption  , the more 
quicker the limit of the semi-infinite medium is reached. Interestingly, both curves in Fig. 15a 
cross  around the  optical thickness 10. At optical thicknesses lower than 10,  the reflection 
function at the  absorbing  channel is higher. This is because of  the differences in the phase 
function between  the  visible and infrared spectral regions. More detailed studies of accuracy 
of Eq. (4.30) were performed by Kokhanovsky et al. (1998). 

Eq. (4.30) is used  to determine  the optical thickness and effective radius  from spectral 
reflection function measurements over extended cloud fields (Kokhanovsky and Zege, 1996). 
Eq. (4.6)  is obtained from Eq. (4.30)  for  0 1ω = . 

Surface  reflection is accounted for  by Eq.( 4.12). Substitution of Eq.( 4.30)  into  Eq. 
(4.12) yields: 

 

    ( ) ( ) ( )0 0 0
ˆ , , , , , , exp( ) ,

1

t A
R R x y T

A r
µ µ ϕ τ µ µ ϕ τ µ µ∞

 
= − − − − − 

,                (4.33) 

where  

( ) ( ) ( )0 0 0 0,T tK Kµ µ µ µ=                                               (4.34) 

 
 is the transmittance function of cloud, r is the total reflectance of the cloud,  t is given by Eq. 
(4.31) and  R∞  is given by  Eq.( 4.32). It is assumed  that ( ) ( ) ( ) ( )0 0 0 0tK K tK Kµ µ µ µ≈ . 

This assumption is valid for single scattering albedos close to one. 
  

4.3  The total reflectance 
Let us  find the approximate solution for   the total reflectance  r in Eq. (4.33). Clearly,  the 

value of  1r t≠ −  due to light absorption in a cloudy medium. 
The total reflectance or the spherical albedo r  is defined by (Sobolev, 1972): 

( )
2

0 0 0

0 0 0

2
cos cos , , ,r d d d R

π π π

ϕ ϑ ϑ ϑ ϑ ϑ ϑ ϕ τ
π

= ∫ ∫ ∫  .                           (4.35) 

For the case of  idealized  semi-infinite nonabsorbing clouds (Sobolev, 1972) and as a result of 
the conservation of energy law, 

( )
2 / 2 / 2

0
0 0 0

0 0 0

2
cos cos , , 1d d d R

π π π

ϕ ϑ ϑ ϑ ϑ ϑ ϑ ϕ
π ∞ =∫ ∫ ∫                      (4.36) 

and 

( )
2 / 2

0
0

0 0

1
cos , , 1d d R

π π

ϕ ϑ ϑ ϑ ϑ ϕ
π ∞ =∫ ∫ ,                                     (4.37) 

i. e.  all photons injected into a cloudy medium are reflected back in outer space after an 
infinite travel time. Here ( )0

0 , ,R ϑ ϑ ϕ∞  is the reflection function of a semi-infinite 

nonabsorbing cloud. The  reflection function ( )0
0 , ,R ϑ ϑ ϕ∞  of a cloudy medium only weakly 
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depends on its microstructure (see Fig. 13) and by  by definition, it does not depend on  either 
the optical thickness ext Lτ σ=  or the  single scattering albedo 0 /sca extω σ σ= . Here extσ  is the 

extinction coefficient and scaσ  is the scattering coefficient of a cloudy layer of the geometrical 

thickness L.  
It follows from Eqs. (4.30) and (4.35) for   absorbing clouds: 

 exp( )r r t x y∞= − − − ,                                              (4.38) 
where  

( )
2 / 2 / 2

0 0 0

0 0 0

2
cos cos , ,r d d d R

π π π

ϕ ϑ ϑ ϑ ϑ ϑ ϑ ϕ
π∞ ∞= ∫ ∫ ∫                          (4.39) 

and we taking  for the normalization condition(van de Hulst, 1980)into account: 

( )
1

0

0

2 1d Kµµ µ =∫ .                                                    (4.40) 

The  approximate formula (4.10) for the function ( )0K µ  obeys  the integral relation 

(4.40). The constant r∞  represents  the total reflectance of a semi-infinite layer. 

According to the definition (4.36), 1r∞ =  at 0 1ω = . Eq. (4.39)  is not readily 

analytically integrated  at arbitraty values of 0ω . However, it follows from Eqs. (4.39) 

and  (4.18) as 0 1ω →  (see also the discussion in the previous Section): 

1r y∞ = −  .                                                         (4.41) 
At larger values of  y, using the same substitution as  was used in the derivation of Eq. 
(4.28)  from Eq. (4.25),  we obtain approximately for the integral (4.39): 

exp( )r y∞ = −                                                    (4.42) 

or (see Eq. (4.28)): 1/ .r l α
∞ =  

 Combining  Eqs. (4.31), (4.38), (4.42), we have for the total reflectance of a 
cloud layer: 

sinh( ) exp( ) sinh( )exp( )

sinh( )

x y y y x y
r

x y

α
α

+ − − − −=
+

 .                             (4.43) 

The  substitution of Eq. (4.43)  into Eq. (4.33) enables  the reflection function of a   
cloud  and underlying  surface  to be calculated. 

 The  total light absorptance in a cloud layer is given by:  a =1- r- t, where  r is 
calculated  by (4.43) and t  by (4.31).  As a result, we have the following analytical 
equation for the total light absorbtion inside a plane-parallel cloud having  a finite 
thickness: 

 
sinh( )(1 exp( )) sinh( )(1 exp( ))

sinh( )

x y y y x y
a

x y

α
α

+ − − − − − −=
+

                      (4.44) 

 
It follows as  1:α ≡  
 

sinh( ) sinh( ) sinh( ) sinh( ) sinh( )
, ,

sinh( ) sinh( ) sinh( )

x y x y x y
r t a

x y x y x y

+ − −= = =
+ + +

,               (4.45) 
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which yields the well-known formulae,  presented elsewhere(see, e.g.,  Zege et al. 
(1991) ). 
  Overall,  the global radiative characteristics of cloudy media are well described 

by only two parameters: 0 3(1 )(1 )x gτ ω= − −   and  y 01
4 

3(1 )g

ω−=
−

. The parameter x 

describes the attenuation of a light field in deep layers of semi-infinite weakly 
absorbing media. For  the light intensity in deep layers: ( )( , ) exp( )I xµ τ ψ µ= − , where 

the angular distribution of  light field ( )ψ µ    does not depend on the optical depth τ .  

We see from Eq.(4.42) that 
1

lny
r∞

 
=  

 
. Thus, the  radiative characteristics of optically 

thick cloud  layers are determined by parameters  x and y, which govern light reflection 
and asymptotic regime for semi-infinite turbid  media.  
 
5. Satellite remote sensing of cloudy media 
5.1 The optical thickness  
 Equations, presented in the previous section can be used for a rapid estimations of the 
radiative characteristics of cloudy media. They can be used also to check the accuracy of new 
algorithms, based on the numerical solution of the radiative transfer equation. Clearly, the 
numerical solutions and results, presented above , should converge as τ → ∞  and 0.β →   

Kokhanovsky and Macke(1999) used these approximations to study the influence of 
the shape of particles on the radiative transfer in clouds. They found, e.g., that clouds with 
nonspherical particles are more reflective (larger values of the reflectance) as compared to 
clouds with spherical droplets with the same value of the volume to the particle surface area 
ratio. The opposite is true for the transmittance.  

However, the most important area of the application of these solutions lays in the area 
of remote sensing and inverse problem solutions(Zege and Kokhanovsky, 1996). In particular, 
this approach allows to avoid  or reduce (if thin clouds are also under consideration)  the pre-
calculation and storage of so-called look-up tables(Arking and Childs, 1985;  Rossow et al., 
1989; Nakajima and King, 1990). 
 In particular, we have for the global transmittance from Eq. (4.14) after simple 
algebraic calculations: 

( )1

1 (1 )

A
t

A

− Λ
=

− + Λ
,                                                        (5.1) 

where the function  Λ   is introduced and given by 

( ) ( ) ( )
( ) ( )

0
0 0

0
0 0 0

ˆ, , , , ,
, ,

R R

K K

µ µ ϕ µ µ ϕ τ
µ µ ϕ

µ µ
∞ −

Λ ≡ Λ = .                                     (5.2) 

The analytical results for functions ( )0
0, ,R µ µ ϕ∞  and  ( )0K µ  have been  presented above. 

Thus, the global transmittance t , and, correspondingly, the total reflectance r=1-t  can be 
obtained  from Eqs. (5.1) and (5.2), and a knowledge of  the surface albedo A and the 

measured value ( )0
ˆ , , ,R µ µ ϕ τ .  
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For such a retrieval one does not need to know the optical thickness of clouds and the 
average size of droplets. This is an extremely  important point for climate studies, where the 
global and temporally averaged value of the cloud reflectance r=1-t  is an important 
parameter. It follows that  0.8r <  for natural water clouds in visible (Danielson, 1969), which 
implies that clouds with optical thicknesses larger than 70-100 do not appear. This is not the 
case in reality (Trishchenko et al., 2001).  The paradox is not resolved so far. Most probably 
the reduced reflectance  is related to aerosol absorption in  clouds.  The inhomogenity and 
finite size of clouds also may play a role in this effect. 
 Let us consider Eq. (5.1) in more detail. First of all, t ≡ Λ  at A=0,  secondly, at A=1: 
t=0 and r=1. This shows  that all photons incident on optically thick clouds over bright 
surfaces survive and return back to outer space. They yield no information  about actual cloud 
thickness. This explains  why  the retrieval of cloud parameters over bright surfaces (e.g., 
snow and ice)  can  be  hardly performed in visible(Platnick et al., 2001). The information on 
the global transmittance t can be used to find the scaled optical thickness(Rozenberg, 1978; 
King, 1987), given by 
                                                                      * (1 )gτ τ= −  .                                            (5.3) 
It follows  from Eqs. (4.7) and  (4.49) that 

* 14

3
tτ α− = −  ,                                                (5.4) 

where t is given by Eq. (5.1).  Again the value of *τ  can be obtained  although there is no 
information about  the size of droplets and the actual optical thickness of clouds.     

Eq. (5.4) can be used for the retrieval of  *τ  from the measurement ( )0
ˆ , , ,R µ µ ϕ τ  at a 

single wavelength. The functions ( )0
0, ,R µ µ ϕ∞  and   ( )0 0K µ  in Eq. (5.2) and the parameter 

α  in Eq. (5.4)  are defined by Eqs. (4.5), (4.10),  and (4.11) respectively .  
 Eq. (5.1) can be  used for the derivation of the optical thicknessτ  (see Eq. (5.3) )  if the 
value of g is known(Rossow, 1989). It is around 0.74 for ice clouds  as it was discussed 
earlier. However, for warm clouds the asymmetry parameter g  depends on the size of droplets 

even for nonabsorbing channels (see Eq. (3.35)). Often the  dependence  ( )efg a  is neglected 

and it is assumed that 10efa mµ=  for water clouds (Rossow and Schiffer, 1999). Then it 

follows from Eq. (3.36 ):  g = 0.86 at 0.65 mλ µ= and 10efa mµ= .  Utilising Eq. (5.3), (5.4), 

this value  of   g can be used for a crude estimation of the optical thickness of liquid clouds. 
Clearly, errors can be introduced, if one assumes the fixed a priori defined value of g . It 
follows from Eq. (3.36) at 0.65 mλ µ=  that g = 0.84 - 0.87 at efa = 4 - 20 mµ  . From  Eq. 

(5.4) we have: *Hτ τ= , H 1(1 )g −≡ − ≈  6.3 – 7.6 and *[9.4,11.5] at 1.5τ τ∈ =  ,  depending on 

the value of g used. The assumption that 10efa mµ=  yields : g = 0.86  and H=7.2, 10.7.τ =  

This leads to the relative error 7-14 % in the retrieved optical thickness (i. e., a range of 
possible values from  9.4τ =  to  11.5τ =  instead of 10.7τ = ).  This uncertainty in the optical 
thickness determination  can be removed if measurements in the near infrared region of the 
electromagnetic spectrum are performed, enabling the  size of droplets and, therefore, the 
asymmetry  parameter g  to be estimated. For this, however, we should be sure that we have a 
liquid and not ice or a mixed phase cloud. 
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5.2 The size of droplets 
           As  it was specified above for the correct estimation of the optical thickness of clouds
from space we need to know the effective radius of droplets. The size of droplets  can be found
if the reflection function in near-infrared region spectrum is measured
simultaneously(Nakajima and King, 1990; Kokhanovsky and Zege, 1996). This is due to the
fact that the reflection function in the infrared strongly depends on the probability of photon
absorption by droplets. This probability is proportional to the effective radius  of droplets, as it
was discussed before(see Eq. (3.48)). 

 The  influence of absorption and scattering of light by molecules and aerosol 
particles on the measured value ( )0, , ,R µ µ ϕ τ  is often  neglected  in the cloud  retrieval 

algorithms.  However, correction can be easily taken into account if needed (Wang and King, 
1997; Goloub, 2000).  The  influence of the surface reflection on the cloud  reflection 
function, assuming that the surface is Lambertian with albedo A, is easily taken into account. 
Then  it results (see Eqs. (4.14), (4.33)): 
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1 1

, 1
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,                                  (5.5) 
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     .    (5.6) 

 The subscripts “ 1 “ and “ 2 “ refer to wavelengths 1λ  and 2λ  in visible and near – infrared 

channels respectively. The  values of 1A  and 2A  give us the surface albedos in visible and 
near-infrared. The  explicit dependence of functions involved on the parameters efa  and w  to 

be retrieved  is introduced in brackets. The liquid water path w  is preferred to the optical 
thickness  in   retrieval procedures  due to the  independence of w on the wavelength. The 
optical thickness is uniquely defined if efa  and w are known. 

 The equations (5.5) and  (5.6) form  a nonlinear system  of  two algebraic equations 
having  two unknowns ( efa  and w). Standard methods and programs are  available to solve 

this system. In particular, we can find the value of w from Eq. (5.5)  analytically. The 
substitution of this result in Eq.(5.6) gives us a single transcendent equation for the effective 
radius of droplets determination(Zege and Kokhanovsky, 1996). 
 
5.3 The thermodynamic state of clouds 
 The discrimination of liquid water and ice clouds is of importance for many 
applications, including flight safety and  Earth climate studies. The size and shape of particles 
in warm and ice clouds are different. This influences the energy transmitted and reflected by a 
cloud. 

The discrimination can be performed, taking into account  the difference in angular or 
spectral distribution of reflected light. We present results of calculation of the reflection 
function of  cloudy media with liquid and frozen  water droplets in Fig. 17. It follows from 
this Figure that minima in the reflection function of ice clouds (e.g., near 1.5 and 2.0 mµ )  are 
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moved to larger wavelengths as compared to the case of liquid droplets. This is, of course, due 
to the different in the spectral behaviour of  imaginary parts of the complex refractive index of 
liquid water and ice. Note, that  minima for liquid water  also moved to larger wavelengths as 
compared to the absorption bands of water vapour. These different positions of minima can be 
easily registered with modern spectrometers (see, e.g., Bovensmann et al., 1999). 

Another possibility is to consider different  angular behaviour of the reflection function 
for ice and water clouds at specific scattering geometries(e.g., rainbow , glory and halo 
scattering). In particular, the reflection function  of  water clouds  has a maximum near the 
rainbow scattering angle. This is not the case for ice clouds, which can be also easily detected. 
This feature becomes even more pronounced if the degree of polarization at the rainbow 
geometry is studied(Goloub et . al., 2000; Kokhanovsky, 2000). 

 
5.4 The cloud height and cloud fraction 
 Another important characteristic of a cloud is its height. It can be retrieved, using 
active remote sensing techniques, which are based on the analysis of  data from space-borne 
lidars(Winker and Trepter, 1998). Passive measurements also can be used. For instance, 
Yamamoto and Wark(1961)  proposed to use the oxygen A band, centered at 0.761 mµ . The 
physical basis of this method is simple. Indeed, the reflection function has a deep minimum 
around 0.761 mµ  due to oxygen absorption there. This minimum is not shown in Fig. 17, 
because only scattering  and absorption of light by cloud particles was accounted for in the 
calculation for this figure. Clearly, the depth of the absorption line will depend on the cloud 
height. Indeed, photons can  hardly penetrate thick  clouds and be absorbed by the oxygen  in 
the air column below the cloud. This will lead to the  increase in the value  of the reflection 
function  at  0.761 mµ  for the case of clouds at high altitudes. We see, thus,  that the depth of 
the absorption line is  larger for low clouds.  The practical application of the method, however, 
is not so simple(Kunze and Chance, 1994; Koelemeijer et al., 2001). First of all, the depth of 
line also depends on the the oxygen absorption cross section. The cross section  varies, 
depending on temperature and pressure. Thus, one should use a priori  assumptions on the 
temperature and pressure variation with height in the Earth atmosphere. The generally 
unknown surface albedo can also influence the retrieval accuracy. Other possible sources of 
errors are described in detail by Kuze and Chance (1994) and Koelemeijer et al. (2001). The 
largest complication arises for pixels, which are only partially covered by clouds. One 
possibility is to ignore them altogether. However, this will lead to a big reduction of data. To 
overcome this problem Koelemeijer et al. (2001) proposed the algorithm, which sameltaneosly 
retrieve cloud top height/pressure and cloud fraction. Note, that  global information on cloud 
fraction/cover F  is of considerable importance by itself (Batey et al. 2000). For instance, 
Minnins et al.(2001) found, analysing data of the experiment, performed over Arctic Ocean, 
that the value of F varies in the range 0.55 0.85, depending  on the exact region under study. 
Mean cloud amounts were near 70%(Minnins et al., 2001). Globally, cloud cover fractions are 
somewhat  below this number. However, in any case they larger than 0.5(Liou, 1992). This 
once more underlines the importance of clouds in the radiation balance and atmosphere 
heating rates studies.  
 It is interesting to note that the global cloud cover increased during the past century 
(Palle Bago and Buttler, 2001). This  argues against a dominating role by solar activity (via 
galactic cosmic rays) over cloud formation. 
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5.5 The remote sensing of crystalline clouds 
 The remote sensing of  optical thicknesses and  effective size of droplets in crystalline 
clouds is complicated by their low optical thickness (usually smaller than 5), the high spatial 
and temporal variability of cloud properties  and nonspherical shape of particles. If the 
thickness of  a  crystalline cloud is high, then the optical thickness can be found  in the same 
way as it was discussed above, assuming the asymmetry parameter, equal to 0.74 (see Eqs. 
(5.1)-(5.4)). The problem is to find the correspondent reflection function of a semi-infinite 
medium(see Eq. (5.4)). One possibility is to calculate it beforehand, using the phase function 
of a fractal  ‘’fictive’’ scatterer. 
 For thinner clouds one should bild the pre-calculated table of  reflection functions, 
which should be compared with experimental data to establish both optical thickness of clouds 
and the size/shape  of droplets(Masuda et al., 2002).  This is not an  easy problem. In 
particular, the model of ice spheres can not be used for this purpose (Mishchenko et al.(1995, 
1996); Chepfer et al., 1998;  Rolland et al.(2000); Doutriaux-Boucher et al.(2000)).  

Yang et al. (2001) considered the influence of ice crystals habits and crystal 
dimensions  vertical variability on the satellite cloud retrieval algorithms.  It was accounted for 
more  complex shapes and larger sizes  of crystals near the base of the cloud as compared to 
its top, where crystals are smaller and more rounded. The authors state that the vertical 
distribution of optical characterstics of clouds can be neglected if visible channels are used, 
but  the vertical inhomogenity  should be fully accounted for if one is interested  in the 
average size of particles retrievals (e.g.,  from the measurements of the  cloud reflection 
function  at  2.11 mµ  Moderate Resolution Imaging Spectrometer channel (King et al., 
1992)). The information on the vertical structure of a crystalline cloud is not known a priori. 
This complicates  the retrieval procedure. We see, therefore, that the creation of a suitable 
look-up table for crystalline clouds, is not at all a trivial problem.  
  
 
6. Inhomogeneous clouds 
       6.1 Vertical inhomogenity 
 Vertical  and horizontal inhomogenity of clouds can be dealt with in the framework of 
the Monte-Carlo methods of the radiative transfer equation solutions(Scheirer and Macke, 
2001). This is of  considerable importance for crystalline media, as it was discussed in the 
previous section. Unfortunately, Monte-Carlo methods are extremely slow and can not be 
applied in the operational satellite cloud retrieval algorithms. 
 The account for the vertical inhomogenity, however, can be easily done in the 
framework of the theory of optically thick layers, discussed above. Correspondent equations 
are presented by Sobolev (1972) and Yanovitskij(1997). For the sake of simplicity, we 
consider here only the case of clouds in visible, where light absorption can be neglected. Then 
the reflection function of a vertically inhomogeneous optically thick  cloud  can be presented 
by Eq. ( 4.6 )  as in the case  of a homogeneous layer.  The meaning of parameters in this 
equation becomes different, however. Namely, τ  is the optical thickness of a vertically 
inhomogeneous cloud, 0R∞  is the reflection function of a semi-infinite cloud with the same 
vertical distribution of optical characteristics as a finite cloud and g is the average asymmetry 
parameter. It should be stressed that the value of g does not change with the size of droplets 
considerably. So it can be assumed to be equal to some a priori defined value( say, e.g., 0.86 
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(Rossow and Schiffer, 1999) ). Then, accounting also for the weak sensitivity of the reflection 
function 0R∞  to the size of droplets , we state that Eq.(4.6) can be also applied  to the derivation 
of the optical thickness of vertically inhomogeneous clouds. This suggest that one can not 
retrieve the vertical distribution of extinction coefficient in a cloud  from the reflection 
function in visible. 
          The situation in the near-infrared is not so simple. Here the derived size of droplets 
depends on the average photon penetration depth, which is, of course, the function of the 
wavelength(Platnick, 2000). It means, that the derived effective size of droplets is the function 
of the wavelength. Generally, the absorption increases with the wavelength. So  the 
penetration depth decreases with the wavelength. Thus, we arrive to the conclusion that 
reflection functions larger wavelength (e.g., 2.11 mµ ) will give us values of the droplets radii 
closer to the cloud tops and  reflection functions at smaller wavelengths (e.g., 1.6 mµ ) give us 
the radius of droplets deep inside clouds. These different values of radii  are   considered as a 
shortcoming of the retrieval method for vertically inhomogenious clouds. On the other hand, 
this opens a new possibility to study the vertical distribution of  droplets sizes inside the cloud, 
analysing  spectral reflectances of clouds. 

 In conclusion, we note, that   radii of droplets  increase with height. It means that 
values of radii, retrieved at 1.6 mµ  should be smaller than those obtained from the channel at 
2.11 mµ . This is also observed experimentally(Platnick et al., 2001). 

 
 6.2 Horizontal inhomogenity. 
The real cloud fields are horizontally inhomogeneous. They also have complex shapes, which 
complicates the theoretical modeling (Rogovtsov, 1991; 1999).  This also produces a 
unphysical angular dependence of the cloud optical thickness for different solar angles (Loeb 
and Davies, 1996, Loeb and Coakley, 1998) if the model of the horizontally inhomogeneous 
layer is used in the retrieval procedure for inhomogeneous cloud fields.   Fouilloux et al. 
(2000) found that derived cloud optical thicknesses and effective radii for inhomogenious 
clouds depend on the averaging scale. Therefore, they state, that comparisons between aircraft 
measurements and satellite observations not be valid for heterogeneous clouds(which is the 
case for most of the clouds). This puts  the validation of cloud satellite products with airborne 
radiometers in question.  

Approximations for horizontal photon transport within real-world clouds were 
developed by Platnick(2001). In particular, he derived analytic approximations for the root-
mean-square horizontal displacement of reflected and transmitted photons, relative to the 
incident cloud-top location. Usually the influence of the  horizontal inhomogenity of clouds on 
their  radiative charactersitics is studied in the framework of the independent column (or pixel) 
approximation (Cahalan et al., 1994). This approximation neglects the horizontal photon 
transport between adjacent columns. Then one can obtain for the reflection function of a pixel 
in the framework of this approximation(Pincus and Klein, 2000): 

                                                                        ( ) ( )
0

R R f dτ τ τ
∞

= ∫ ,                                 (6.1) 

where ( )f τ  is the optical thickness distribution function for  a given pixel and ( )R τ  is the 

reflection function for a  horizontally homogeneous cloud with a given optical thickness τ . 
The accuracy of this approximation was studied by Cahalan et al. (1994),  Fu(2000) and 
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Scheirer and Macke(2001). It was found that this approximation has a high accuracy  for the 
domain-averaged radiative fluxes. 
 It is known  (Cahalan et al., 1994) that ( )R R τ< , where τ  is the average optical 

thickness. It means that the values of τ , obtained, from measurements over horizontally 
inhomogenious clouds in the assumption of a horizontally homogeneous plane-parallel clouds, 
are underestimated. So the correction of the optical thickness obtained  by an empirical factor 
is needed (Rossow and Schiffer, 1999).  
 It is difficult to apply Eq.(6.1) to the radiative transfer problem analysis due to the
necessity  to perform calculations ( )R τ  many times for a given pixel. The problem can be

greatly simplified if  one uses approximate analytical solutions, which are valid for optically
thick clouds,  together with analytical forms for the function ( )f τ ,  which is usually given by

the gamma (Barker, 1996) or the  lognormal (Nakajima  et al., 1991) distributions. The lower
limit of integration should be set equal to 5 in this case. The integral  in the range from 0 to 5
can  be estimated using the exact radiative transfer equation. This contribution is, however,
small  at large values of  τ , where is can be neglected, providing the possibilty of analytic
integration in Eq. (6.1). 
  
  
7. Conclusion 
 The main idea of this review was to consider various approaches to calculate  local and
global optical charactersitics of cloudy media. Main tools reviewed are geometrical optics
approximation and  the theory of optically thick turbid layers. Both theories can be substituted
by exact solutions (the Mie theory for local optical chatacteristics and the radiative transfer
theory for the radiative charactersitics) in the case of homogeneous clouds with spherical
particles. However, they appear to be very important in  bringing  the forward propagation
model closer to the reality(e.g., nonspherical shape of crystals, effects of cloud inhomogenity).
They allow to consider cases,  which difficult or impossible  to handle with exact techniques.
Another important feature of the approximate methods is the possibillity  to simplify  inverse
problems of  cloud optics. 
 The polarization of light by cloud droplets and crystals was not considered in detail 
here. However, it should be stressed that the account for light polarization brings us new 
possibilities to detect and characterize cloudy media (Hansen and Hovenier, 1974; Wauben, 
1992; Goloub,2000; Kokhanovsky, 2000, 2001a,b).  
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Figure captions 
 
Fig.1  Real part of the refractive index of water and ice. 
Fig.2  Imaginary  part of the refractive index of water and ice. 
Fig.3 The extinction coefficient of a cloudy medium with  water droplets, characterized by the 
PSD (2.3) at 4efa mµ= , 6µ = . The value of wC  is equal to 0.1g/ 3m . 

Fig.4 The spectral dependence ( )B λ , obtained for the same conditions as in Fig.3. 

Fig.5. The probability of photon absorption, obtained for the same  conditions as in Fig. 3. The 
results for the effective radius 16efa mµ=  are also shown. 

Fig.6. The error of the geometrical optics approximation for the probability of photon 
absorption, obtained from data, presented in Fig.5 for   effective radii 4 and 16 micrometers. 
Data for the effective radius 6 micrometers are also shown. 
Fig. 7. Phase functions of water clouds, obtained from the Mie theory for the same conditions 
as in Fig.3. The data for  efa  equal to 6 mµ  and 16 mµ  are also  given for the comparison. 

Fig. 8. The coefficients sa , obtained for the same conditions as in Fig.3. Data for efa  equal to 

6 mµ  are also shown. 

Fig.9. The spectral dependence  ( )C λ , obtained for the same conditions as in Fig.3. 

Fig.10. The asymmetry parameter, obtained for the same  conditions as in Fig. 3. The results 
for the effective radius 6efa mµ=  are also shown. 

Fig.11. The error of the geometrical optics approximation for the asymmetry parameter, 
obtained from data, presented in Fig.10  for   effective radii 4 and 6 micrometers.  
Fig.12 . Phase functions of  hexagonal ice  cylinders with the aspect ratio(length/size of the 
side of the hexagonal cross section) equal to 5.88 and fractal particles in random orientation at 
the wavelength 0.5 mµ . Only the geometrical optics contribution of both phase functions is 
shown. 
Fig. 13.  The reflection function of an idealized  semi-infinite nonabsorbing cloud ( )0

00, ,0R ϑ∞  

obtained from the exact radiative transfer code (Mishchenko et. al., 1999) and approximation 
(4.5) at the  wavelength 0.65 mλ µ=  and the effective radii of droplets 6 and 16efa mµ= . It is 

assumed that particles in a cloud are characterized by the gamma particle size distribution(2.3) 
with the parameter 6µ = . 
Fig.14.  The escape function, calculated with exact radiative transfer code for the Heyney-
Greenstein phase function at g =  0.75, 0.8 and 0.9 (Yanovitskij, 1997)  and with 
approximation, given by Eq. (4.10). 
Fig. 15a.  The dependence of the  reflection function of a cloudy layer on the optical thickness 
according to Eqs. (4.6) (at =0.65 mλ µ ) and (4.30) (at =1.55 mλ µ ) for 

06 , 7 , 49 , =0efa mµ ϑ ϑ ϕ= = =� � �  as compared to  exact radiative transfer computations. It is 

assumed that particles in a cloud are characterized by the gamma particle size distribution 
(2.3) with the parameter 6µ = . 
Fig 15b. The errors of approximations , given by  Eqs. (4.6) (at =0.65 mλ µ ) and (4.30) (at 

=1.55 mλ µ ) for 06 , 7 , 49 , =0efa mµ ϑ ϑ ϕ= = =� � �  as compared to  exact radiative transfer 

computations.  
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Fig.16. The frequency of registration of different optical thicknesses of cloudy media, 
obtained from  satellite and ground measurements  as presented  by Trishchenko et al.(2001) 
Fig.17. The spectral  dependence of the reflection function of cloudy media for the nadir 
observation and the solar angle equal to  60 degrees. Clouds are  composed of water or  ice 
spherical particles with the effective radius 6 mµ . It is assumed that particles in a cloud are 
characterized by the gamma particle size distribution (2.3) with the parameter 6µ = . The 

geometrical thickness of cloud is equal to 500m. The liquid water path equal to 100g/ 2m , 
which gives the optical thickness equal to 27 at the wavelength 0.55 mµ . Computations of 
local optical characteristics  were performed, using Eqs. (3.11), (3.23), (3.37). The reflection 
of light from surface, scattering and absorption of light by aerosols and gases  are  neglected. 
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Table 1. Droplet  size distributions 
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Table 2. Typical range of values N, Cv , and Cw  in water clouds 

 3,N cm−  Cv  C g mw ,  3  
20-1000 10 107 6− −−  0.01 - 1 
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Table 3.  Parameters ib , iβ ,  and iθ  
i 

ib  iβ  iθ  
1 1744.0 1200.0 0.0 
2 0.17 75.0 2.5 
3 0.30 4826.0 π  
4 0.20 50.0 π  
5 0.15 1.0 π  
 
 


