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Abstract. Global water vapour total column amounts have
been retrieved from spectral data provided by the Global
Ozone Monitoring Experiment (GOME) flying on ERS-
2, which was launched in April 1995, and the SCanning
Imaging Absorption spectroMeter for Atmospheric CHar-
tographY (SCIAMACHY) onboard ENVISAT launched in
March 2002. For this purpose the Air Mass Corrected Differ-
ential Optical Absorption Spectroscopy (AMC-DOAS) ap-
proach has been used. The combination of the data from
both instruments provides us with a long-term global data set
spanning more than 11 years with the potential of extension
up to 2020 by GOME-2 data on MetOp.

Using linear and non-linear methods from time series anal-
ysis and standard statistics the trends of H2O columns and
their errors have been calculated. In this study, factors af-
fecting the trend such as the length of the time series, the
magnitude of the variability of the noise, and the autocorrela-
tion of the noise are investigated. Special emphasis has been
placed on the calculation of the statistical significance of the
observed trends, which reveal significant local changes from
−5% per year to +5% per year. These significant trends are
distributed over the whole globe. Increasing trends have been
calculated for Greenland, East Europe, Siberia and Oceania,
whereas decreasing trends have been observed for the north-
west USA, Central America, Amazonia, Central Africa and
the Arabian Peninsular.

1 Introduction

Water vapour is the most important natural greenhouse gas in
the atmosphere and plays a crucial role in the context of cli-
mate change, because of strong feedback mechanisms (Held
and Soden, 2000). H2O plays an essential role in atmospheric
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chemistry, e.g. the rapid conversion of sulfur trioxide to sul-
furic acid, it is a source of the OH radical, and is also im-
portant for the ozone chemistry (Stenke and Grewe, 2005).
Thus the knowledge of the global distribution of H2O and its
evolution in time is of utmost importance for climate system
studies.

The strong infrared radiation absorbing character of H2O
generates the natural greenhouse effect. Without H2O the
global mean temperature at the surface would be 20◦C lower
than today (Häckel, 1999). In this context the transport of
H2O plays an important role for the climate system. At-
mospheric H2O represents the movement of energy in the
form of latent heat. By condensation this latent heat can
be released and could yield to a warming of the atmo-
sphere, which affects global circulation systems associated
with weather and climate.

The Earth’s surface temperature results from an equilib-
rium state of the incoming solar radiation and the outgoing
terrestrial radiation. Changes in the atmospheric composi-
tion, especially those of greenhouse gases such as H2O, car-
bon dioxide and methane, can alter the outgoing terrestrial
radiation which leads to a new equilibrium state between the
incoming and outgoing radiation fluxes, thus resulting in a
changing Earth surface temperature (IPCC, 2007). CO2 and
CH4, which are also measured with the SCIAMACHY in-
strument (Buchwitz et al., 2006), are particularly important
in the discussion of the anthropogenic greenhouse effect.

In the debates about climate change and the greenhouse
effect H2O plays an extremely important role. For instance,
climate models predict a global increase of H2O contents due
to the global warming caused by increasing CO2 and other
greenhouse gases (Dai et al., 2001). This increased H2O re-
duces the outgoing long-wave radiation, which yields to an
additional warming of the troposphere (IPCC, 2007). To-
gether with these indirect effects on the atmospheric H2O
contents, direct influences of anthropogenic interventions
such as irrigation (Boucher et al., 2004) and deforestation
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Fig. 1. Annual mean of H2O column amounts for the year 2006
derived from SCIAMACHY measurements.

(Gordon et al., 2005) alter the water vapour cycle and thereby
the concentrations on local as well as on global scale.

For clarification, we have to note that several synonyms
are used for the H2O total column amounts in the related
literature, e.g. IWV (Integrated Water Vapour), TWV (Total
Water Vapour), precipitable water, etc. In this paper we talk
about H2O columns and H2O column amounts and denote
therewith the complete amount of water vapour in grams per
atmospheric column on a 1 cm2 base (unit: g/cm2).

The H2O column of the atmosphere can be seen as a proxy
for the climate state of a region, whether it is, for instance,
humid or dry. Moreover, it is strongly linked to the surface
temperature and to the lower altitude temperature of air. This
strong correlation is shown byWagner et al.(2006) for H2O
columns retrieved from GOME. The H2O column amounts
are high in the tropics, low over the poles and medium
over the temperate zone. Figure1 shows as an example the
global annual mean and Fig. 2 depicts the respective variabil-
ity (standard deviation) of the H2O column amounts for the
year 2006 retrieved by the AMC-DOAS method (cf. Sect.2)
from SCIAMACHY data.

The H2O trends can be seen as tracers following the
climate state of a specific region. A decreasing trend, for
example, could be a change from a humid state to a dry
state of a specific region. An infinite decreasing trend is
impossible, so the trend has to stagnate at a certain point.
If the H2O columns have significantly changed, dramatic
consequences for the flora (major vegetation types, savanna,
tundra etc. as reported byMelillo (1999)), fauna, agriculture
and therefore inescapably for men cannot be ruled out.
Moreover this new state could be stable and a way back
is perhaps not easy, or, connected with a strong hysteresis
(Scheffer and Carpenter, 2003). The same arguments are
valid for increasing trends vice versa.

Fig. 2. Respective standard deviation of the annual means of H2O
column amounts for the year 2006 derived from SCIAMACHY
measurements.

The H2O columns and their changes are strongly linked to
the climate state and the vegetation type of a region. Plants,
animals and humans are adapted to their environmental con-
ditions. Changes or trends of the atmospheric H2O columns,
e.g. to dryer or more wet situations, can have critical con-
sequences for life. Moreover, H2O trend calculations are
important to prove model results and increase our knowl-
edge of the hydrological cycle on global and local scale.
The understanding of H2O correlated atmospheric processes,
(e.g. evaporation, precipitation and cloud distribution) are
supported by our study.

The importance and usefulness of H2O trends is enor-
mous, but the detection of such trends is difficult. The trends
can be influenced by several kinds of effects, such as in-
strumental changes or natural phenomena like autocorrela-
tion. Another important natural phenomenon influencing the
H2O columns is the ENSO (El Niño Southern Oscillation).
El Niño is a natural recurring (without a constant period)
climate phenomenon mostly (but not solely) impacting the
tropics. With respect to atmospheric H2O the connection is
performed through increasing and decreasing (depending on
geolocation) surface temperatures, which cause increase and
decrease of evaporation. The influence of the large El Niño
event in 1997/1998 on the H2O columns is shown inWag-
ner et al.(2005). Also sea surface temperature is influenced
by El Niño, but trend studies byGood et al.(2007) showed,
that El Niño is not influencing the trends significantly for a
20 years data record, which is a great advantage of long data
sets. Our data comprise 11 years, thus we have to investigate
the impact of El Nĩno on the calculated trends.

After the strong 1997/1998 El Niño, two small El Nĩno
events took place in 2002 and 2006. Figure3 shows
the sea surface temperature (SST) anomalies (red) and the
GOME/SCIAMACHY H2 O total column anomalies (blue)
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for the area from 4◦ N to 4◦ S and 150◦ W to 90◦ W, which
are both smoothed by a 5 months running mean filter. The El
Niño event in 1997/1998 exceeds the other events by a factor
of about 3. This strong coupling of the near-surface temper-
ature anomalies with the H2O total column anomalies is also
shown inWagner et al.(2006) for GOME measurements.

Our H2O trend study comprises the years 1996 to 2006,
i.e. 11 years of global satellite data. This length of data can-
not resolve long-term oscillation. However, it is enough to
show significant H2O changes in several regions on Earth.

An overview on the H2O retrieval method and validation
efforts is given in the following Sect.2.

In Sect.3 requirements for the combination of the two
data sets are discussed, which are implemented in Sect.4,
where we describe the trend estimation including the statisti-
cal modelling of the time series.

Section5 shows the results from the global trend analysis
for the combined data set, and the influence of the 1997/1998
El Niño event on the trends is investigated.

2 Data analysis

The global H2O total column amounts used in the present
study have been retrieved by the Air Mass Corrected Dif-
ferential Optical Absorption Spectroscopy approach (AMC-
DOAS) (Noël et al., 2004) from spectral data measured by
the Global Ozone Monitoring Experiment (GOME) flying on
ERS-2 which was launched in April 1995 and the SCanning
Imaging Absorption spectroMeter for Atmospheric CHar-
tographY (SCIAMACHY) onboard ENVISAT launched in
March 2002. The basic principle of the method is to calcu-
late the difference between the measured Earthshine radiance
and the solar irradiance at wavelengths where H2O absorbs
radiation (here we use the wavelength band from 688nm to
700 nm) and relate this absorption-depth to the H2O column
concentration.

Within the AMC-DOAS retrieval certain surface and at-
mospheric conditions are assumed, namely no surface ele-
vation, a surface albedo of 0.05, a tropical atmosphere and
especially the absence of clouds. Usually these conditions
differ from the real ones, which is accounted for by the so
called Air Mass Correction Factor (AMCF) derived from O2
absorption. Via the AMCF the H2O columns are scaled such
that the correct O2 optical depth is achieved (seeNoël et al.
(2004) for details). Deviations of the AMCF from unity indi-
cate discrepancies between the assumed and the real condi-
tions and if these deviations are too large (AMCF<0.8), the
H2O measurements are discarded. One of the main reasons
for AMCF’s differing from unity is the presence of clouds
in the observed scene. Therefore the AMCF limit efficiently
sorts out too cloudy scenes, but it is possible to derive H2O
columns also from partly cloudy scenes, as long as the cloud
fraction is low (AMCF≥0.8). In this sense the AMC-DOAS
products provide a cloud-cleared climatology.
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Fig. 3. Monthly mean sea surface temperature (SST) anoma-
lies (red) and GOME/SCIAMACHY H2O total column anomalies
(blue) averaged for the area 4◦N to 4◦S and 150◦W to 90◦W and
both smoothed by a 5 months running mean filter. SST Data taken
from http://coaps.fsu.edu/jma.shtml

Niño event in 1997/1998 exceeds the other events by a factor
of about 3. This strong coupling of the near-surface temper-
ature anomalies with the H2O total column anomalies is also
shown in Wagner et al. (2006) for GOME measurements.

Our H2O trend study comprises the years 1996 to 2006,
i.e. 11 years of global satellite data. This length of data can-
not resolve long-term oscillation. However, it is enough to
show significant H2O changes in several regions on Earth.

An overview on the H2O retrieval method and validation
efforts is given in the following Sect. 2.

In Sect. 3 requirements for the combination of the two
data sets are discussed, which are implemented in Sect. 4,
where we describe the trend estimation including the statisti-
cal modelling of the time series.

Section 5 shows the results from the global trend analysis
for the combined data set, and the influence of the 1997/98
El Niño event on the trends is investigated.

2 Data analysis

The global H2O total column amounts used in the present
study have been retrieved by the Air Mass Corrected Dif-
ferential Optical Absorption Spectroscopy approach (AMC-
DOAS) (Noël et al., 2004) from spectral data measured by
the Global Ozone Monitoring Experiment (GOME) flying on
ERS-2 which was launched in April 1995 and the SCanning
Imaging Absorption spectroMeter for Atmospheric CHar-
tographY (SCIAMACHY) onboard ENVISAT launched in
March 2002. The basic principle of the method is to calcu-
late the difference between the measured Earthshine radiance
and the solar irradiance at wavelengths where H2O absorbs
radiation (here we use the wavelength band from 688nm to

700nm) and relate this absorption-depth to the H2O column
concentration. Within the AMC-DOAS retrieval certain sur-
face and atmospheric conditions are assumed, namely no sur-
face elevation, a surface albedo of 0.05, a tropical atmosphere
and especially the absence of clouds. Usually these condi-
tions differ from the real ones, which is accounted for by the
so called Air Mass Correction Factor (AMCF) derived from
O2 absorption. Via the AMCF the H2O columns are scaled
such that the correct O2 optical depth is achieved (see Noël
et al. (2004) for details). Deviations of the AMCF from unity
indicate discrepancies between the assumed and the real con-
ditions and if these deviations are too large (AMCF< 0.8),
the H2O measurements are discarded. One of the main rea-
sons for AMCF’s differing from unity is the presence of
clouds in the observed scene. Therefore the AMCF limit
efficiently sorts out too cloudy scenes, but it is possible to
derive H2O columns also from partly cloudy scenes, as long
as the cloud fraction is low (AMCF≥ 0.8). In this sense the
AMC-DOAS products provide a cloud-cleared climatology.

In the presence of clouds, the AMC-DOAS method is most
probably slightly underestimating the H2O columns, because
in contrast to the well mixed O2, the H2O volume mixing ra-
tio increases towards the surface. Thus the derived AMCF
should be typically lower in this case. However, this second
order effect should not influence the H2O trends other than
via trends in the cloud cover. For example, on the one hand
an increase of the cloud cover with time would result in an
increase of underestimated measurements of H2O and thus
would decrease the water vapour trend. On the other hand a
decrease of the cloud cover with time would yield to an de-
crease of underestimated measurements and thus to slightly
increased trends. It has to be noted, that this is a second order
effect, because the climatology is cloud-cleared, but it cannot
be fully excluded.

The AMC-DOAS method provides a completely indepen-
dent data set, because it does not rely on any additional exter-
nal information. The retrieval of H2O data from the GOME
instrument is described in Noël et al. (1999), where also val-
idation results of the data with SSM/I (Special Sensor Mi-
crowave Imager) data are shown. Likewise, SCIAMACHY
H2O data have been validated with SSM/I and ECMWF (Eu-
ropean Centre for Medium-Range Weather Forecasts) data
(Noël et al., 2005). An intercomparison and a preliminary
connection of both, the GOME and the SCIAMACHY data
sets, is shown in Noël et al. (2006). The high quality of the
two H2O data sets is demonstrated from validation and com-
parison results, which shows that they can be merged well
together. Thus, the trend analysis presented in this paper is
build on a solid fundament. A good overview of other H2O
measuring instruments from space can be found in Brocard
(2006). Previous investigations of other H2O retrievals from
GOME are described e.g. in Maurellis et al. (2000) and Lang
et al. (2003). A similar H2O trend study to ours is presented
by Wagner et al. (2006) for the GOME data, based on a dif-
ferent retrieval method described in Wagner et al. (2003).

Fig. 3. Monthly mean sea surface temperature (SST) anoma-
lies (red) and GOME/SCIAMACHY H2O total column anomalies
(blue) averaged for the area 4◦ N to 4◦ S and 150◦ W to 90◦ W and
both smoothed by a 5 months running mean filter. SST Data taken
from http://coaps.fsu.edu/jma.shtml

In the presence of clouds, the AMC-DOAS method is most
probably slightly underestimating the H2O columns, because
in contrast to the well mixed O2, the H2O volume mixing ra-
tio increases towards the surface. Thus the derived AMCF
should be typically lower in this case. However, this second
order effect should not influence the H2O trends other than
via trends in the cloud cover. For example, on the one hand
an increase of the cloud cover with time would result in an
increase of underestimated measurements of H2O and thus
would decrease the water vapour trend. On the other hand a
decrease of the cloud cover with time would yield to an de-
crease of underestimated measurements and thus to slightly
increased trends. It has to be noted, that this is a second order
effect, because the climatology is cloud-cleared, but it cannot
be fully excluded.

The AMC-DOAS method provides a completely indepen-
dent data set, because it does not rely on any additional exter-
nal information. The retrieval of H2O data from the GOME
instrument is described inNoël et al.(1999), where also val-
idation results of the data with SSM/I (Special Sensor Mi-
crowave Imager) data are shown. Likewise, SCIAMACHY
H2O data have been validated with SSM/I and ECMWF (Eu-
ropean Centre for Medium-Range Weather Forecasts) data
(Noël et al., 2005). An intercomparison and a preliminary
connection of both, the GOME and the SCIAMACHY data
sets, is shown inNoël et al.(2006). The high quality of the
two H2O data sets is demonstrated from validation and com-
parison results, which shows that they can be merged well
together. Thus, the trend analysis presented in this paper
is build on a solid fundament. A good overview of other
H2O measuring instruments from space can be found inBro-
card(2006). Previous investigations of other H2O retrievals
from GOME are described e.g. inMaurellis et al.(2000) and
Lang et al.(2003). A similar H2O trend study to ours is pre-
sented byWagner et al.(2006) for the GOME data, based on

www.atmos-chem-phys.net/8/491/2008/ Atmos. Chem. Phys., 8, 491–504, 2008

http://coaps.fsu.edu/jma.shtml


494 S. Mieruch et al.: Global H2O trends from satellite measurements

a different retrieval method described inWagner et al.(2003).
In this study we extend the data set with the SCIAMACHY
measurements and concentrate on the definition and calcula-
tion of statistically significant trends.

3 The combination of GOME and SCIAMACHY data

GOME on ERS-2 has been measuring since June 1995
up to the present, but since June 2003 no global cover-
age is provided as a result of a breakdown of the on-board
tape recorders. SCIAMACHY data are available since Au-
gust 2002, but the SCIAMACHY instrument did not achieve
final flight conditions until January 2003. The quality of the
SCIAMACHY H2O data is furthermore slightly reduced in
2002, because of the non-availability of one of the diffuser
plates for solar observation prior to December 2002. Over-
all the most appropriate time for the change from GOME to
SCIAMACHY data results in January 2003.

When combining the data sets possible level shifts have
to be accounted between GOME and SCIAMACHY mea-
surements. Therefore the period of near simultaneous global
measurements of GOME and SCIAMACHY, August 2002
to June 2003, has been studied explicitly. The global agree-
ment results in an average deviation of−0.01 g/cm2 with a
scatter of±0.25 g/cm2 (Noël et al., 2007). This means, that
on a mean, there is strictly speaking no difference between
the results of both instruments. This is anticipated, because
we use the same retrieval method (AMC-DOAS) for both in-
struments and the method is quite insensitive to existing cal-
ibration differences between the GOME and SCIAMACHY
instruments. The scatter of the H2O differences between the
two instruments results from local (single grid pixel) time
series, which show deviations. Although these differences
on a local scale are small (±0.25 g/cm2) compared to the to-
tal H2O column, they can influence the trend and have to
be considered. Two ways of determining the level shifts are
possible. Firstly we can estimate (in the sense of arithmetic
means) the local level shifts on the basis of the 5 months
overlapping data. Secondly the level shifts can be estimated
from the complete (merged) data set comprising 132 months
using a least square method. With respect to the size of the
underlying data base we will use the least square method (de-
scribed in Sect.4) to estimate the level shifts from the com-
bined data sets.

Since the calibration between the instruments as a cause
for the level shifts on local scale can be ruled out, two main
aspects are responsible for the differences:

1. Different equator crossing time. GOME on ERS-2 and
SCIAMACHY onboard ENVISAT, respectively, cross
the equator at 10:30 and 10:00 local time. That means
SCIAMACHY and GOME measure at different times
slightly different states of atmospheric composition.
This arises on the one hand from the diurnal cycle of the

H2O column, but with quite small impact during the 30
minutes. On the other hand and more important are fluc-
tuations in the H2O column on fast time scales caused
by e.g. winds and clouds, which are most likely respon-
sible for the level shifts. Here we refer to our statistical
analysis of the observed level shifts in Sect.5.3. It fol-
lows that a possible mean level shift between both data
sets has to be allowed for the combination of the data on
a local scale.

2. Differing spatial resolutions. The spatial resolution of
the GOME data is 40 km×320 km, whereas it is (typ-
ically) 30 km×60 km for SCIAMACHY data. When
combining both data sets, different (higher) seasonal
amplitudes have to be accounted for in the SCIA-
MACHY data with respect to GOME. Because of the
higher resolution of SCIAMACHY, higher peaks (neg-
ative as well as positive) of H2O can be detected. Fur-
thermore the resolution together with the cloud cover
contributes to the level shift. Due to the higher res-
olution, SCIAMACHY “sees” more cloud free pixels
than GOME which introduces a potentially positive
bias for the SCIAMACHY data. However, this bias
is observed on local scale, it is not visible on average.
(cf. Sect.5.3). As mentioned in Sect.2 we expect a
negative bias for the AMC-DOAS data, due to remain-
ing clouds. Because of the different spatial resolutions,
partly cloudy scenes are more probably for GOME;
therefore a more negative bias for the GOME data com-
pared to the SCIAMACHY data is expected. This is in
line with the findings of higher SCIAMACHY columns
and thus positive level shifts around the equator regions,
where high cloudiness is more probable (see Sect.5.3).

The local level shifts result from a complex interaction of
atmospheric processes (clouds, winds, small scale fluctua-
tions, diurnal cycle) within the 30 min time delay of GOME
and SCIAMACHY and instrumental differences (resolution).

The daily H2O columns are gridded on a 0.5◦
×0.5◦ lattice

and averaged to yield monthly mean H2O columns.
The H2O columns are retrieved on a daily basis, but it

has to be noted that ERS-2 and ENVISAT fly on a sun-
fixed orbit, i.e. passing each point on Earth at constant local
time. Thus measurements from GOME and SCIAMACHY
are snap-shots of the actual atmospheric conditions at spe-
cific locations at specific times.

A global coverage is achieved for GOME data within
3 days and for SCIAMACHY nadir measurements within 6
days. Thus, in principle monthly mean data provide a data
set without gaps. However, few gaps are observed even in
the monthly mean data, because high cloudiness and high
mountain area (e.g. the Himalayas) measurements are re-
moved from the data by the AMC-DOAS algorithm. More-
over, since GOME and SCIAMACHY are spectrometers us-
ing the sunlight, measurements are only possible during day-
light, and therefore no data is available at night, which results
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in a lack of measurements at high latitudes during the polar
night. Since GOME and SCIAMACHY are measuring in the
nadir viewing geometry no profile information of H2O can
be retrieved in this mode.

The derivation of H2O columns from GOME-type instru-
ments has also some unique advantages: The retrieval is pos-
sible over land and ocean and no external calibration sources
like radiosondes are required. Although the resulting H2O
time series is quite short compared to other instruments like
SSM/I which are looking forward to a 40 years series, it will
be extended by other SCIAMACHY measurements and es-
pecially by the series of GOME-2 instruments on MetOp.
The series of GOME-type instruments can therefore provide
independent and consistent H2O data sets on both land and
ocean for at least 25 years in 2020.

4 Methods

4.1 Trend estimation

The detection of trends is difficult and depends on the length
of the time series, the magnitude of variability and autocorre-
lation of the data (Weatherhead et al., 1998). The trends can
be influenced by level shifts inside the time series from in-
strument changes or new instrumental calibration etc.. Short
time series as well as high variability, autocorrelation and
level shifts in the data increase the uncertainty of trend detec-
tion. Statistical methods are used to reveal trends and explore
their uncertainties. The methods used here are based on the
approach ofWeatherhead et al.(1998) andTiao et al.(1990)
and have been adapted to our requirements.

4.2 Statistical modelling

The time series of the data at one geolocation (i.e. a single
grid point) can be described by the following trend model:

Yt = µCt + St + ωXt + δUt + Nt , t = 0,...,T , (1)

whereYt contains the monthly mean H2O measurements.µ
is the mean water vapour column of the time series at time
t=0 andCt is a constant, which is unity for allt . ω repre-
sents the trend andXt contains the time (in our case from
January 1996 until December 2006 or from month 0 to 131,
respectively), which is not necessarily equidistant as there
may be missing data.δ is the magnitude of a mean level shift
at time t=T0(0<T0<T ), whereT0=84 represents the inter-
section of GOME and SCIAMACHY data on January 2003.
Ut describes a step function:

Ut=

{
0, t<T0
1, t≥T0

, (2)

and the seasonal componentSt is modelled by a Fourier se-
ries

St=η

4∑
j=1

[
β1,j · sin(2πjt/12)+β2,j · cos(2πjt/12)

]
. (3)

Expanding the methods used byWeatherhead et al.(1998)
an additional termη=1+(γ − 1)Ut is used and describes an
amplitude change of magnitudeγ at timet ≥ T0.

The last termNt in Eq. (1) contains the unexplained por-
tion of the data, i.e. the noise. The noiseNt is assumed to
be an autoregressive process of the order of one(AR(1))

(Schlittgen and Streitberg, 1997), i.e.

Nt = φNt−1 + εt , (4)

whereεt are independent random variables with zero-mean
and varianceσ 2

ε . This assumption is used because environ-
mental data is often autocorrelated, e.g. if the temperature
is high at one day, a high temperature is likely on the next
day. The magnitude or the memory of the autocorrelation
is presented byφ, which is restricted to−1<φ<1, so the
noise processNt is stationary. The memory of the data at
lag one can be calculated using the autocorrelation function
φ=CorrNtNt−1, which is directly linked to the well known
correlation coefficient. More sophisticated approaches of
analysing long-term correlations in environmental data are
the Detrended Fluctuation Analysis (DFA) (Rybski et al.,
2006) and the modelling of time series with Markov-Chains
(Freund et al., 2006). On a mean, the autocorrelation func-
tions of our H2O noise time series converge to zero at lag
two, thus the autocorrelation at lag one is adequate for our
purposes.

Generally the autocorrelation function is restricted to con-
tinuous, statistically stationary stochastic functions, or in the
discrete case equidistantly sampled data. Since there are
gaps in our time series the discrete correlation function for
analysing unevenly sampled data which was originally de-
veloped byEdelson and Krolik(1988) for astronomical prob-
lems, was applied.

To calculate the autocorrelation of the noise, the noise it-
self has to be determined by applying the model (Eq. (1)) to
the data and subtract the fit from the data. For minimising
the model in a least square sense we used the well known
Levenberg-Marquardt algorithm for non-linear least square
regression. The noiseNt is then given by the remaining
residuals:

Nt = Yt − (µ̂Ct + Ŝt + ω̂Xt + δ̂Ut ) (5)

whereµ̂, ω̂, δ̂ are the least square estimators andŜt stands
for the seasonal component resulting from the fitted param-
etersβ̂i,j andγ̂ . TheNt are used to calculate first the set of
unbinned discrete correlations

θt =
Nt · Nt−1

σ 2
N

, t = 1,...,T , (6)
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where theNt have zero-mean and varianceσ 2
N . Following

theθt have to be assigned to their lags,τt with

τt = Xt − Xt−1 , t = 1,...,T . (7)

Now, the magnitudeφ of autocorrelation at lagτ=1 can
be determined by averaging over the numberM of θt with
correspondingτt=1:

φ =
1

M

M∑
i=1

θi(τi = 1) . (8)

The aim of the above calculations concerning autocorre-
lations is to account for them during the fitting procedure.
For this purpose the estimated seasonal componentŜt is sub-
tracted from the data, because it has negligible effect on
the estimation of the other parameters (Weatherhead et al.,
1998). The model then becomes

At = Yt −Ŝt = µCt +ωXt +δUt +Nt , t = 0,...,T .(9)

After the non-linear terms have been removed from the
model a linear matrix transformation to consider the autocor-
relations is possible. Making the connection to the autore-
gressive process of Eq. (4), the model has absorbed the au-
tocorrelations ofNt into the transformed dataA∗

t , C∗
t (which

is no more constant), the timeXt
∗ and the step functionU∗

t ,
whereas theNt have lost their autocorrelations and have be-
come white noiseεt :

A∗
t = µC∗

t + ωX∗
t + δU∗

t + εt , t = 0,...,T . (10)

Now a linear regression is applied, which can be solved an-
alytically for the least square estimatorsµ̂, ω̂, δ̂ and their er-
rorsσµ̂, σω̂, σ

δ̂
. Details of the transformation and regression

are given in the Appendix and inWeatherhead et al.(1998).

4.2.1 Trend fitting and estimation of the uncertainty

After the implementation of the autocorrelations into the
model and solving the linear least square equations (where
we denote the least square estimator of the trend withω̂) a
good approximation of the error of the trendσω̂ is given by
(Weatherhead et al., 1998):

σω̂ ≈

√
12σN

`
3
2

·

√
1 + φ

1 − φ
·

1

[1 − 3ϑ(1 − ϑ)]
1
2

. (11)

σω̂ depends on the standard deviationσN of the noise, the
length of the time series̀, the autocorrelationφ of Nt and
the fractionϑ=T0/` of the data before the level shift occurs.

4.2.2 Significance of the trend

One main question concerning trends is whether the trend is
significant or not. The answer to this question can only be
given in a probabilistic sense. Based on the null hypothe-
sis that the observed trend is equal to zeroH0 : ω̂=0 the
alternative hypothesis is the observation of a nonzero trend
H1 : ω̂ 6=0. The least square method assumes Gaussian dis-
tributed data around the fitted function. Using standard rules
of random variables it can be shown that the trendω is a lin-
ear function of the dataYt and therefore also Gaussian dis-
tributed (Fahrmeir et al., 2004). The probability of measur-
ing a trend with magnitude greater than two times its error
becomesPH0{|ω̂|>2σω̂}=0.05 and the chance of making an
error in rejecting the null hypothesis is 5%. Accordingly, the
likelihood to be correct in confiding the alternative hypothe-
sis is 95%. Therefore we will adopt the rule that a trendω̂ is
statistically significant when a probability of 95% is achieved
with |ω̂|>2σω̂.

5 Results

5.1 Global trend patterns

The global trend patterns are determined from the long-term
time series from January 1996 to December 2006 including
GOME and SCIAMACHY globally gridded monthly mean
data on a 0.5◦×0.5◦ grid. Two ways of investigating the
trends are informative; on the one hand displaying the abso-
lute trendsω̂ in g/cm2 per year (Fig.4) and on the other hand
displaying the relative trendŝω/µ̂ in % per year (Fig.5),
whereµ̂ represents the deseasonalised H2O columns at the
beginning of the time series.

The absolute trends shown in Fig.4 are stronger near the
equator and smaller near the poles. Bluish as well as yel-
lowish and reddish patches are seen, thus there are negative
as well as positive trends observed, however most trends are
small and distributed around zero.

Now the question arises if these observed trends are sig-
nificant in a statistical way. Here it has to be noted, that
a non-significant trend does not mean that the results are
wrong, but that the magnitude of the observed trend has a
higher uncertainty. We will use the significance definition
from Sect.4.2.2that a trend is significant if it is greater than
two times its error (Weatherhead et al., 1998). In addition we
will extend the significance criterion by the claim, that the
time series has to contain at minimum 2/3 of the maximum
data points and denote this additional criterion with`≥2/3L,
where` is the number of data points of a specific time se-
ries andL is the number of maximum data points. In our
case we have 11 years of monthly data, yieldingL=132 and
`≥88. Figures6 and7 show the absolute and relative sig-
nificant trends, respectively, which are distributed over the
whole globe. The significant trends agree with either strong
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Fig. 4. Global absolute H2O trends (1996 to 2006).

Fig. 5. Global relative H2O trends (1996 to 2006).

absolute or strong relative trends. However, it is interest-
ing that also small absolute (e.g. Antarctica) or small relative
trends (e.g. Amazonia) can be significant.

Figures6and7 reveal several local regions with significant
trends, for instance increasing H2O columns in Greenland,
East Europe, Siberia and Oceania.

Water vapour decrease is observed in the northwest USA,
Central America, Amazonia, Central Africa and the Arabian
Peninsular.

Trenberth et al.(2005) calculated H2O total column trends
from SSM/I data (over ocean only) for the time span from
1988 to 2003. AlthoughTrenberth et al.(2005) analysed a
different time interval, several similar patterns to ours are
observed on the global maps, e.g. negative trends at the east
coast of Australia, positive trends in the south west Pacific,
positive trends covering a band from the east coast of India
over Southeast Asia until the open Pacific. Of course there
are differences, for instance positive trends at the west coast

Fig. 6. Global absolute significant H2O trends (1996 to 2006).

Fig. 7. Global relative significant H2O trends (1996 to 2006).

of Peru spread far into the ocean seen byTrenberth et al.
(2005), whereas our trends are also positive at the coast, but
zero and negative in the ocean. Furthermore, theTrenberth
et al. (2005) SSM/I trends are about one magnitude smaller
than our trends, which is most probably due to the difference
in the used time interval. A first inspection of SSM/I H2O
total column trends, for the time span from 1995 to 2005 pro-
vided by the HOAPS data base (Hamburg Ocean Atmosphere
Parameters and Fluxes from Satellite Data,Andersson et al.,
2007), reveal trends of the same magnitude as our trends and
we are looking forward to a more detailed intercomparison.

Since H2O trends are usually quite small, the considera-
tion of both, the level shift and the amplitude change dur-
ing the fit routines, is highly important, especially the level
shift. Considering or not considering the level shiftδ has
crucial consequences for the trends. This is revealed from
a trend calculation only for the GOME data, where we ob-
served quite similar results to the combined data using the
level shift. Disregarding the level shift yields rather different

www.atmos-chem-phys.net/8/491/2008/ Atmos. Chem. Phys., 8, 491–504, 2008
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Fig. 8. Time series of deseasonalised spatially averaged monthly
means of the entire globe with the trend (red line) regardingauto-
correlations.

of the errors of the trends (Eq. (11)) and therefore the signif-
icance of the trends.

5.2 Globally averaged monthly mean H2O trend

Our trend analysis is applied to a time series of deseason-
alised globally averaged monthly mean H2O columns shown
in Fig. 8 including the strong 1997/1998 El Niño data. As
can be seen from Fig. 3 the two El Niño events in 2002 and
2006 are small compared to the El Niño in 1997/1998. Here,
we can benefit from the consideration of the autocorrelation,
because the possible change in H2O caused by an El Niño
event changes the autocorrelation of the data. For instance
increasing H2O columns over a limited time yield to system-
atics in the noise and therefore to increasing autocorrelation
which yields to a higher errorσω̂ of the trend, because auto-
correlations are considered in Eqs. (10) and (11). Hence it is
not necessary to remove small events such as 2002 and 2006.

It has to be noted that a weighted mean is used
when accumulating spatial measurements on a regular lati-
tude/longitude grid, where the weights are given by the co-
sine of the latitude of each grid point, to account for the dif-
ferent surface areas. The red line in Fig. 8, corresponding
to the fit parameter̂ω, shows an increase of0.0029 g/cm2 ±
0.0028 g/cm2 per year, i.e. 0.14 % per year related to the fit-
ted parameter̂µ = 2.03 g/cm2. This trend is non-significant,
because the high autocorrelation ofφ̂ = 0.6 increases the
error of the trendσω̂ as can be seen from Eq. (11).

One reason for the high autocorrelation is the presence
of high H2O column amounts around the year 1998, which
are most likely caused by the El Niño event. These higher
columns are also reported by Wagner et al. (2005) for H2O
retrieved from GOME data by a different algorithm.
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Fig. 9. Time series of months plotted against years, while the desea-
sonalised globally averaged H2O column amounts are coded with
colours.

As stated above the 1997/1998 El Niño event is most likely
influencing the trend in Fig. 8, and probably data obtained
during the El Niño time have to be removed as a kind of re-
curring phenomenon. Otherwise it is not clear if El Niño
can be totally separated from the trend, because it cannot be
excluded that for instance due to an increasing H2O trend
the magnitude of the El Niño is increased. Nevertheless, we
identify the strong 1997/1998 El Niño in the time series and
remove the corresponding data to quantify the effect on the
trends, especially on the significance of the trends. The in-
fluence of the 1997/1998 El Niño is shown in Fig. 9, where
the months are plotted against the years and the globally av-
eraged deseasonalised H2O column amounts are coded with
colours. As can be seen from Fig. 9, high H2O columns are
observed from September 1997 until March 1999. Accord-
ingly, the global trend analysis is performed again with the
data set where we removed these potentially El Niño influ-
enced data. The differences between the collocated signif-
icant trends on the global map based on the complete data
and the data where we removed El Niño is quite small with
a mean of−0.08 %± 0.34 % and shown in Fig. 10. From
this finding it reveals, that removing the potentially El Ni˜no
influenced data is not really needed for the data set, which
is most satisfiable, because removement of data is often crit-
ical. However, for single time series, such as the globally
averaged data, the El Niño influence can be crucial and re-
moving of data points may be required.

Figure 11 depicts the deseasonalised spatially averaged
monthly mean column amounts of the data with the El Niño
event removed.

The trend (red line) yields0.0039 g/cm2 ± 0.0015 g/cm2

per year or 0.20 % per year thus the trend is significant with
ω̂ > 2.6σω̂.

The magnitude of the level shift in Fig. 8 is increased with

Fig. 8. Time series of deseasonalised spatially averaged monthly
means of the entire globe with the trend (red line) regarding auto-
correlations.

findings. Concluding, the integration of the level shift term
(which is investigated statistically in Sect.5.3) in our model
is absolutely necessary for our trend calculation.

Neglecting the change in the amplitude yields on the one
hand a higher noise signal in the deseasonalised dataAt . On
the other hand a remaining seasonal component is left in the
Nt , which results in changing autocorrelations. Both aspects
are not critical for the trends, but crucial for the estimation of
the errors of the trends (Eq.11) and therefore the significance
of the trends.

5.2 Globally averaged monthly mean H2O trend

Our trend analysis is applied to a time series of deseason-
alised globally averaged monthly mean H2O columns shown
in Fig. 8 including the strong 1997/1998 El Niño data. As
can be seen from Fig.3 the two El Nĩno events in 2002 and
2006 are small compared to the El Niño in 1997/1998. Here,
we can benefit from the consideration of the autocorrelation,
because the possible change in H2O caused by an El Niño
event changes the autocorrelation of the data. For instance
increasing H2O columns over a limited time yield to system-
atics in the noise and therefore to increasing autocorrelation
which yields to a higher errorσω̂ of the trend, because auto-
correlations are considered in Eqs. (10) and (11). Hence it is
not necessary to remove small events such as 2002 and 2006.

It has to be noted that a weighted mean is used
when accumulating spatial measurements on a regular lat-
itude/longitude grid, where the weights are given by the
cosine of the latitude of each grid point, to account for
the different surface areas. The red line in Fig.8, cor-
responding to the fit parameter̂ω, shows an increase of
0.0029 g/cm2

±0.0028 g/cm2 per year, i.e. 0.14% per year re-
lated to the fitted parameter̂µ=2.03 g/cm2. This trend is
non-significant, because the high autocorrelation ofφ̂=0.6

8 S. Mieruch et al.: Global H2O trends from satellite measurements
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Fig. 8. Time series of deseasonalised spatially averaged monthly
means of the entire globe with the trend (red line) regardingauto-
correlations.

of the errors of the trends (Eq. (11)) and therefore the signif-
icance of the trends.

5.2 Globally averaged monthly mean H2O trend

Our trend analysis is applied to a time series of deseason-
alised globally averaged monthly mean H2O columns shown
in Fig. 8 including the strong 1997/1998 El Niño data. As
can be seen from Fig. 3 the two El Niño events in 2002 and
2006 are small compared to the El Niño in 1997/1998. Here,
we can benefit from the consideration of the autocorrelation,
because the possible change in H2O caused by an El Niño
event changes the autocorrelation of the data. For instance
increasing H2O columns over a limited time yield to system-
atics in the noise and therefore to increasing autocorrelation
which yields to a higher errorσω̂ of the trend, because auto-
correlations are considered in Eqs. (10) and (11). Hence it is
not necessary to remove small events such as 2002 and 2006.

It has to be noted that a weighted mean is used
when accumulating spatial measurements on a regular lati-
tude/longitude grid, where the weights are given by the co-
sine of the latitude of each grid point, to account for the dif-
ferent surface areas. The red line in Fig. 8, corresponding
to the fit parameter̂ω, shows an increase of0.0029 g/cm2 ±
0.0028 g/cm2 per year, i.e. 0.14 % per year related to the fit-
ted parameter̂µ = 2.03 g/cm2. This trend is non-significant,
because the high autocorrelation ofφ̂ = 0.6 increases the
error of the trendσω̂ as can be seen from Eq. (11).

One reason for the high autocorrelation is the presence
of high H2O column amounts around the year 1998, which
are most likely caused by the El Niño event. These higher
columns are also reported by Wagner et al. (2005) for H2O
retrieved from GOME data by a different algorithm.
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Fig. 9. Time series of months plotted against years, while the desea-
sonalised globally averaged H2O column amounts are coded with
colours.

As stated above the 1997/1998 El Niño event is most likely
influencing the trend in Fig. 8, and probably data obtained
during the El Niño time have to be removed as a kind of re-
curring phenomenon. Otherwise it is not clear if El Niño
can be totally separated from the trend, because it cannot be
excluded that for instance due to an increasing H2O trend
the magnitude of the El Niño is increased. Nevertheless, we
identify the strong 1997/1998 El Niño in the time series and
remove the corresponding data to quantify the effect on the
trends, especially on the significance of the trends. The in-
fluence of the 1997/1998 El Niño is shown in Fig. 9, where
the months are plotted against the years and the globally av-
eraged deseasonalised H2O column amounts are coded with
colours. As can be seen from Fig. 9, high H2O columns are
observed from September 1997 until March 1999. Accord-
ingly, the global trend analysis is performed again with the
data set where we removed these potentially El Niño influ-
enced data. The differences between the collocated signif-
icant trends on the global map based on the complete data
and the data where we removed El Niño is quite small with
a mean of−0.08 %± 0.34 % and shown in Fig. 10. From
this finding it reveals, that removing the potentially El Ni˜no
influenced data is not really needed for the data set, which
is most satisfiable, because removement of data is often crit-
ical. However, for single time series, such as the globally
averaged data, the El Niño influence can be crucial and re-
moving of data points may be required.

Figure 11 depicts the deseasonalised spatially averaged
monthly mean column amounts of the data with the El Niño
event removed.

The trend (red line) yields0.0039 g/cm2 ± 0.0015 g/cm2

per year or 0.20 % per year thus the trend is significant with
ω̂ > 2.6σω̂.

The magnitude of the level shift in Fig. 8 is increased with

Fig. 9. Time series of months plotted against years, while the desea-
sonalised globally averaged H2O column amounts are coded with
colours.

increases the error of the trendσω̂ as can be seen from
Eq. (11).

One reason for the high autocorrelation is the presence
of high H2O column amounts around the year 1998, which
are most likely caused by the El Niño event. These higher
columns are also reported byWagner et al.(2005) for H2O
retrieved from GOME data by a different algorithm.

As stated above the 1997/1998 El Niño event is most likely
influencing the trend in Fig.8, and probably data obtained
during the El Nĩno time have to be removed as a kind of re-
curring phenomenon. Otherwise it is not clear if El Niño
can be totally separated from the trend, because it cannot be
excluded that for instance due to an increasing H2O trend
the magnitude of the El Niño is increased. Nevertheless, we
identify the strong 1997/1998 El Niño in the time series and
remove the corresponding data to quantify the effect on the
trends, especially on the significance of the trends. The in-
fluence of the 1997/1998 El Niño is shown in Fig.9, where
the months are plotted against the years and the globally av-
eraged deseasonalised H2O column amounts are coded with
colours.

As can be seen from Fig.9, high H2O columns are ob-
served from September 1997 until March 1999. Accord-
ingly, the global trend analysis is performed again with the
data set where we removed these potentially El Niño influ-
enced data. The differences between the collocated signif-
icant trends on the global map based on the complete data
and the data where we removed El Niño is quite small with a
mean of−0.08%±0.34% and shown in Fig.10.

¿From this finding it reveals, that removing the potentially
El Niño influenced data is not really needed for the data set,
which is most satisfiable, because removement of data is
often critical. However, for single time series, such as the
globally averaged data, the El Niño influence can be crucial
and removing of data points may be required.
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Fig. 10. Differences between the collocated significant trends es-
timated from the complete time series and the data, where we
removed potential El Niño influenced measurements (September
1997 – March 1999).

 1.96

 1.98

 2

 2.02

 2.04

 2.06

 2.08

 2.1

 2.12

 2.14

95 96 97 98 99 00 01 02 03 04 05 06 07 08

w
at

er
 v

ap
o

u
r 

in
 g

/c
m

2

date in years

data
trend

Fig. 11. Time series (with removed El Niño measurements) of de-
seasonalised spatially averaged monthly means of the entire globe
with the trend (red line) regarding autocorrelations.

respect to the level shift in Fig. 11 due to the removed data.
The error of the trend without El Niño data is decreased,
because the autocorrelation of the time series is decreased
to φ̂ = 0.2 and affects the errors of the fit parameters much
less. Hence, there is a strong contribution of the 1997/1998
El Niño event to the autocorrelations of the time series.

To demonstrate the sensitivity of the calculated trendsω
and their errorsσω to the used regression model and data set,
several fitting procedures are performed for the single time
series of deseasonalised globally averaged monthly mean
data. The trend estimation (shown in Tab. 1) is applied, with
and without the 1997/1998 El Niño data, to GOME (Jan 1996
to Dec 2002) measurements only and to the complete data

set based on GOME and SCIAMACHY measurements (Jan
1996 to Dec 2006). The first column of Tab. 1 indicates the
fitting method used, i.e. all permutations of considering and
neglecting (denoted as cancelled parameter) the level shift δ
and the autocorrelationφ of the noiseNt.

As can be seen from Tab. 1, fitting a single H2O time series
(in this case the global monthly mean data) is quite sensitive
to the regression model used. Applying the full model used
in this paper (consideringδ andφ) delivers the most reliable
results, which is explained below:

[ δ , φ ]: Both parameters, the level shift and the auto-
correlation, are fitted to the complete data set. Including
El Niño yields the trend from Fig. 8, which is relatively
high, because the consideration ofφ attenuates the high
H2O measurements in 1997/98. Otherwise a high er-
ror is observed, because fittingδ andφ introduces ad-
ditional uncertainties and therefore increases the error
(cf. Eq. (11)). Neglecting El Niño increases the trend
and decreases the error, because the resulting data con-
tains less autocorrelations and less noise.

[ δ , φ ]: The trend calculation is performed without re-
garding autocorrelations with the consequence that the
high H2O columns in 1997/98 lift up the trend curve at
that time and the magnitude of the trend is nearly zero.
Furthermore the error is decreased, because no autocor-
relation is considered. However, the relative error is still
about 100 %. If the El Niño data is masked the trend and
its error have hardly changed compared to the ”full fit“,
becauseφ is quite small without El Niño data.

[ δ , φ ]: Fitting only the GOME time series from Jan-
uary 1996 to December 2002 and including autocorrela-
tions yields an almost zero trend, because of the strong
influence of El Niño in 1997/98. On the contrary, if
the El Niño data is removed, the trend and its error is
quite similar to those calculated for the complete data
considering both parameters. If the regression without
δ is performed for the complete data set, the trend is
increased, which is clear, because a positive level shift
(see Fig. 8), which exists but is not fitted, increases the
trend. When the El Niño data is removed the level shift
is even larger, which can be seen in Fig. 11. In this case
neglecting the level shift strongly increases the trend.

[ δ , φ ]: Neglecting autocorrelations results for the
GOME data with El Niño in a nearly zero slightly neg-
ative trend, whereas without El Niño the trend is quite
high as in the case above. For the complete GOME and
SCIAMACHY data the situation is similar to the above
scenario. The negligence ofδ extremely influences the
trend.

From the results presented above we come to the following
conclusions:

Fig. 10. Differences between the collocated significant trends
estimated from the complete time series and the data, where
we removed potential El Niño influenced measurements (Septem-
ber 1997–March 1999).

Figure 11 depicts the deseasonalised spatially averaged
monthly mean column amounts of the data with the El Niño
event removed.

The trend (red line) yields 0.0039 g/cm2
±0.0015 g/cm2

per year or 0.19% per year thus the trend is significant with
ω̂>2.6σω̂.

The magnitude of the level shift in Fig.8 is increased with
respect to the level shift in Fig.11 due to the removed data.
The error of the trend without El Niño data is decreased, be-
cause the autocorrelation of the time series is decreased to
φ̂=0.2 and affects the errors of the fit parameters much less.
Hence, there is a strong contribution of the 1997/1998 El
Niño event to the autocorrelations of the time series.

To demonstrate the sensitivity of the calculated trendsω

and their errorsσω to the used regression model and data set,
several fitting procedures are performed for the single time
series of deseasonalised globally averaged monthly mean
data. The trend estimation (shown in Table1) is applied,
with and without the 1997/1998 El Niño data, to GOME
(January 1996 to December 2002) measurements only and
to the complete data set based on GOME and SCIAMACHY
measurements (January 1996 to December 2006). The first
column of Table1 indicates the fitting method used, i.e. all
permutations of considering and neglecting (denoted as can-
celled parameter) the level shiftδ and the autocorrelationφ
of the noiseNt .

As can be seen from Table1, fitting a single H2O time
series (in this case the global monthly mean data) is quite
sensitive to the regression model used. Applying the full
model used in this paper (consideringδ andφ) delivers the
most reliable results, which is explained below:
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Fig. 11. Time series (with removed El Niño measurements) of de-
seasonalised spatially averaged monthly means of the entire globe
with the trend (red line) regarding autocorrelations.

respect to the level shift in Fig. 11 due to the removed data.
The error of the trend without El Niño data is decreased,
because the autocorrelation of the time series is decreased
to φ̂ = 0.2 and affects the errors of the fit parameters much
less. Hence, there is a strong contribution of the 1997/1998
El Niño event to the autocorrelations of the time series.

To demonstrate the sensitivity of the calculated trendsω
and their errorsσω to the used regression model and data set,
several fitting procedures are performed for the single time
series of deseasonalised globally averaged monthly mean
data. The trend estimation (shown in Tab. 1) is applied, with
and without the 1997/1998 El Niño data, to GOME (Jan 1996
to Dec 2002) measurements only and to the complete data

set based on GOME and SCIAMACHY measurements (Jan
1996 to Dec 2006). The first column of Tab. 1 indicates the
fitting method used, i.e. all permutations of considering and
neglecting (denoted as cancelled parameter) the level shift δ
and the autocorrelationφ of the noiseNt.

As can be seen from Tab. 1, fitting a single H2O time series
(in this case the global monthly mean data) is quite sensitive
to the regression model used. Applying the full model used
in this paper (consideringδ andφ) delivers the most reliable
results, which is explained below:

[ δ , φ ]: Both parameters, the level shift and the auto-
correlation, are fitted to the complete data set. Including
El Niño yields the trend from Fig. 8, which is relatively
high, because the consideration ofφ attenuates the high
H2O measurements in 1997/98. Otherwise a high er-
ror is observed, because fittingδ andφ introduces ad-
ditional uncertainties and therefore increases the error
(cf. Eq. (11)). Neglecting El Niño increases the trend
and decreases the error, because the resulting data con-
tains less autocorrelations and less noise.

[ δ , φ ]: The trend calculation is performed without re-
garding autocorrelations with the consequence that the
high H2O columns in 1997/98 lift up the trend curve at
that time and the magnitude of the trend is nearly zero.
Furthermore the error is decreased, because no autocor-
relation is considered. However, the relative error is still
about 100 %. If the El Niño data is masked the trend and
its error have hardly changed compared to the ”full fit“,
becauseφ is quite small without El Niño data.

[ δ , φ ]: Fitting only the GOME time series from Jan-
uary 1996 to December 2002 and including autocorrela-
tions yields an almost zero trend, because of the strong
influence of El Niño in 1997/98. On the contrary, if
the El Niño data is removed, the trend and its error is
quite similar to those calculated for the complete data
considering both parameters. If the regression without
δ is performed for the complete data set, the trend is
increased, which is clear, because a positive level shift
(see Fig. 8), which exists but is not fitted, increases the
trend. When the El Niño data is removed the level shift
is even larger, which can be seen in Fig. 11. In this case
neglecting the level shift strongly increases the trend.

[ δ , φ ]: Neglecting autocorrelations results for the
GOME data with El Niño in a nearly zero slightly neg-
ative trend, whereas without El Niño the trend is quite
high as in the case above. For the complete GOME and
SCIAMACHY data the situation is similar to the above
scenario. The negligence ofδ extremely influences the
trend.

From the results presented above we come to the following
conclusions:

Fig. 11. Time series (with removed El Niño measurements) of de-
seasonalised spatially averaged monthly means of the entire globe
with the trend (red line) regarding autocorrelations.

[δ, φ]: Both parameters, the level shift and the autocor-
relation, are fitted to the complete data set. Including
El Niño yields the trend from Fig.8, which is relatively
high, because the consideration ofφ attenuates the high
H2O measurements in 1997/1998. Otherwise a high er-
ror is observed, because fittingδ andφ introduces ad-
ditional uncertainties and therefore increases the error
(cf. Eq.11). Neglecting El Nĩno increases the trend and
decreases the error, because the resulting data contains
less autocorrelations and less noise.

[δ, φ]: The trend calculation is performed without re-
garding autocorrelations with the consequence that the
high H2O columns in 1997/98 lift up the trend curve at
that time and the magnitude of the trend is nearly zero.
Furthermore the error is decreased, because no autocor-
relation is considered. However, the relative error is still
about 100%. If the El Nĩno data is masked the trend and
its error have hardly changed compared to the “full fit”,
becauseφ is quite small without El Nĩno data.

[δ, φ]: Fitting only the GOME time series from Jan-
uary 1996 to December 2002 and including autocorre-
lations yields an almost zero trend, because of the strong
influence of El Nĩno in 1997/98. On the contrary, if the
El Niño data is removed, the trend and its error is quite
similar to those calculated for the complete data consid-
ering both parameters. If the regression withoutδ is per-
formed for the complete data set, the trend is increased,
which is clear, because a positive level shift (see Fig.8),
which exists but is not fitted, increases the trend. When
the El Niño data is removed the level shift is even larger,
which can be seen in Fig.11. In this case neglecting the
level shift strongly increases the trend.

[δ, φ]: Neglecting autocorrelations results for the
GOME data with El Nĩno in a nearly zero slightly
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Table 1. Results from several fitting procedures show the sensitivity of the trendsω and their errorsσω (in g/cm2 per year) to the consideration
of the level shiftδ and the autocorrelationsφ.

including El Niño data neglecting El Niño data

GOME GOME & SCIA GOME GOME & SCIA
δ , φ – 0.0029±0.0028 – 0.0039±0.0015
δ , φ – 0.0002±0.0002 – 0.0037±0.0012
δ , φ 0.0006±0.0040 0.0043±0.0019 0.0034±0.0015 0.0072±0.0010
δ , φ −0.0010±0.0019 0.0041±0.0009 0.0033±0.0012 0.0073±0.0007

negative trend, whereas without El Niño the trend is
quite high as in the case above. For the complete GOME
and SCIAMACHY data the situation is similar to the
above scenario. The negligence ofδ extremely influ-
ences the trend.

From the results presented above we come to the following
conclusions:

1. Only significant trends can be trusted. No conclusions
should be drawn from non-significant trends.

2. For the global time series all significant trends (with or
without data during El Nĩno times) agree within their
errors as long as the level shiftδ is considered. Not
consideringδ has a large impact on the absolute val-
ues of the trend and especially results in large devi-
ations between the trends derived from the combined
GOME/SCIAMACHY time series and the GOME data
set alone. If the assumption of a constant linear trend
(as in our model) is correct, the derived trend should
not depend on the length of the time series; only the er-
ror of the derived trend should be affected. Therefore
we conclude that the level shift has to be considered in
the trend determination.

3. The global trends derived with and without autocorre-
lation agree within their errors. Nevertheless, a correct
estimation of the error (and thus the significance of a
trend) requires autocorrelations to be taken into account.
This is especially important, if the El Niño data are in-
cluded because these show a high autocorrelation.

4. The influence of El Nĩno on the derived trends depends
strongly on the region for which trends shall be esti-
mated. Depending on the region the inclusion of data
measured during El Niño times may result in a non-
significant trend (as in the case of the global time se-
ries). On the other hand, Fig.10shows that local signif-
icant trends derived from the full time series are hardly
changed and remain significant if the El Niño times are
excluded. Therefore, we suggest to use as baseline for
all trend calculations the full fit applied to the complete
data set without removing any measurements (what we

have done). A removement of data should only be done
after a careful inspection of an individual time series,
be it for a single grid pixel or for spatially averaged data
(like the whole globe).

For the globally averaged time series from Fig.8, where
a strong El Nĩno signal is observed, the removement of
the potential El Nĩno data is needed (Fig.11). In this
case the most reliable method is the full fit applied to
El Niño adjusted combined GOME/SCIAMACHY data,
which results in a globally averaged water vapour trend
of 0.0039 g/cm2

±0.0015 g/cm2 or 0.19%±0.07 % per year.
This value is in line with the corresponding result for
the GOME time series of 0.0034 g/cm2

±0.0015 g/cm2 or
0.17%±0.07% per year. For comparison,Wagner et al.
(2006) calculated the GOME trend from annual averaged wa-
ter vapour columns for the time from 1996 to 2002 with a
magnitude of about 0.4% per year, which is about a factor of
two higher.

There are various possible explanations for this discrep-
ancy: First,Wagner et al.(2006) use a different retrieval al-
gorithm, hence it is a comparison of two different data sets.
Furthermore it is most likely that different data preprocess-
ings have been used in the generation of temporal or spa-
tial means, which comprise gridding and averaging. Since
the trend analysis of GOME annual means is based on only
7 data points, slightly differing annual means between both
data sets can have crucial impact on the linear regression.
However, further investigation of these differences is needed.

5.3 Influence of the level shift and the amplitude change

The above analysis showed that the derived trends are sig-
nificantly affected by the level shift. Therefore we present
the results of a statistical investigation of the fitted level shift
δ and also the amplitude changeγ and reveal their distribu-
tions. A statistical analysis of the least square estimatorδ̂ of
the mean level shift is shown in Fig.12were the density dis-
tribution (red bars) with binsize 0.02 g/cm2 of the δ̂ for the
whole globe is plotted. The black line denoted with G de-
scribes a Gaussian which is fitted to the distribution of the
δ̂.
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Fig. 12. Density distribution of the mean level shift (δ̂) together
with a fitted Gaussian (G), the median (Q50), and the 10% (Q10) as
well as 90% (Q90) quantiles.

The level shifts between GOME and SCIAMACHY data
reveal a slightly narrower distributed offset than a Gaussian
normal distribution between both instruments. A description
in terms of quantiles is quite suitable. The 10% quantile, de-
noted as Q10 (magenta line) in Fig.12 lies at−0.096 g/cm2,
the 50% quantile (the median blue line) has a magnitude of
Q50=0.005 g/cm2 and the 90% quantile (cyan line) is ob-
served at Q90=0.162 g/cm2. Strictly speaking, in most cases
the H2O columns do not change, which is reflected by the
nearly zero median, but with a probability of 10% it changes
less than−0.096 g/cm2 and more than 0.162 g/cm2 (also with
a probability of 10%), which corresponds to−4.7% and
8.0%, respectively, related to the global mean H2O column
at the beginning of the time series (fitted parameterµ) of
about 2.03 g/cm2. This scatter of the level shift is attributed
to the time delay between the two instruments as well as to
the high variability of atmospheric H2O and the cloud distri-
bution in connection to the different instrumental resolutions
(cf. Sect.3).

In Fig. 13 we present the spatial distribution of the level
shiftsδ, which reveals a patchy structure of positive and neg-
ative level shifts. Larger level shifts are observed near the
equator (where also the H2O columns are large) and smaller
level shifts are located at higher latitudes. Over the equator
and over rain forest regions (e.g. Amazonia) mostly positiv
level shifts are detected. This is most likely caused by the
different resolution between GOME and SCIAMACHY as
mentioned in Sect.3. This can be understood by assuming
that a cloudy scene contains on average more water vapour
than a cloud free scene. Partly cloudy scenes are better
resolved by SCIAMACHY, thus in these situations SCIA-
MACHY columns tend to be higher than GOME columns.

The statistical analysis of the level shiftsδ confirms the
assumptions from Sect.3. The reason for the level shift
is a complex superposition of instrumental effects (different
resolution) in combination with local cloud covers, different

Fig. 13. Spatial distribution of the level shifts.

Fig. 14. Density distribution of the amplitude change between
GOME and SCIAMACHY H2O columns (̂γ ) together with a fit-
ted Gaussian (G), the median (Q50), and the 10% (Q10) as well as
90% (Q90) quantiles.

measurement times (30 min time delay between ERS-2 and
ENVISAT) and natural aspects like the high variability of at-
mospheric H2O.

Figure14 depicts the global density distribution (binsize
0.02) of the amplitude changesγ̂ together with a fitted Gaus-
sian (black curve) denoted by G. As expected, as a result of
the higher resolution of the SCIAMACHY instrument, the
amplitude factorsγ̂ are higher than one with a median of
Q50=1.029 (blue line), but with a scatter of Q10=0.852 (ma-
genta line) and Q90=1.232 (cyan line). However, in the same
manner as for the level shifts, also the reason for the am-
plitude change is a complex interaction of instrumental and
natural phenomena.

Concluding, both the mean level shift and the amplitude
change at the intersection of the GOME and SCIAMACHY
data are small compared to the H2O column amounts.
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However they need to be considered in the trend analysis,
because the observed trends are also small.

6 Conclusions and discussion

The trend analysis (of global monthly mean H2O data from
1996 to 2006) focussed on the estimation of the statistical
significance of the observed trends. First the trends were
calculated from monthly mean H2O column amounts where
we removed the seasonal component. Special emphasis was
placed on the consideration of autocorrelations in the data.
The trend calculation, which is based on the well known least
square linear regression, provides an error for the trend. This
error is influenced by the length of the time series, the noise,
the autocorrelation of the noise, and the level shift between
GOME and SCIAMACHY data.

Two criteria for a significant trend are proposed:

(a) A trend has to be greater than 2 times its error, which
arises from standard statistics.

(b) The time series has to comprise minimum 2/3 of the
maximum data, which is required as a quality criterion.

For the period of January 1996 to December 2006 we
found significant increase in the H2O columns (cf. Figs.6
and7) in Greenland, East Europe, Siberia and Oceania, and
we have significant decrease in the northwest USA, Central
America, Amazonia, Central Africa, and the Arabian Penin-
sular. The significant trends can be interpreted as tracers
of the climate state, hence these regions could change their
states, e.g. from dry to humid or from moist to dry. However
long-term oscillations cannot be excluded.

For the whole globe the increasing trend is non-significant
when taking into account the 1997/1998 El Niño event,
which is seen in the globally averaged data as strong pos-
itive H2O columns from September 1997 to March 1999.
Masking the El Nĩno time span – which should be
done in this case – we find a significant H2O trend of
0.0039 g/cm2

±0.0015 g/cm2 per year or 0.19% per year.
Even stronger trends up to 5% per year are observed on local
scales.

The H2O column is changing and the human impact on
this is not clear. Though the anthropogenic intervention in
nature is beyond all question, on the one hand humans ir-
rigate fields (which has a direct effect on the atmospheric
H2O columns reported byBoucher et al.(2004)) for agricul-
ture, on the other hand they drain swamps. Woods are de-
forested and grassland is concreted.Diamond(2005) refers
to drastic anthropogenic interventions such as deforestation
and high consumption of groundwater in the northwest USA
(especially in Montana), where we detect significant H2O de-
crease. For instanceGordon et al.(2005) attribute a decrease
in H2O flow of the Brazilian Amazon region to 15% defor-
ested rainforest, which is in line with our observed decreas-
ing trends.

At present the contribution of natural and anthropogenic
induced changes remains unclear.

Also the influence of the El Niño event on the trends,
which can be seen in our data, is an interesting point and
needs further investigation.

One can imagine that at a certain length of the time se-
ries a linear regression is not suitable, i.e. when there is a
non-linear trend in the time series.Dose and Menzel(2006)
describe how a changing trend over time can be estimated
for long-term time series, which could be a useful method
for the analysis of the extended data set comprising GOME,
SCIAMACHY and GOME-2 (on MetOp) measurements.

Appendix A

Trend fitting and estimation of the uncertainty

The following steps show the calculation of the trendω and
the uncertainty of the trendσω regarding autocorrelations.
Equation (9) can be cast into compact matrix notation

A=Xβ+N (A1)

whereA is the`×1 vector of observation,X is a `×3 ma-
trix consisting of the constantCt , timeXt and step function
Ut . β=(µ, ω, δ) represents the vector of unknown regression
coefficients andN is the noise vector afflicted with autocor-
relations.

The Nt are directly calculated from the time series
(cf. Eq. (5)) and with the connection to theεt from Eq. (4)
only theεt for t=1,...,T can be calculated via

εt=Nt−φNt−1 (A2)

because noN−1 exists. Therefore theε0 has to be estimated
by ε0=

√
1−φ2N0 which is motivated by the assumption

σε

σN

≈
εt

Nt

(A3)

A matrix P′ is constructed which satisfies:

P′N=ε (A4)

which is in detail:
√

1−φ2 0 0 . . .

−φ 1 0 . . .

0 −φ 1 . . .
...

...
...

...

 ·


N0
N1
N2
...

 =


ε0
ε1
ε2
...

 (A5)

so thatN=P′−1ε.
The model Eq. (A1) becomes:

A=Xβ+P′−1ε . (A6)
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Using matrix algebra, the model can be written as

P′A=P′Xβ+ε (A7)

or using the transformed variablesA∗
=P′A andX∗

=P′X we
have

A∗
=X∗β + ε . (A8)

Now we have absorbed the autocorrelations in the trans-
formed variablesA∗ andX∗ of model Eq. (A8) and we can
apply a least square fit. The least square estimator can be
calculated by:

β̂=(X∗′X∗)−1X∗′A∗ (A9)

Denoting the diagonal elements of (X∗′X∗)−1 with vj the
variance ofβ̂ becomes:

V ar(β̂j ) = σ 2
ε vj , j = 1, 2, 3 , (A10)

whereσ 2
ε stands for the variance of theεt . Therefore the

variance of the trend estimatorω̂ is

σ 2
ω̂
=V ar(ω̂)=σ 2

ε v2 (A11)

The varianceσ 2
ω̂

or the standard deviationσω̂, respectively,
of the trend estimator considers the length of the data (`),
the contained noise (σε), the autocorrelation of the noise (φ)
and additionally the position of the level shift (ϑ), but not its
magnitude. Thusσω̂ can be written as

σω̂=

√
12σε

(1−φ) · [`(`2 − 1)]
1
2

·
1

[1−3ϑ(1−ϑ)]
1
2

(A12)

whereϑ=T0/` is the fraction of the data before the level
shift occurs. With the assumptioǹ(`2

−1) ≈ `3 Eq. (A12)
can be written as:

σω̂ ≈

√
12σε

(1−φ) · `
3
2

·
1

[1−3ϑ(1−ϑ)]
1
2

(A13)

The varianceσN of the autocorrelated noiseNt is di-
rectly related to the varianceσε of the white noiseεt by
σ 2

N = σ 2
ε /(1−φ2), thus a good approximation is found with

σω̂ ≈

√
12σN

`
3
2

·

√
1+φ

1−φ
·

1

[1−3ϑ(1−ϑ)]
1
2

(A14)

More details on the estimation of the trend uncertainty can
be found inTiao et al.(1990) andWeatherhead et al.(1998).
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