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Abstract

Carbon monoxide is a trace gas that has significant impacts on human health, air pollution

and the global climate. Although it is not considered a greenhouse gas, it is able to alter the

concentrations of other greenhouse gases, wherefore it is referred to as an indirect greenhouse

gas.

There are currently two algorithms used to generate global carbon monoxide data prod-

ucts from the TROPOMI instrument onboard the Sentinel-5 Precursor satellite, namely the

operational Copernicus program SICOR algorithm and the scientific WFM-DOAS algorithm

developed at the Institute of Environmental Physics at the University of Bremen.

The objective of this thesis is to compare these two data products. Global comparisons

have been carried out for daily data, in order to quantify the systematic differences. To achieve

this, different aspects of the retrievals are considered, in particular their quality flags and their

spatial coverage. Global maps of the retrievals are generated and analyzed, as well as maps

of absolute and relative differences, and the latitudinal distribution. The level of agreement

or disagreement has been quantified by computing mean differences, standard deviations of

differences, and their linear correlation.

For the three investigated days the mean differences are very small (around 1%), the stan-

dard deviation of the differences is below 10% and the linear correlation coefficient is about

0.97, indicating that the two data products agree very well. However, as shown by spatial

maps and latitudinal difference plots, differences can be larger during certain times and at cer-

tain latitudes. These comparison results have been obtained after collocating the observations

in order to be able to compute the difference for individual ground pixels, as the two data prod-

ucts show differences in their spatial coverage. This is due to the operational product aiming

to also provide retrievals for partially cloudy scenes, whereas the scientific product limits its

retrievals to cloud-free scenes. Therefore, the number of operational retrievals is roughly eight

times larger than the amount of retrievals of the scientific data product.
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1 Introduction

Carbon monoxide is an atmospheric trace gas that influences many fields and aspects, ranging from everyday

human life to global environmental impacts.

This thesis focuses on two products of satellite data that aim to monitor carbon monoxide levels at a

global, regional and local scale, to improve our understanding of this gas, its spread, and its effects. To better

understand the significance of carbon monoxide, this introduction will outline some of its impacts, such as

that on human health and the global climate, and will proceed to look at its different sources. Afterwards,

the introduction will elaborate on some of the chemical properties of carbon monoxide, its environmental

impact and its role in the atmosphere. As this thesis focuses on satellite measurements, an explanation

of why this is believed to be a very good method for global carbon monoxide observations to be made is

included. This introductory section will then be concluded with the aim for this thesis, the results of which

are described in this document.

1.1 Overview of Atmospheric Carbon Monoxide

Carbon monoxide is a tasteless, odorless, colorless, non-corrosive, and quite stable diatomic molecule,

which is found in the Earth’s atmosphere in a gaseous state. Carbon monoxide absorbs radiation in the

infrared region of the electromagnetic spectrum, while it doesn’t absorb visible light and near ultra-violet

radiation. In addition, it has some weak absorption bands between 125 and 155 nm. Furthermore, carbon

monoxide has a low electric dipole moment of 0.10 debye, a short interatomic distance of 0.123 nm and a

high heat of formation (2 072 kJ/mol) [Raub et al., 1999]. It has an average atmospheric lifetime of about 1

to 2 months, which makes it a good tracer to monitor the long-rage transport of pollution [Schneising et al.,

2019].

Among the many properties of carbon monoxide, its chemical reactions can produce very significant

amounts of ozone (O3) in the Earth’s troposphere. This means that an increase in carbon monoxide leads

to an increase in ozone. In order to stay in balance, the hydroxyl radical (OH) is then depleted, affecting

the abundances of many other trace gases, both natural and anthropogenic, which are removed from the

atmosphere by reacting with the hydroxyl radical. Trace gas concentrations vary under two conditions:

either with a variation in loss rate or with a change or cyclical variability in emission rate. Carbon monoxide

is affected by both of these processes [Khalil and Rasmussen, 1990].

The direct forcing of carbon monoxide is often considered negligible [Sinha and Tuomi, 1996]. The

direct effects can only be observed at high concentrations and large scales, to the extent that even an increase

in direct forcing would only be of little significance [Holloway et al., 2000]. Nevertheless, carbon monoxide

is a very important trace gas. It is a major constituent affecting tropospheric hydroxyl abundances and

therefore also to the oxidizing capacity of the lower atmosphere. Overall, the trends and changes in hydroxyl

emissions are highly complicated, non-linear, and therefore hard to foresee [Daniel and Solomon, 1998].

1



Carbon monoxide also has indirect forcing components, which are of higher significance than its direct

climate forcing. One indirect forcing component is the production of tropospheric ozone. However, the

dimension of ozone loss or production through carbon monoxide strongly depends on the abundance of

nitrogen oxides (NOX), which is highly uncertain and subject to variations [Daniel and Solomon, 1998].

Sources of Carbon Monoxide

Global and local carbon monoxide levels vary in seasonal cycles, influenced by both loss and emis-

sion rates. In the atmosphere carbon monoxide is produced by reactions of hydroxyl radicals with methane

(CH4) and other hydrocarbons of both natural and anthropogenic origin, as well as alkenes reacting with

ozone. Carbon monoxide is removed from the atmosphere, by reacting with tropospheric hydroxyl radicals

[Apituley et al., 2018]. The largest source of carbon monoxide in the atmosphere are combustion processes

and the oxidation of hydrocarbons. However, average levels of hydroxyl radicals are decreasing, wherefore

the production of carbon monoxide from hydrocarbons is receding. Nevertheless, the process of hydrocar-

bon oxidation is the most important natural chemical source and the second largest global source of carbon

monoxide [Khlystova, 2010]. In addition, highest significance is given to the carbon monoxide production

by combustion of carbonaceous fuels, such as oil, gasoline, coal and wood, as these generate two main out-

comes: carbon monoxide and carbon dioxide. A remarkably large amount of carbon monoxide is produced,

when there is a high amount of fuel and a limited amount of air and oxygen available for the combustion

[Raub et al., 1999; Levy, 2015; Khalil and Rasmussen, 1990].

According to Raub et al. [1999], human activities constitute approximately 60% of tropospheric carbon

monoxide in non-urban areas and environments, and the remaining 40% of emissions come from natural

sources. 45% of the annual carbon monoxide emissions are directly produced by combustion processes, and

the remaining 55% are mainly from the oxidation of hydrocarbons and from other sources such as plants

and the ocean. The majority of carbon monoxide produced directly through combustion comes from the

burning of fossil fuels (19% of carbon monoxide emissions, corresponding to 500 million tonnes of carbon

monoxide) and forest clearing (15% or 400 million tonnes yearly).

The oxidation of methane and other hydrocarbons is often referred to as a natural source of carbon

monoxide, while direct carbon monoxide emissions from fossil fuel combustion processes are considered to

be anthropogenic. However, some hydrocarbons that oxidize to become carbon monoxide are produced by

these same combustion processes, and are still considered an indirect natural source. Approximately half of

the methane in the Earth’s atmosphere is anthropogenic, originating from agriculture and urban activities.

Therefore, about 50% of the carbon monoxide that is thought to come from the oxidation of methane could

be considered to be anthropogenic as well. Furthermore, the total emissions of carbon monoxide are highly

dependent on the abundances of other trace gases, wherefore it is very difficult and complex to estimate all

carbon monoxide sources [Khalil and Rasmussen, 1990].

As described by Raub et al. [1999], anthropogenic carbon monoxide emissions sources can be catego-
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rized into five groups: transportation sources, stationary combustion equipment, industrial processes, solid

waste carbon and miscellaneous carbon monoxide emissions. Transportation sources include all kinds of

motor-vehicles running on combustion engines, such as cars, trucks, buses, motorcycles, airplanes, farm

equipment engines, lawnmowers and snowmobiles. Stationary combustion equipment refers to heating- and

power-plants fueled with coal, gas and oil, as they produce carbon monoxide through improper and inef-

ficient operating practices or combustion techniques. Additionally to fuel combustion, there is a variety

of other industrial processes generating and emitting different quantities of carbon monoxide. Solid waste

carbon refers to the emissions from domestic and municipal refuse, while miscellaneous carbon monoxide

emissions refers to the emissions resulting from the burning of agricultural and forest materials and some

other minor sources. According to Holloway et al. [2000], carbon monoxide from biomass burning and

from biogenic carbon oxidation each have a contribution of more than 15% to the total carbon monoxide

concentrations globally.

Seasonal changes in atmospheric carbon monoxide levels are mostly controlled by the emissions, trans-

port and combustion of single sources, while methane oxidation is not always considered when analyzing the

global distribution and seasonal changes of carbon monoxide emissions. Due to the long lifetime methane

has in the atmosphere, its oxidation generates a relatively uniform background concentration on the global

carbon monoxide distributions. In the northern hemisphere, seasonal dominance in emission comes from

fossil fuels, while in the tropics biomass burning and the oxidation of certain hydrocarbons such as isoprene

dominate [Holloway et al., 2000; Apituley et al., 2018].

According to Raub et al. [1999], the latitudinal distribution of carbon monoxide sources can be sum-

marized in a one-dimensional model. Especially in the middle and northern latitudes, emissions are signif-

icantly higher in spring and summer months for three main reasons. First, the oxidation of hydrocarbons

(including methane) is notably faster during summer due to the seasonal variations in the abundance of hy-

droxyl radicals. Second, many of the direct emission sources of carbon monoxide increase in the spring and

summer time. At last, at mid and high latitudes, hydrocarbons build up during the winter time and start to

oxidize more with the large increase in hydroxyl radicals in spring. Overall, carbon monoxide sources can

be estimated if sinks, transport and concentrations are known.

Figure 1 shows carbon monoxide mixing ratios, denoted as CO, averaged from November 13th to 19th

2017 in [ppb] by Borsdorff et al. [2018a]. The increased carbon monoxide concentrations at mid and mid-

northern latitudes as mentioned by Raub et al. [1999] can also be observed. Areas of significantly high

concentrations can be seen along the Chinese coast representing its industrial area, in India especially in

the north, in central western Africa, and in central South America in Brazil. Furthermore, some smaller

hot spots can be seen on the eastern coast of southern Africa, on the western coast of Madagascar, and

in northwestern Australia. Extremely low carbon monoxide levels can be observed in the Himalaya and

Tibetan Plateau area, and on the western coast of the United States.
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Figure 1: Carbon monoxide mixing ratios (denoted as CO) from Copernicus Atmosphere Monitoring Service, averaged

from November 13th to November 19th, 2017, in [ppb] (parts per billion). (Figure 1, Borsdorff et al. [2018a]).

Health Impact of Carbon Monoxide

Carbon monoxide is a determinant of air quality, that can be of great danger to humans. The exposure

to higher concentrations has a direct effect on human health, because it can hinder the transport of oxygen

by hemoglobin in red blood cells [Levy, 2015; Holloway et al., 2000].

According to Goldstein [2009], carbon monoxide is a very infamous poison that silently takes human

lives. In the United States, unintentional and non-fire-related exposures to enhanced carbon monoxide

concentrations every year lead to more than 20 000 emergency room admissions, over 2 000 hospitalizations

and about 6 000 deaths. Carbon monoxide is the most common cause of mortality by poisoning in the

US. Furthermore, carbon monoxide pollution is associated to neurocognitive abnormalities and behavioral

disorders [Levy, 2015].

Raub et al. [1999] indicates that carbon monoxide can be found in various places. The most prominent

exposures to higher carbon monoxide concentrations are due to the engines of motor vehicles, which are

a part of the daily life of many individuals. In addition, work places, the commute, and a number of

occupations lead to an increase in carbon monoxide exposure, affecting many families. The highest indoor

exposures include restaurants, service stations and enclosed parking garages, whereas the lowest indoor

exposures are found to be in homes, churches and health care facilities.

The World Health Organization (WHO) provides guidelines for human exposure to carbon monoxide.

They specify the exposure times to certain carbon monoxide concentrations in the air, determined for car-

boxyhaemoglobin levels of 2.5% not to be exceeded (normal carboxyhaemoglobin levels of non-smokers

average to be 1% while those of smokers average to 4%). The suggested exposure time for a carbon monox-
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ide concentration in the air of 100 mg/m3 is 15 minutes, for 60 mg/m3 it is 30 minutes, and for 10 mg/m3 it

is 8 hours [Raub et al., 1999].

Climate Impact of Carbon Monoxide

According to Schneising et al. [2019], carbon monoxide can be understood as an “indirect agent of

climate change”, because it has an influence on the concentrations of multiple direct greenhouse gases.

Also, Daniel and Solomon [1998] write that “changes in carbon monoxide emissions have been identified

to be relevant to climate change”, due to the relationship it has with methane and hydroxide concentrations,

both of which have the ability to change the global average of surface temperatures. It directly contributes to

global radiative forcing by absorbing and emitting infrared radiation, as well as indirectly due to its capacity

to chemically change the abundances of other radiative gases such as methane, ozone and carbon dioxide.

The direct radiative effect and forcing of carbon monoxide is small enough to not be very significant,

therefore the focus lies on its indirect effects as it influences both the concentrations and lifetimes of methane

and hydroxide, which are both greenhouse gases. This highly significant indirect forcing of carbon monox-

ide and its effect on climate change is very hard to quantify but is of major importance [Sinha and Tuomi,

1996].

Environmental Impact of Carbon Monoxide

Carbon monoxide is an atmospheric pollutant that influences and endangers air quality, as the main

gaseous constituents of air pollution are ozone, carbon monoxide, nitrogen dioxide (NO2) and sulfur dioxide

(SO2) [Levy, 2015; Schneising et al., 2019]. Carbon monoxide is a very important atmospheric trace gas

to better understand the tropospheric chemistry, and in a variety of urban areas it is considered a major

atmospheric pollutant [Apituley et al., 2018]. Over continental and more populated areas the concentration

of carbon monoxide is usually higher comparing to ocean air. In areas with tropical forests, carbon monoxide

can be formed in the air above the forests. In some oceanic regions, carbon monoxide concentrations are

observed to be higher during daytime and lower during nighttime, due to the carbon monoxide emissions of

the ocean [Khalil and Rasmussen, 1990]. In addition, soils take up a fraction of carbon monoxide emissions

from the atmosphere, estimated to be about 250 million tonnes per year [Raub et al., 1999].

The global distribution of carbon monoxide is considered both a primary and a secondary determinant of

air quality. Due to being the dominating sink of hydroxyl radicals and an atmospheric tracer with a relatively

long lifetime, it is used to study the global redistribution of pollutants. In fact, as an atmospheric tracer with

such a long lifetime and such relatively simple chemistry, carbon monoxide illuminates the role of transport

in the redistribution of chemical pollutants. Carbon monoxide has the greatest impact on air quality when

it is exposed to sufficient nitrogen oxide (NOX), being a precursor to tropospheric ozone, which again is a

secondary pollutant that can also cause severe respiratory problems. When in contact with high nitric oxide

(NO) concentrations, the hydroperoxyl (HO2) product of carbon monoxide destruction loses an oxygen

atom and forms nitrogen dioxide, which rapidly creates ozone. If there is no nitrogen oxide present, the
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hydroperoxyl molecule reacts immediately to destroy ozone (O3) [Holloway et al., 2000].

As already mentioned, the reaction with hydroxyl radicals is the main sink removing carbon monoxide

from the atmosphere. When considering the global scale, carbon monoxide removes more hydroxyl radicals

from the atmosphere than methane does, on a regional scale this may vary (for example, in the southern

hemisphere where there is less carbon monoxide and a similar level of methane compared to the northern

hemisphere, there is much more removal of hydroxyl radicals by methane) [Raub et al., 1999].

Atmospheric Impact of Carbon Monoxide Carbon monoxide concentrations decreasing with altitude

there are very high concentrations of carbon monoxide at the boundary layer [Sinha and Tuomi, 1996]. The

troposphere is the lowest part of the Earth’s atmosphere and is essential to examine and understand climate

change. To do so, one must know what gases are present in the troposphere and in what quantities [Airbus

Defence Space Dutch Technology, 2016].

The composition of the atmosphere, by volume, is as follows: 78% is nitrogen (N2), 21% oxygen (O2),

and the remaining 1% is made up of noble gases and a variation of other minor gases. These atmospheric

molecules that are only present in very small amounts (within this 1% of the Earth’s atmosphere), are highly

influential to the conditions at the Earth’s surface. The troposphere, the lowest layer of the atmosphere, is the

area that extends from the surface of the Earth up until the tropopause, at a height of approximately 10 to 15

km [Khlystova, 2010]. The troposphere is the most dense fraction of the atmosphere, containing 80% of the

Earth’s atmospheric mass [Murgatroyd, 2019]. The troposphere also has the highest variability in gases, the

most important trace gases in the troposphere are methane, nitrous oxide, chlorofluorocarbons, ozone, water

vapor, carbon dioxide, and carbon monoxide. The global burden from carbon monoxide is more uncertain

when compared to methane or carbon dioxide due to its comparatively short atmospheric lifetime and the

great variations in its emission patterns [Khlystova, 2010].

Not only the emissions of carbon monoxide vary across the globe, also the atmospheric lifetime of

carbon monoxide varies a lot with latitude and seasonal changes compared to its global average. The average

atmospheric lifetime is calculated to be about 2 months, but regularly ranges from 1 to 3 months. On a

regional scale, large variations of this lifetime can be seen. For example, at high middle latitudes, during

winter time carbon monoxide molecules have a lifetime of more than a year. At middle latitudes during

summer time, the average lifetime of carbon monoxide is much closer to its average. Furthermore, in the

tropical areas, carbon dioxide has an average atmospheric lifetime of only about 1 month [Raub et al., 1999;

Khalil and Rasmussen, 1990].

1.2 Satellite Observations of Carbon Monoxide

Space based measurements were first made for time spans of several weeks in the years 1984 and 1994 with

a correlation radiometer instrument called Measurement of Air Pollution from Satellite (MAPS) onboard the

Shuttle spacecraft. Since this start of using satellites to take measurements of the Earth, a variety of space

based instruments, including different spectral ranges and viewing geometries, trying to capture the global
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carbon monoxide variability were launched [Khlystova, 2010].

During the past decades carbon monoxide has been measured in a variety of ways, both with ground

and aircraft measurements, as well as from space. In order to further investigate global carbon monoxide

concentrations, it is necessary to record continuous global remote sensing observations, including a good

sensitivity for sources and transport layers. In order to improve our current knowledge and understanding

of the climate system, tropospheric chemistry and atmospheric transport processes, global coverage of de-

tailed and continuous observations of carbon monoxide and methane are needed. This can only be achieved

through the use of satellite measurements. There are two principal requirements for satellite instruments

aiming to monitor atmospheric trace gases, which are a spectral resolution able to resolve the spectral sig-

nature of the considered molecules, and sensitivity to the lowest atmospheric layers, where the impact of

surface sources and sinks is largest [Khlystova, 2010; Schneising et al., 2019].

1.3 Thesis Objectives and How They Are Addressed

In October 2017 the Sentinel-5 Precursor (also known as Sentinel-5P and S5P) satellite by the European

Space Agency (ESA) and the European Commission (EC) Copernicus program, has been launched. This

satellite enables the retrieval of atmospheric data products, which includes carbon monoxide. There are two

algorithms that are currently used to generate global carbon monoxide products from Sentinel-5P, namely,

the operational Copernicus SICOR algorithm, and the scientific WFM-DOAS algorithm, which is developed

at the University of Bremen.

The objective of this thesis is to compare these two global carbon monoxide data products, in order to

quantify systematic differences. Currently, the only existing comparison is that of Schneising et al. [2019],

being the initial comparisons of these two data products.

The results of this comparison will be of relevance to the assessment of the information content of

Sentinel-5 Precursor and to the discussions of strengths and weaknesses of the two considered data products.

This information will be useful for further improvements of satellite products and has the potential to be

taken into consideration during assessments related to ESA projects concerning the data quality of Sentinel-

5P data products, which are carried out at the University of Bremen.

In order for this comparison to be done, different aspects of the retrievals for each data product are

considered. Global maps of the retrievals of three considered days (June 6th, September 18th and November

4th, 2018) are generated and analyzed. The differences and relative differences of the collocated data points

from the two data sets are both mapped and plotted against latitude. Furthermore, the latitudinal distribution

of both the complete and the collocated data sets has been plotted, as well as the correlation of the collocated

data sets.

This thesis is structured as follows. Section 2 explains the program and the mission delivering the data,

which the comparison focuses on, the instrument that is used, and it includes a description of the data itself.

Continuing with Section 3, there is the explanation of the methods that are used to compare the two data
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sets. It starts by describing previously used comparison methods by Schneising et al., and proceeds with the

methods used for this thesis. This is followed by Section 4, the Results section, where the created maps and

plots, as well as useful statistic values about the data are shown and described. This is then complemented

with Section 5, the Discussion, where the results are put into context and further analyzed. Lastly, the project

will be concluded in Section 6.
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2 Satellite Data

The objective of this thesis is to compare two data products, the scientific product by the University of

Bremen’s Institute of Environmental Physics, the WFM-DOAS algorithm, and the operational product by

the Netherlands Institute for Space Research (SRON), the SICOR algorithm. Both data products are level

2 carbon monoxide data from the TROPOMI instrument onboard the Sentinel-5 Precursor satellite, which

is part of the Copernicus program. This section will give a detailed overview of the program, mission and

instrument, where the considered data is obtained from, as well as the information required to understand

compare the data sets.

2.1 Copernicus Programme

The Directorate of Earth Observation Programmes (EOP) of the European Space Agency aims to pursue

scientific knowledge with the objective of transforming it to benefit society. On this aim, EOP has three

main branches of projects: the Sentinel missions for Earth monitoring, meteorological missions for weather

monitoring and forecasting, and the Earth Explorers for scientific research missions [ESA, 2014].

The Sentinel satellite series is part of the Copernicus Programme, which aims to provide accurate and

timely information to improve environmental management, to understand and mitigate the effects of climate

change and to ensure civil security, with easily accessible data and information. “Copernicus will help

shape the future of our planet for the benefit of us all” [ESA, 2019a]. Initially under the name of Global

Monitoring for Environment and Security (GMES), the program is directed by the European Commission

(EC) in partnership with ESA and other agencies. In total, the European Space Agency coordinates about 30

satellites under the guidance and requirements of the EC and the European Union (EU). For the operational

needs of the Copernicus Programme, ESA developed a family of Earth observing satellites called Sentinels.

This series of satellites is a space component which constitutes the European contribution to the Global Earth

Observation System of Systems (GEOSS). Copernicus provides a unified system, through which immense

amounts of data are distributed to a variety of organizations and services that are designed to have beneficial

impacts on the environment we live in, our everyday lives, humanitarian needs and that supports effective

policy making for a more sustainable future. This program has its services split up in 6 major groups: land

management, marine environment, atmosphere, emergency response, security and climate change. With this

program, the European Commission and the European Space Agency aim to support the European goals with

respect to sustainable development and global governance of the environment [Veefkind et al., 2012; ESA,

2019a].

The Copernicus Programme comprises 7 Sentinel satellites currently in orbit, namely Sentinel-1 (A and

B), Sentinel-2 (A and B), Sentinel-3 (A and B) and Sentinel-5P, and five additional satellites are planned

to be launched in the near future, namely Sentinel-6 (A and B) to be launched November 2020 and 2025,

Sentinel-4 (A and B) to be launched in 2024 and 2030, and Sentinel-5 (A) to be launched in 2023 (with
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Sentinel-5B and Sentinel-5C to then be launched in 7 year intervals) [Levrini, 2020].

The different groups of Sentinel satellites observe and monitor different aspects of the Earth. Sentinel-

1 are polar orbiting satellites, with a day and night radar imaging mission for land and ocean services.

Sentinel-1A was launched in April 2014 and Sentinel-1B was put into orbit in April 2016. Sentinel-2 are

polar orbiting, multi-spectral satellites, on high-resolution imaging mission for land monitoring. They aim

to provide information on vegetation, soil and water coverage, inland waterways and coastal areas. They

are also a tool for emergencies management. Sentinel-2A was launched in June 2015 and Sentinel-2B was

put into orbit in March 2017. Sentinel-3 is a multi-instrument mission measuring sea surface topography,

sea- and land-surface temperature, and ocean and land color with high-end accuracy and reliability. This is

used for ocean forecasting systems and environmental and climate monitoring. Sentinel-3A was launched

in February 2016 and Sentinel-3B was put into orbit in April 2018. Sentinel-5P is a mission developed

to reduce the data gap between the Environmental Satellite (ENVISAT) mission with the SCanning Imag-

ing Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard, and the

Sentinel-5A instrument to be launched on the Metop Second Generation satellite. Sentinel-5P was the first

Copernicus satellite to go in orbit to monitor the Earth’s atmosphere, and was launched in October 2017.

Sentinel-6 will have a radar altimeter to measure sea-surface height, planned to be used for operational

oceanography and for climate studies. Sentinel-6A will be launched in November 2020 and Sentinel-6B in

2025. Sentinel-4 and Sentinel-5 are planned to provide data for atmospheric composition monitoring from

geostationary and polar orbits respectively. Sentinel-4A is to be launched in 2024, Sentinel-4B in 2030

and Sentinel-5A in 2023, and Sentinel-5B and Sentinel-5C in 7 year intervals. ESA is planning to expand

Copernicus by including C and D satellites of the different Sentinels and further missions for more detailed

and specific monitoring of the Earth [ESA, 2019a,b; Levrini, 2020].

2.2 Sentinel-5 Precursor Satellite

Sentinel-5P is a single payload satellite mission, in a low Earth orbit, providing daily global information

on the concentrations of trace gases and aerosols in the air. The objective of the mission is to globally

monitor air quality, climate forcing, the ozone layer and surface UV radiation. S5P targets to provide

information and services on climate and air quality from 2017 to 2023, when Sentinel-5A is planned to

be in orbit and take over. The operational phase of the Sentinel-5P mission started in April 2018. The

mission is made up of a satellite bus, the payload and a ground system. The single payload of the mission

is the TROPOspheric Monitoring Instrument (TROPOMI), an instrument that has been developed by the

Netherlands in cooperation with the European Space Agency [Veefkind et al., 2012; Apituley et al., 2018].

As indicated, Sentinel-5P is meant to be a “gap-filling” mission between the end of the OMI (Ozone

Monitoring Instrument) and SCIAMACHY missions and the launch of Sentinel-5. In addition, it is also a

preparatory program for the product and application definitions of Sentinel-5. Due to being such a “gap-

filler” and preparatory mission, the mission had two principal constraints: a limited budget and a short
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development time. The technical definitions of S5P are based on national studies done in the Netherlands

[Veefkind et al., 2012].

Sentinel-5P was launched in October 2017 and the predicted in-orbit lifetime of the satellite is seven

years. The reference orbit of the spacecraft is a near-polar frozen sun-synchronous orbit, which has been

adapted for the optimization of the mission, with the mean Local Solar Time at Ascending Node (LTAN)

at 13:30 and a repeat cycle of 17 days. The orbital height of the satellite is 824 km and has been chosen to

synergy with the U.S. Suomi National Polar-orbiting Partnership (NPP) mission [Hille, 2015]. This early

afternoon orbit has been selected because at this time the boundary layer is well developed and gives more

information about the pollution emitted during the day. It is also the latest that can be used to forecast air

quality and for warnings concerning the next day [Veefkind et al., 2012].

There have been some spaceborne instruments measuring global carbon monoxide levels already, such

as the Atmospheric Infrared Sounder (AIRS), the Tropospheric Emission Spectrometer (TES) and the In-

frared Atmospheric Sounding Interferometer (IASI) observing emissions in the thermal infrared (TIR). Ad-

ditionally also the Measurement of Pollution in the Troposphere (MOPITT), which combines observations

in TIR and shortwave infrared (SWIR), enabling an increase in surface-level sensitivity for some scenes.

This sensitivity can be achieved at all altitudes by using radiance measurements of reflected solar radiation

in the SWIR wavelengths, and was previously demonstrated with SCIAMACHY [Buchwitz et al., 2007;

Burrows et al., 1995].

2.3 TROPOMI Instrument

TROPOMI is the only instrument on board of the Copernicus Sentinel-5 Precursor satellite [KNMI R&D

Satellite Observations, 2011; SRON, 2019]. It is an instrument mapping the Earth’s atmosphere. The

instrument works by measuring the sunlight reflected by the Earth’s surface through the radiance port, while

the direct sunlight is measured with the irradiance port [SRON, 2019]. It measures the levels of atmospheric

trace gases with a passive remote sensing technique from the top of the atmosphere. It does so by comparing

the light reflected by the Earth’s surface and atmosphere with measurements of the light coming directly

from the sun. This allows the instrument to map the levels of gases such as ozone, carbon monoxide and

methane present in the Earth’s atmosphere. In addition it is able to monitor the amount of volcanic ash in

the atmosphere, using measurements in the ultraviolet (UV) spectral range [Airbus Defence Space Dutch

Technology, 2016]. The requirements for the TROPOMI instrument were compiled in the Dutch national

studies, and are derived from the requirements of the Level 2 data products [Apituley et al., 2018; Veefkind

et al., 2012].

TROPOMI maps the globe every 24 hours and has a spatial resolution, which is high enough to detect

air pollution for individual cities and areas. The spatial resolution for TROPOMI is 7 × 3.5 km2 for bands

2 to 6 (ultraviolet, visible light and near-infrared), 7 × 7 km2 for bands 7 and 8 (shortwave infrared) and

21 × 28 km2 for band 1 (deep ultraviolet). Due to this high resolution, which is a significant advancement
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compared to previous instruments, it enables scientists to study atmospheric trace gases with unprecedented

level of detail [Airbus Defence Space Dutch Technology, 2016]. The instrument works with a wide swath

push-broom configuration, and images the Earth in strips, on a two-dimensional detector for periods of 1s

each, in which the satellite moves approximately 7 km. These strips have the dimensions of about 2 600 km

in the across track direction and about 7 km in the along track direction. When the 1 second measurement

is taken, the next one is started right away, which means that the instrument scans the globe while the

satellite is in motion [Veefkind et al., 2012]. The light of an entire swath is recorded at the same time, and is

then dispersed on two-dimensional imaging detectors (the position along the swath on one detector and the

spectral information of the positions on the other). The combination of this high resolution with the wide

swath is what enables the daily global coverage of the instrument [Apituley et al., 2018].

The TROPOMI design is structured in four modules, the first containing the telescope, the ultraviolet,

visible light and near infra-red spectrometers and the calibration unit. The second module holds the SWIR

spectrometer and relay optics. The third encloses the Instrument Control Unit (ICU) and the fourth module

is the cooler. TROPOMI also includes some components from the OMI design, such as the wide-field tele-

scope, the polarization scrambler and the two-dimensional detectors. The instrument uses two spectrometer

modules behind a common telescope; one of the two covers the ultraviolet to visible spectral range (270-

495 nm) and near infra-red range (675-775 nm), and the other spectrometer covers the SWIR spectral range

(2 305-2 385 nm), enabling it to observe atmospheric constituents such as ozone, nitrogen dioxide, carbon

monoxide, sulfur dioxide, methane, formaldehyde, aerosols and clouds [SRON, 2019]. The instrument has

four detectors, split among the different spectral bands. In the SWIR, the spectral resolution is about 0.25

nm with a spectral sampling interval of 0.1 nm [Sentinel-5P Mission Performance Centre, 2018]. The SWIR

spectrometer is made up of a slit, collimator mirror optics, an immersed grating, camera optics of multiple

lenses and a Mercury Cadmium Telluride (HgCdTe) detector. The latter has 1 000 columns in spectral di-

rection and 256 rows in spatial dimension. 976 of the columns and 217 of the rows are illuminated. The

TROPOMI-SWIR spectrometer is used to retrieve the atmospheric trace gases carbon monoxide, methane

and water vapor [SRON, 2019]. The instrument is able to measure the full range of signals, from dark oceans

to bright clouds. Nevertheless, especially for observing the lower troposphere, the ideal pixels to analyze

are the cloud-free ones, and those that almost are. For clear sky observations, TROPOMI provides total

carbon monoxide columns including sensitivity to the tropospheric boundary layer, while for rather cloudy

observations the column sensitivity may change [Veefkind et al., 2012; Apituley et al., 2018].

The TROPOMI instrument has four main scientific objectives. The first is to better constrain the spa-

tiotemporal variability, the evolution and the strength of the trace gas sources and aerosols that have an effect

on both climate and air quality. The second objective is to improve the understanding of climate forcing by

gaining a better understanding of what controls the atmospheric lifetime and distribution of methane, tro-

pospheric ozone and aerosols. Third is to be able to better estimate the tropospheric long-term trends in
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regards to climate and air quality, ranging from regional to global scales. The fourth and last objective for

this instrument is to both develop and improve air quality model processes and data assimilation, in order to

support operational services, such as protocol monitoring and air quality forecasting [Veefkind et al., 2012].

2.4 Operational SICOR CO Retrieval Algorithm and Data Product

The Shortwave Infrared CO Retrieval (SICOR) algorithm has been developed for the operational processing

of the TROPOMI data by the Netherlands Institute for Space Research. The algorithm simultaneously

retrieves the carbon monoxide total column densities and effective cloud parameters, such as cloud optical

thickness and cloud center height, to account for the atmospheric light path [Borsdorff et al., 2018a,b]. This

algorithm retrieves data for land areas and cloudy ocean regions, as the surface albedo of the ocean is too

low to retrieve carbon monoxide at clear sky conditions [Landgraf et al., 2018].

The algorithm provides the vertically integrated column of carbon monoxide and includes the corre-

sponding averaging kernels for the individual measurements, which define the sensitivity of the retrieved car-

bon monoxide column to changes in the true vertical carbon monoxide profile. Carbon monoxide columns

are derived from sunlight that has been reflected by the Earth’s atmosphere, in the spectral range between

2305 nm and 2385 nm. This is a spectral range, which at clear sky conditions only experiences little scatter-

ing, meaning most radiation is reflected by the Earth’s surface. Therefore, this is the most suitable spectral

range for detecting carbon monoxide sources [Landgraf et al., 2018]. The retrieval is based on the profile

scaling approach, which scales a reference profile of carbon monoxide, in order to fit the spectral measure-

ments. This leads to the degree of freedom of the carbon monoxide signal to be 1 by definition, even for

retrievals of cloud contaminated measurements [Borsdorff et al., 2018a,b].

For the retrieval using this algorithm, four types of inputs are required. The first is the measured Earth

radiance and solar irradiance spectra, as well as noise estimate, solar and viewing geometry, and informa-

tion of geo-location. The second kind of input is European Centre for Medium-Range Weather Forecasts

(ECMWF) temperature, water vapor and pressure profiles, and geo-potential height. Thirdly, an estimate of

the methane field using a chemistry transport model is required to obtain cloud information, by comparing

with the retrieved methane. The fourth type of needed input is an estimate of the carbon monoxide profile

from a chemistry transport model [Landgraf et al., 2018]. This reference profile for carbon monoxide that is

scaled during the retrievals comes from simulations of the global chemical transport model TM5 and is av-

eraged monthly over 3◦ × 2◦ latitude × longitude boxes. The result of the retrieval is the carbon monoxide

total column density in [molecules cm-2] [Borsdorff et al., 2018a,b].

The retrieval of the carbon monoxide data product from the TROPOMI SWIR measurements is based

on a Philips-Tikhonov regularization scheme, and is done in two main steps. In the first step, the vertically

integrated amount of methane is retrieved from the SWIR band between 2315 nm and 2324 nm, by using

a non-scattering radiative transfer model. This first step is necessary to obtain critical information about

cloudiness, which is subsequently used in the second step to infer carbon monoxide columns from the
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adjacent spectral window (2324 nm - 2338 nm). Besides this information on cloud scattering, modelled

information on carbon monoxide and water vapor is used as a first guess in this step. The final retrieval

product is a carbon monoxide column estimate including a column averaging kernel and an estimate of the

random error [Landgraf et al., 2018].

The TROPOMI/SICOR data used for this thesis is based on TROPOMI Level 1b files. June 6th (20180606)

and September 18th (20180918) retrievals are based on the operational Level 2 V01.02.02 files, and the

November 4th (20181104) retrievals on the operational Level 2 V01.03.01 files.

The data files were obtained from the Institute of Environmental Physics at the University of Bremen.

2.5 Scientific WFM-DOAS CO Retrieval Algorithm and Data Product

The Weighting Function Modified Differential Optical Absorption Spectroscopy algorithm (WFM-DOAS),

is a scientific algorithm which is used to simultaneously retrieve carbon monoxide and methane, aiming to

complement the operational algorithms, looking to provide new geophysical insights. The algorithm seeks

to perform in accordance to the mission requirements regarding random and systematic errors. Nevertheless,

it has a number of differences when compared to the operational algorithm and can be used in combination

with the operational ones to assess the robustness of retrieval results [Schneising et al., 2019].

WFM-DOAS is a linear least-squared method, which is based on scaling pre-selected atmospheric ver-

tical profiles, using the U.S. standard atmosphere profiles. To retrieve the carbon monoxide data, sun-

normalized radiances in the SWIR spectral region with noise estimates are used. GMTED2010 data on

topography (Global Multi-resolution Terrain Elevation Data 2010) and the solar geometry are used among

other parameters to select the most suitable reference spectrum from a look-up table. ECMWF data are

required in the post-processing to convert the retrieved vertical columns to column-averaged mole fractions.

With the use of this algorithm the vertical columns of the desired gases, such as carbon monoxide, are deter-

mined by fitting a linearized radiative transfer model to the measured sun-normalized radiance. Other than

the operational SICOR data product, WFM-DOAS provides data for cloud free scenes only and mainly over

land as column-averaged dry air mole fractions in parts per billion. Data over the ocean is mostly limited

to sun-glint conditions, due to the otherwise weak signal over water. Further differences of the algorithm

compared to TROPOMI/SICOR are the quality filters, the spectroscopy that is used, and the state vector

elements, such as the treatment of clouds and aerosols, although similar spectral bands are used [Schneising

et al., 2019, 2020; Schneising, 2019].

The WFM-DOAS data used in this thesis is based on TROPOMI Level 1b V01.00.00 files using the

algorithm version TROPOMI/WFMD v1.2, which is available at https://www.iup.uni-bremen.de/carbon

ghg/products/ tropomi wfmd/ .

For the comparison performed in this thesis, Dr. Oliver Schneising from the Institute of Environmental

Physics at the University of Bremen has prepared a special data set, which also includes the carbon monoxide

columns in [mol m-2], in order to facilitate the direct comparison with the operational product.
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3 Methodology

Aiming to compare the two data products, the methods used to conduct this research will be inspired by the

comparison methods from “A scientific algorithm to simultaneously retrieve carbon monoxide and methane

from TROPOMI onboard Sentinel-5 Precursor” [Schneising et al., 2019] where the SICOR data product

was compared to Total Carbon Column Observing Network (TCCON) ground based measurements and the

operational data product of the European Space Agency.

3.1 Comparison methods used by Schneising et al.

Schneising et al., in “A scientific algorithm to simultaneously retrieve carbon monoxide and methane from

TROPOMI onboard Sentinel-5 Precursor”, gives comparing figures for the relation between the S5P TROPOMI

measurements and the ground-based measurements by TCCON.

Figure 2: O. Schneising’s “Comparison of the TROPOMI/WFMD v1.2 XCO time series (green) with ground-based

measurements from the TCCON (red)” (Figure 10, Schneising et al. [2019]).

For instance, in Schneising et al. [2019] there is a figure, where for each TCCON ground station, a

one-year time series of the TROPOMI/WFMD XCO and the TCCON ground-based measurements is made.

For each station the two data sets are plotted in two different colors on one set of axes. Then, the collocated

15



data is compared, by plotting the correlation of the data. Figure 2 shows this comparison. The TROPOMI

measurements are shown in green and the TCCON measurements in red. N is the number of collocations,

µ refers to the mean bias and σ to the scatter of the satellite data compared to TCCON in [ppb].

In addition, global maps are shown with daily, monthly and yearly data, which is then compared to a

similar plot of the operational product. A similar representation is given with a local map of a bimonthly dis-

tribution of carbon monoxide over China, India and Southeast Asia. Part (a) of Figure 3 shows a global map

of all TROPOMI/WFMD carbon monoxide measurements passing the quality filter from December 2018 in

[1018 molecules per cm-2]. Underneath there is a similar representation of the TROPOMI/Operational data.

In part (b) one can see a bivariate histogram of all collocated measurement points passing the quality filters

of both algorithms. The linear regression, correlation of the data, the mean and the standard deviation of the

difference are also shown [Schneising et al., 2019].

Figure 3: “Comparison of TROPOMI/WFMD CO with the operational TROPOMI/SICOR data for December 2018”

(Figure 15, Schneising et al. [2019]).

3.2 Comparison methods used in this Thesis

In order to compare the Sentinel-5P TROPOMI WFM-DOAS and operational (SICOR) products, the data

sets from these two algorithms will be compared for three days, June 6th, 2018 (20180606), September 18th,

2018 (20180918) and November 4th, 2018 (20181104). To facilitate working with this data, the original data

files were loaded and read in Python and the information required for the comparisons was written out in

separate text files to have smaller files to work with. The regular latitude and longitude, corner latitude and

longitude, and the carbon monoxide measurements, filtered with the suggested quality flags were written in

these new data files. Furthermore, for better comparisons later on, the two data sets have been collocated. To

achieve this, a Python program was written to find the exact points at which there are data retrievals in both

products, and to write them out in a separate text file. In order to do so all data points were compared by

ground pixel and scan line, and when retrievals for a given ground pixel and scan line combination existed,

they were written in the new file.
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To obtain a first impression of the data, four types of global maps have been plotted using the basemap

tool in Python. The first map shows the global collocated SICOR data, the second map shows the global

collocated WFM-DOAS data, the third map the absolute difference between the two data sets and the fourth

map shows the relative difference. This has been done for all three considered days.

In order to better understand and compare the data, a series of four plots has been made for each day,

using matplotlib plotting tools. The first plot shows all measurements of both the scientific and the opera-

tional data products by latitude, with latitude in [degrees] on the x-axis and carbon monoxide in [mol m-2]

on the y-axis. In the upper right corner the number of considered retrievals for each of the two products is

shown. The second plot was structured like the first plot, but showing the collocated data retrievals. For

the first two plots, the SICOR data is shown in pink and the WFMD data in blue. The third plot shows the

difference between the two collocated data sets, namely WFMD - SICOR, with errorbars representing the

mean and the standard deviation. The x-axis shows the latitude in [degrees] and the y-axis shows the differ-

ence (WFMD-SICOR) in [mol m-2]. The fourth and last plot is a bivariate histogram of the two collocated

data sets, with the collocated SICOR carbon monoxide retrievals (CO) in [mol m-2] on the x-axis and the

collocated WFMD carbon monoxide retrievals (CO) in [mol m-2] on the y-axis. In the lower left corner the

number of plotted points (N ), the mean of the difference (D), the standard deviation of the difference (S)

and the Pearson correlation coefficient (R), calculated with NumPy and SciPy statistic tools, are shown. The

colorbar on the right side of the plot indicates the amount of retrievals shown at a point of a given color,

with red indicating many retrievals and purple very few.

Furthermore, as an overview of the statistic of the data, five tables have been compiled. Each table

shows the number of data points of the considered data set (N ), the minimum and maximum value of the

data set (min and max), the mean, and the standard deviation (St.Dev.), for each of the considered days.

Minimum, maximum, and mean are in [mol m-2]. This type of table has been compiled for the complete

SICOR data set (Table 1), the collocated SICOR data set (Table 2), the complete WFMD data set (Table 3),

the collocated WFMD data set (Table 2) and for the absolute difference between the two collocated data sets

(Table 5).

3.2.1 Working with the Data Files

The following three figures, namely Figure 4, Figure 5 and Figure 6, give an overview of what should be

regarded and taken into account when working with this data and to build a comparison of the kind done in

this thesis.

Figure 4 refers to reading and extracting the SICOR data product from its files, Figure 5 outlines how

to do so with the WFM-DOAS data files, and Figure 6 explains the main steps in collocating the data. The

full programming code is given in Appendix 1 (Reading the Data and Creating Text Files with the Data for

Further Analysis).
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Step 1: Reading and Converting the SICOR Data File

Figure 4: Outline of the most relevant steps to working with SICOR data files.
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Step 2: Reading and Converting the WFM-DOAS Data File

Figure 5: Outline of the most relevant steps to working with WFM-DOAS data files.
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Step 3: Collocating the Data Sets

Figure 6: Outline of the most relevant steps to be considered when collocating the data sets.
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4 Results

This section is divided into three subsection. The first showing the comparisons done with the use of global

maps on which the data is displayed. The second showing the retrievals and their differences plotted against

latitude, enabling the further observation of the spacial distribution of the data and the absolute differences

between the products, as well as their correlation. The third and last subsection gives an overview of further

statistic measures used in the comparison.

4.1 Comparison of global daily maps

For each day, four maps have been generated, two maps showing the measurements of the collocated re-

trievals for both data products and two maps to show the absolute and relative differences of the retrievals.

4.1.1 June 6th, 2018

In this subsection, the global maps for June 6th, 2018, are presented and discussed.

Figure 7 (a) and (b) show the carbon monoxide column retrieval values, denoted as CO, for the collo-

cated data pixels of June 6th. Figure 7 (a) shows the SICOR retrievals and Figure 7 (b) shows the WFM-

DOAS retrievals. Retrievals are mainly over land, but some can be seen over the oceans as well. Enhance-

ments are recognizable in northern Canada, in Africa near Angola, in north-western India, and China. They

are seen on both maps. In addition, these areas seem to have a very similar level of enhancement. Further-

more, also in areas with low carbon monoxide levels such as South America, southern Africa and central

Australia seem to have similar levels across the products.

Figure 8 shows the absolute (a) and relative (b) differences between the WFM-DOAS and the SICOR

retrievals for June 6th. A positive difference, marked in shades of blue, indicates WFM-DOAS measure-

ments to be higher, and a negative difference, marked in shades of orange and red, indicates the SICOR

measurements to be higher. The prevailing differences range to a maximum of about 0.003 [mol m-2],

which corresponds to about 10%. The differences also seem to be balanced in both directions, with slightly

more differences shown in red, suggesting the readings of the SICOR operational data product to be slightly

higher.

4.1.2 September 18th, 2018

In this subsection, the global maps for September 18th, 2018, are presented and discussed.

Figure 9 (a) and (b) show the carbon monoxide column retrieval values for the collocated data pixels of

September 18th. Figure 9 (a) shows the SICOR retrievals and Figure 9 (b) shows the WFM-DOAS retrievals.

More collocated retrievals can be observed when compared to June 6th, as well as more retrievals over the

oceans. There is a large area of strong enhancement in southern Africa and Madagascar, and both the areas

of strong enhancement and of low carbon monoxide levels seem to be relatively similar across the two data

products.
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(a)

(b)

Figure 7: Collocated carbon monoxide retrievals in [mol m-2] for June 6th, 2018, passing the suggested quality filter of

the respective algorithms. (a) shows the TROPOMI/SICOR retrievals and (b) the TROPOMI/WFM-DOAS retrievals.

22



(a)

(b)

Figure 8: Difference collocated WFMD - collocated SICOR carbon monoxide retrievals for June 6th, 2018. (a)

shows the absolute difference in [mol m-2] and (b) the relative difference ((TROPOMI/WFMD - TROPOMI/SICOR)

/ TROPOMI/SICOR x 100 %).
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(a)

(b)

Figure 9: Collocated carbon monoxide retrievals in [mol m-2] for September 18th, 2018, passing the suggested quality

filter of the respective algorithms. (a) shows the TROPOMI/SICOR retrievals and (b) the TROPOMI/WFM-DOAS

retrievals.
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(a)

(b)

Figure 10: Difference collocated WFMD - collocated SICOR carbon monoxide retrievals for September 18th, 2018. (a)

shows the absolute difference in [mol m-2] and (b) the relative difference ((TROPOMI/WFMD - TROPOMI/SICOR)

/ TROPOMI/SICOR x 100 %).
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Figure 10 shows the absolute (a) and relative (b) differences between the WFM-DOAS and the SICOR

retrievals for September 18th. Significantly more red areas can be observed, indicating that the operational

data product has a strong tendency to have higher measurements. In addition, a fair amount of regions with

low or almost no difference between the products can be seen. There is a strong red absolute difference in

the southern part of Africa and mid South America, and a strong red relative difference in Greenland.

4.1.3 November 4th, 2018

In this subsection, the global maps for November 4th, 2018, are presented and discussed.

Figure 11 (a) and (b) show the carbon monoxide column retrieval values for the collocated data pixels

of November 4th, 2018. Figure 11 (a) shows the SICOR retrievals and Figure 11 (b) shows the WFM-

DOAS retrievals. Compared to the other two days (June 6th and September 18th, 2018), there are even more

collocated retrievals over sea, but not enough to really comment on them. November 4th, shows very good

coverage of northern Africa, where an area of enhancement can also be recognized and is better visible for

the scientific product. Another enhancement is seen in Australia, and it is visible relatively equally in both

products.

Figure 12 shows the absolute (a) and relative (b) differences between the WFM-DOAS (or WFMD)

and the SICOR retrievals for November 4th. The retrievals in the Antarctic show the SICOR product to

have significantly higher measurements, visible in dark red, while overall November 4th shows more blue

areas than the other two days. This large amount of blue differences, suggesting WFMD measurements to

be higher on this day, is especially seen for the retrievals in Africa and Australia. In addition, there are

also large areas of almost no difference, seen in light yellow, which is more prevalent than in the other two

analyzed days.

4.2 Comparison of data distribution

For each day, four plots have been generated. The first two show the carbon monoxide column retrievals

plotted against latitude, correlated and non-correlated, with the two data products shown in different colors.

The third plot shows the latitudinal distribution of the absolute differences between the two collocated data

products, and the fourth plot is a bivariate histogram showing the correlation of the two collocated data

products.

4.2.1 June 6th, 2018

In Figure 13 (a) the spreading of both the SICOR (in pink) and WFMD (in blue) measurements for June 6th

can be observed. The TROPOMI/SICOR data shows more spreading and more points to be considered as

outliers than TROPOMI/WFMD, but it also has almost 9 times as many retrievals (N = 3 585 415) passing

the quality filters (N ) than the WFMD data set has (N = 401 343).

From -90 to about -60 degrees of latitude both data sets show no retrievals at all. The WFMD data shows
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(a)

(b)

Figure 11: Collocated carbon monoxide retrievals in [mol m-2] for November 4th, 2018, passing the suggested quality

filter of the respective algorithms. (a) shows the TROPOMI/SICOR retrievals and (b) the TROPOMI/WFM-DOAS

retrievals.
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(a)

(b)

Figure 12: Difference collocated WFMD - collocated SICOR carbon monoxide retrievals for November 4th, 2018. (a)

shows the absolute difference in [mol m-2] and (b) the relative difference ((TROPOMI/WFMD - TROPOMI/SICOR)

/ TROPOMI/SICOR x 100 %).
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(a)

(b)

Figure 13: S5-P carbon monoxide levels in [mol m-2] with SICOR retrievals shown in pink and WFMD reading in

blue, displayed by latitude for June 6th 2018. Y-axis scale is chosen to visualize the data well, few retrievals may be

beyond the axis limit. (a) shows all data of the respective products and (b) shows only the collocated retrievals.
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a major peak at about -20 degrees of latitude, which is also seen in the SICOR data, and some minor peaks

seen at about -18 and -10 degrees, again recognized in both data sets. Around 0 to 10 degrees of latitude, the

WFMD data shows quite few retrievals and relatively low values compared to the rest of the plot. At about

40 to 42 degrees of latitude the SICOR data shows an elevation in data values.

Figure 13 (b) shows the collocated retrievals of Figure 13 (a). Most of the features and patterns seen in

plot (a) are also visible in plot (b), but the single measurements with more extreme values, assumed to be

outliers or wrong measurements, are no longer visible.

Figure 14 (a) shows the difference (WFMD-SICOR) for each measured point of the two collocated data

sets. There is a fair amount of inconsistency among the data. Negative differences indicate higher retrievals

in the SICOR data, while a positive difference indicates that the WFMD values would be higher. There are

significant peaks to be observed in both directions, but the majority are negative, suggesting that the SICOR

data retrievals are of slightly higher value.

Figure 14 (b) shows the correlation of the collocated data for June 6th, 2018. A high correlation (R =

0.96894) can be observed, but not the highest correlation among the three days.

4.2.2 September 18th, 2018

In Figure 15 (a) the spreading of both the SICOR (in pink) and WFMD (in blue) measurements for Septem-

ber 18th, 2018 can be observed. Again, a greater spread can be seen in the SICOR data compared to the

WFMD measurements. The number of SICOR measurements (N = 3 647 895) is more than 7 times the

amount of WFMD measurements (N = 496 999), wherefore the greater spread is also reasonable. Retrievals

for both data sets are available for almost all latitudes, showing some measurement-free areas close to the

poles. For September 18th, as shown in these two plots, carbon monoxide levels are relatively low from -80

to -40 degrees of latitude, showing an enhancement between about -40 and 0 degrees, and again between

20 and 40 degrees. Smaller peaks can be seen at about -30, -20 and 35 degrees of latitude, which can be

observed in both data sets. The SICOR also shows peaks at about -35, -10, 20 and 45 degrees.

Figure 15 (b) shows the collocated retrievals of Figure 15 (a). The enhancements and patterns from

Figure 15 (a) are visible, but can be recognized more clearly as single high and low measurements have

been filtered out. However, the SICOR measurements seem to have a tendency to be a little higher in values

that the WFMD retrievals are.

Figure 16 (a) shows the difference (WFMD-SICOR) for each measured point of the two collocated data

sets. For -80 to -70 degrees of latitude the SICOR retrievals seem to be significantly higher than the WFMD

retrievals. From -40 degrees onward the difference is more balanced in the positive and negative direction,

however, it seems to be little more dominant towards the negative difference, supporting the observation

from Figure 15 (b) where the SICOR data seems to have slightly higher measurements.

Figure 16 (b) shows the correlation of the collocated data for September 18th, 2018. The correlation is

the best out of the three considered days (R = 0.97762) and the data spreads quite along the line of perfect
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(a)

(b)

Figure 14: (a): Latitudinal distribution of the absolute difference in S5-P carbon monoxide levels (WFMD - SICOR)

in [mol m-2] for June 6th, 2018. Error-bars in x-direction show the mean and in y-direction the standard deviation. (b):

Bivariate histogram of S5-P carbon monoxide levels in [mol m-2] with SICOR retrievals on the x-axis and WFMD on

the y-axis. N is the number of observations (collocated), D is the mean difference, S the standard deviation of the

differences and R the correlation coefficient. Axes scales are chosen to visualize the data well, few retrievals may be

beyond the shown areas.
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(a)

(b)

Figure 15: S5-P carbon monoxide levels in [mol m-2] with SICOR retrievals shown in pink and WFMD reading in

blue, displayed by latitude for September 18th 2018. Y-axis scale is chosen to visualize the data well, few retrievals

may be beyond the axis limit. (a) shows all data of the respective products and (b) shows only the collocated retrievals.
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(a)

(b)

Figure 16: (a): Latitudinal distribution of the absolute difference in S5-P carbon monoxide levels (WFMD - SICOR) in

[mol m-2] for September 18th, 2018. Error-bars in x-direction show the mean and in y-direction the standard deviation.

(b): Bivariate histogram of S5-P carbon monoxide levels in [mol m-2] with SICOR retrievals on the x-axis and WFMD

on the y-axis. N is the number of observations (collocated), D is the mean difference, S the standard deviation of the

differences and R the correlation coefficient. Axes scales are chosen to visualize the data well, few retrievals may be

beyond the shown areas.
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correlation, with the highest cluster of data being exactly on the red dashed line of perfect correlation,

between carbon monoxide values of 0.02 and 0.035 [mol m-2].

4.2.3 November 4th, 2018

In Figure 17 (a) the spreading of both the SICOR (in pink) and WFMD (in blue) measurements for November

4th, 2018 can be observed. Here it is most clearly visible that the SICOR data (N = 3 056 429) has more

retrievals than the WFMD data (N = 397 286), in fact close to 8 times as many measurements as the WFMD

data has. There is a range of about 20 degrees, from about -65 to -50 degrees of latitude, where there are no

retrievals shown for the WFMD data, while SICOR measurements are available. There is a very clear peak

in both data sets at about -35 degrees. In the WFMD data there are some smaller peaks to be seen at about

20 degrees and there are some further peaks in both data sets at about 15 degrees and multiple ones between

30 and 45 degrees.

Figure 17 (b) shows the collocated retrievals of Figure 17 (a). Again, the patterns visible for both data

sets from from Figure 17 (a) are still visible here, and can be recognized more clearly. In addition, also here

the SICOR data seems to have a tendency to be higher in values.

Figure 18 (a) shows the difference (WFMD-SICOR) for each measured point of the two collocated data

sets, therefore the gap where WFMD did not have retrievals for this day is clearly visible. The difference

confirms that SICOR has a tendency to be higher in values, with an extreme peak for this at about -35

degrees. For the rest of the data, although SICOR tends to be a little higher, the difference is quite balanced.

Figure 18 (b) shows the correlation of the collocated data for November 4th, 2018. The correlation is

clearly visible and strong. Nevertheless, it is the lowest correlation that can be seen in the three observed

days, with R = 0.96888. There is a cluster of data at CO levels of 0.02 - 0.03 [mol m-2], and there is a larger

spreading in the single measurements, which does roughly follow the line of perfect correlation.

4.3 Comparison of statistic information

In order to have a better overview of the data, its basic statistic aspects are analyzed. To begin, the non-

collocated and collocated data sets of the operational product are displayed, followed by the non-collocated

and collocated data of the scientific data product, and ending with a statistic overview of the absolute differ-

ence of the collocated data.

Table 1 gives a general overview of the TROPOMI/SICOR data (the operational data product). The

data set has about 3 million more retrievals per day, compared to the scientific TROPOMI/WFMD data set,

with 3 585 415 retrievals on June 6th, 3 647 895 on September 18th and 3 056 429 on November 11th. The

minimum values for all three days are negative values, which can happen when the values are very low and

subject to noise. The maximum values are much higher than in the scientific data set for all three days,

with June 6th reaching 0.80743 [mol m-2], September 18th reaching 0.79583 [mol m-2] and November 4th

going as high as 1.68126 [mol m-2]. The mean value are quite close to those of the WFMD data, with the
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(a)

(b)

Figure 17: S5-P carbon monoxide levels in [mol m-2] with SICOR retrievals shown in pink and WFMD reading in

blue, displayed by latitude for November 4th 2018. Y-axis scale is chosen to visualize the data well, few retrievals may

be beyond the axis limit. (a) shows all data of the respective products and (b) shows only the collocated retrievals.
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(a)

(b)

Figure 18: (a): Latitudinal distribution of the absolute difference in S5-P carbon monoxide levels (WFMD - SICOR) in

[mol m-2] for November 4th, 2018. Error-bars in x-direction show the mean and in y-direction the standard deviation.

(b): Bivariate histogram of S5-P carbon monoxide levels in [mol m-2] with SICOR retrievals on the x-axis and WFMD

on the y-axis. N is the number of observations (collocated), D is the mean difference, S the standard deviation of the

differences and R the correlation coefficient. Axes scales are chosen to visualize the data well, few retrievals may be

beyond the shown areas.

36



SICOR

N min [mol m-2] max [mol m-2] mean [mol m-2] St.Dev. [mol m-2]

20180606 3 585 415 -0.00118 0.80743 0.02698 0.00590

20180918 3 647 895 -0.01386 0.79583 0.02779 0.00697

20181104 3 056 429 -0.00276 1.68126 0.02501 0.00670

Table 1: Statistical overview of the SICOR data for 20180606, 20180918 and 20181104. N represents the number of

measurements (passing the quality filter), min is the minimum value, max the maximum value, mean the mean of the

data and St.Dev. the standard deviation.

difference between the mean values of the two data sets ranging from 0.00032 [mol m-2] to 0.0012 [mol

m-2]. The difference in the standard deviations is also very small. With the operational data product having

significantly more retrievals passing the quality filters, although the mean values and standard deviations are

very close to those of the scientific data product, the range of values is also much larger, suggesting a much

larger amount of outliers.

SICOR collocated

N min [mol m-2] max [mol m-2] mean [mol m-2] St.Dev. [mol m-2]

20180606 360 477 0.0015 0.15632 0.02711 0.00589

20180918 428 944 0.00293 0.11261 0.02914 0.00692

20181104 321 373 0.00115 0.21054 0.02681 0.00567

Table 2: Statistical overview of the collocated SICOR data for 20180606, 20180918 and 20181104. N represents the

number of measurements (passing the quality filter), min is the minimum value, max the maximum value, mean the

mean of the data and St.Dev. the standard deviation.

Table 2 is the statistic overview of the collocated TROPOMI/SICOR data. It therefore shows the same

amount of retrievals as the collocated scientific data. The mimimum values are all lower than those of

the collocated TROPOMI/WFMD data, but higher than those of the non-collocated SICOR data, suggest-

ing that through the collocation process some outliers (especially the negative retrievals) get filtered out.

The maximum values are only slightly higher than those of the collocated WFMD data, with a maximum

difference of 0.02673 [mol m-2] on June 6th, suggesting here as well that the majority of outliers are fil-

tered out through collocation. The mean values are slightly but not significantly higher than those of the

non-collocated SICOR data and very close to the collocated WFMD values, with a maximum difference

of 0.00028 [mol m-2] on June 6 th. Also for the standard deviations there are no significant differences

compared to the non-collocated data and the collocated WFMD data.

Table 3 gives a first overview of the TROPOMI/WFMD carbon monoxide measurements. A variation
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WFMD

N min [mol m-2] max [mol m-2] mean [mol m-2] St.Dev. [mol m-2]

20180606 401 343 0.00502 0.1373 0.02730 0.00573

20180918 496 999 0.00504 0.1029 0.02870 0.00662

20181104 397 286 0.00372 0.18409 0.02626 0.00656

Table 3: Statistical overview of the WFMD data for 20180606, 20180918 and 20181104. N represents the number of

measurements (passing the quality filter), min is the minimum value, max the maximum value, mean the mean of the

data and St.Dev. the standard deviation.

of about 105 reading points can be observed among the three days. On June 6th and September 18th the

minimum values are quite similar, with 0.00502 and 0.00504 [mol m-2] respectively. The minimum value

on November 4th is as low as 0.00372 [mol m-2]. The maximum values of the considered June and September

measurements are closer to each other compared to the November ones, with 0.1373 and 0.1029 [mol m-2]

respectively, while the November measurements going up to 0.18409 [mol m-2] which could suggest the

presence of outliers. The mean values of all three days are relatively similar, with a mean value of 0.02730

[mol m-2] on June 6th, 0.02870 [mol m-2] on September 18th and 0.02626 [mol m-2] on November 4th.

Table 4 is an overview of the collocated TROPOMI/WFMD measurements, the data set composed of

those TROPOMI/WFMD retrievals for which ground pixels there are also retrievals in the TROPOMI/SI-

COR data. As expected, the number of retrievals, N , is smaller for all three considered days, as it is a

subset of the main data set. The minimum and maximum values have not changed compared to those of

the complete WFMD data, with the exception of September 18th where the minimum value has increased to

0.00669 [mol m-2]. The maximum values have not changed in comparison. The mean values and standard

deviations have mostly changed very insignificantly, except for the standard deviation of November 4th,

which has decreased by 0.00120 [mol m-2].

WFMD collocated

N min [mol m-2] max [mol m-2] mean [mol m-2] St.Dev. [mol m-2]

20180606 360 477 0.00502 0.1373 0.02739 0.00565

20180918 428 944 0.00669 0.1029 0.02888 0.00648

20181104 321 373 0.00372 0.18409 0.02694 0.00536

Table 4: Statistical overview of the collocated WFMD data for 20180606, 20180918 and 20181104. N represents the

number of measurements (passing the quality filter), min is the minimum value, max the maximum value, mean the

mean of the data and St.Dev. the standard deviation.

Table 5 gives a further comparison between the collocated data of TROPOMI/WFMD and TROPOMI/
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Absolute Difference (WFMD - SICOR)

mean

[mol m-2]

St.Dev.

[mol m-2]

min

[mol m-2]

max

[mol m-2]

20180606 0.00027 0.00145 -0.02673 0.01317

20180918 -0.0002 0.00148 -0.02440 0.01223

20181104 0.00013 0.00140 -0.02645 0.01706

Table 5: Statistical overview of the absolute difference between the collocated WFMD and the SICOR data for

20180606, 20180918 and 20181104. Mean is the mean value of the differences, min is the largest difference in

negative direction (by how much SICOR is higher) and max the largest difference in positive direction (by how much

WFMD is higher), and St.Dev. is the standard deviation of the absolute differences between the two data sets.

SICOR. The number of observations is the same as for Table 2 and Table 4. For the comparisons in this

table, the absolute difference between the two data sets is considered, wherefore one should notice that the

significance lies in the absolute value of the figures, and that it is insignificant if the referred values are

positive of negative. The mean of the difference between the two data sets is quite low, with a maximum of

0.00027 [mol m-2] on June 6th, suggesting the retrievals have a tendency to not differ too much between the

sets. The standard deviations of the differences are very close throughout all three of the considered days,

suggesting consistency in the spread of the data. The absolute difference in the retrievals of the data sets

ranges from 0.01317 [mol m-2] to 0.02673 [mol m-2].
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5 Discussion

This section discusses the findings shown in the Section 4 (Results) in order to further place them in the

context of the overall comparison of the two data products and to fulfil the aim of this thesis.

Looking at the collocated data sets of the three days that are under consideration for this comparison,

from Figures 13, 15 and 17 (b), it can already be recognized that the products have a good correspondence.

For all three days, the latitudinal distribution of the data shows good overlaps, indicating that enhancements

as well as areas of low carbon monoxide levels are similar in both products. All three days also show that the

SICOR retrievals can sometimes be distinguished below and above the WFM-DOAS retrievals, indicating

smaller differences in the absolute measurements. No latitudinal shift can be distinguished from these plots,

suggesting that the enhancements are seen at the same latitudes for both products, even if the retrieved

carbon monoxide values differ a little.

The similarity of the two data products can further be observed from the global maps in Figures 7, 9

and 11 when looking at both panels (a) and (b). For all three days, both the areas of carbon monoxide

enhancement and of lower carbon monoxide levels can be observed both from the collocated SICOR and

WFMD retrieval maps. Clear enhancements, which are seen for both the collocated data products, are in

central North America, the African west coast near Angola, in proximity of the Nile delta around Cairo

in northern Africa, around the major cities in north India and Pakistan, in the Chinese industrial area, and

Siberian Russia for June 6th, 2018. For September 18th, 2018, these are found on the Brazilian east coast,

South Africa and southern Madagascar, and for November 4th, 2018, the major enhancements, all visible in

both collocated data sets, are in northwest Australia, South Africa, central Africa (near the Central African

Republic) and on the northwestern African coast near Senegal. On June 6th, 2018, areas of extremely low

carbon monoxide retrievals, that are visible in both collocated data products, are found near Argentina, in

South Africa and in central Australia. On September 18th, 2018, these are found to be in Greenland, the

western United States and northern India (Himalaya and Tibet region), and on November 4th, 2018, they are

in the Antarctic.

In comparing the differences, both by the global maps of relative and absolute differences shown in

Figures 8, 10 and 12, as well as the latitudinal distribution of the differences shown in Figures 14, 16 and

18 (a), it can be seen that there is a rather steady difference, ranging about 0.0002 [mol m-2] on average in

both directions, which is about 10% of a difference (Table 5). For June 6th, 2018, and September 18th, 2018,

the operational SICOR product has a tendency to be higher, while for November 4th, 2018, it seems to be

more balance, with the scientific WFM-DOAS product being a little higher. Overall, as can be deduced from

Table 5, the mean relative difference reaches a maximum of 1% among the three days, the relative standard

deviation is found to be around 5%. The collocated data products are also be highly correlated, as can be

read in Figures 14, 16 and 18 (b), with a correlation coefficient (R) of about 0.97 to 0.98 on all three days.

These outcomes and this comparison solely focus on the collocated data sets, which means that no infor-
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mation in relation to the quality in comparison can be given about the remaining retrievals. The number of

collocated retrievals is 360 777 for Juneth, 428 944 for September 18th and 321 373 for November 4th. Nev-

ertheless, the full operational SICOR data product includes 3 585 415 retrieval points for June 6th, 3 647 895

for September 18th and 3 056 429 for November 4th. This leaves about 3 million retrieval points per day of

which the quality cannot be determined through this comparison. As the scientific WFM-DOAS product

has less retrieval points, due to only retrieving cloud-free readings, it also leaves less unconsidered retrievals

(between about 40 and 75 thousand), but nevertheless, these are existing data points contained in the data

product, which are not considered in this comparison.
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6 Conclusions

Carbon monoxide is a trace gas that has significant impacts on human health, air pollution and the global

climate. Although it is not considered a greenhouse gas, it is able to alter the concentrations and emissions

of other greenhouse gases, wherefore it is referred to as an indirect greenhouse gas.

There are currently two algorithms used to generate global carbon monoxide products from the TRO-

POspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite, namely the op-

erational Copernicus Programme Shortwave Infrared CO Retrieval (SICOR) algorithm and the scientific

Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS) algorithm de-

veloped at the Institute of Environmental Physics (IUP) at the University of Bremen.

The objective of this thesis is to compare these two data products. Global comparisons have been carried

out for daily data on the days June 6th, September 18th and November 4th, 2018, in order to quantify the

systematic differences. To achieve this, different aspects of the retrievals are considered, and retrievals

passing the suggested quality measurements, referred to as quality flags, of the corresponding products have

been considered. Global maps of the retrievals are generated and analyzed, as well as maps of absolute

and relative differences, and the latitudinal distribution. The level of agreement and disagreement has been

quantified by computing mean differences, standard deviations of differences and their linear correlation.

In the introduction, areas of significantly high and low carbon monoxide concentrations have been

pointed out. A number of these have also been observed in the analyzed maps, among the three considered

days. Regions of high concentrations that are also visible on the TROPOMI maps for June 6th, September

18th or November 4th, 2018, are located on the African west coast, northern India and Pakistan, the indus-

trial area on the Chinese coast, central and southern Africa, Madagascar and Australia. Regions of very low

carbon monoxide concentrations, where the analyzed days match with the global distributions described in

the introduction, are in the Himalaya and Tibetan area and on the west coast of the United States.

For the three investigated days, the mean differences are very small, reaching a maximum of 1%, the

standard deviation of the differences is below 10%, namely closer to 5%, and the linear correlation coef-

ficient is about 0.97, indicating that the two data products have a high level of agreement. However, as

shown by spatial maps and latitudinal difference plots, differences can be larger during certain times and at

certain locations, although on average they are relatively low. There is no clear pattern for the distribution

of the differences, but it can be observed that the SICOR product is higher at the southernmost latitudes for

September 18th and November 4th, 2018. For June 6th, 2018, there is no collocated data available between

-90◦and -60◦of latitude, wherefore no statement in this regard can be made for this day. These comparison

results have been obtained after collocating the observations in order to be able to compute the difference for

individual ground pixels, as the two data products show differences in their spatial coverage. This is due to

the operational product aiming to also provide retrievals for partially cloudy scenes, whereas the scientific

product limits its retrievals to cloud-free scenes. Due to this reason, the number of retrievals passing the
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quality measures for the operational product is roughly eight times larger than the scientific product, leaving

the collocated data set to be a lot smaller than the size of the operational data product, and also slightly

smaller than the full scientific product.

Possible extensions to this project could consist in analyzing data for more days, to obtain an under-

standing of the trends in global carbon monoxide levels, and to gain a better insight on the similarities and

differences throughout a larger period of time. Furthermore, data for entire months or years could be plotted

together to have a better coverage for comparison. Additionally, observations of particular areas and regions

could be compared for smaller differences to become more visible and apparent.
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Appendix

The following are each examples for one run, resulting in data, maps and plots for one day (June 6th, 2018).

For further days some variables have been adjusted.

Appendix 1: Reading the Data and Creating Text Files with the Data for Further Analysis

from netCDF4 import D a t a s e t

import numpy as np

import pandas as pd

## IUP Produc t (WFM−DOAS)

I U P d a t a = D a t a s e t ( r ”C : ESACCI−GHG−L2−CH4−CO−TROPOMI−WFMD−20180606− fv1 . nc ” ,

mode= ’ r ’ )

l a t I U P = I U P d a t a . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

lon IUP = I U P d a t a . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co IUP = I U P d a t a . v a r i a b l e s [ ’ co column ’ ] [ : ]

g rp IUP = I U P d a t a . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l I U P = I U P d a t a . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

o rb IUP = I U P d a t a . v a r i a b l e s [ ’ o r b i t n u m b e r ’ ] [ : ]

l a t c 1 I U P = I U P d a t a . v a r i a b l e s [ ’ l a t i t u d e c o r n e r s ’ ] [ : , 0 ]

l a t c 2 I U P = I U P d a t a . v a r i a b l e s [ ’ l a t i t u d e c o r n e r s ’ ] [ : , 1 ]

l a t c 3 I U P = I U P d a t a . v a r i a b l e s [ ’ l a t i t u d e c o r n e r s ’ ] [ : , 2 ]

l a t c 4 I U P = I U P d a t a . v a r i a b l e s [ ’ l a t i t u d e c o r n e r s ’ ] [ : , 3 ]

l o n c 1 I U P = I U P d a t a . v a r i a b l e s [ ’ l o n g i t u d e c o r n e r s ’ ] [ : , 0 ]

l o n c 2 I U P = I U P d a t a . v a r i a b l e s [ ’ l o n g i t u d e c o r n e r s ’ ] [ : , 1 ]

l o n c 3 I U P = I U P d a t a . v a r i a b l e s [ ’ l o n g i t u d e c o r n e r s ’ ] [ : , 2 ]

l o n c 4 I U P = I U P d a t a . v a r i a b l e s [ ’ l o n g i t u d e c o r n e r s ’ ] [ : , 3 ]

l a t I U P = np . a r r a y ( l a t I U P )

lon IUP = np . a r r a y ( lon IUP )

co IUP = np . a r r a y ( co IUP )

grp IUP = np . a r r a y ( grp IUP ) −1 # t o match w i t h ESA

s c l I U P = np . a r r a y ( s c l I U P ) −1 # t o match w i t h ESA

l a t c 1 I U P = np . a r r a y ( l a t c 1 I U P )

l a t c 2 I U P = np . a r r a y ( l a t c 2 I U P )

l a t c 3 I U P = np . a r r a y ( l a t c 3 I U P )

l a t c 4 I U P = np . a r r a y ( l a t c 4 I U P )

l o n c 1 I U P = np . a r r a y ( l o n c 1 I U P )

l o n c 2 I U P = np . a r r a y ( l o n c 2 I U P )
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l o n c 3 I U P = np . a r r a y ( l o n c 3 I U P )

l o n c 4 I U P = np . a r r a y ( l o n c 4 I U P )

n IUP = co IUP . s i z e

S5P 20180606 co IUP = open ( r ”C : S5P 20180606 co IUP . t x t ” , ”w” )

S5P 20180606 co IUP . w r i t e ( ” l a t , l a t c 1 , l a t c 2 , l a t c 3 , l a t c 4 , lon , l o n c 1 ,

l o n c 2 , l o n c 3 , l o n c 4 , co\n ” )

f o r j in np . a r a n g e ( n IUP ) :

S5P 20180606 co IUP . w r i t e ( ” %10.5 f %10.5 f %10.5 f %10.5 f %10.5 f %10.5 f %10.5 f

%10.5 f %10.5 f %10.5 f %10.5 f \n ” % ( l a t I U P [ j ] , l a t c 1 I U P [ j ] , l a t c 2 I U P [ j

] , l a t c 3 I U P [ j ] , l a t c 4 I U P [ j ] , l on IUP [ j ] , l o n c 1 I U P [ j ] , l o n c 2 I U P [ j ] ,

l o n c 3 I U P [ j ] , l o n c 4 I U P [ j ] , co IUP [ j ] ) )

S5P 20180606 co IUP . c l o s e ( )

## ESA Produc t ( SICOR )

o r b i t 0 1 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T002647 20180606T021015 03343 01 010202

20190207 T155143 . nc ” , mode= ’ r ’ )

p r o d 0 1 = o r b i t 0 1 . g ro ups [ ’PRODUCT’ ]

s d a t a 0 1 = p ro d 0 1 . g rou ps [ ’SUPPORT DATA ’ ]

g e o l o c 0 1 = s d a t a 0 1 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 0 1 = p r o d 0 1 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 0 1 = p r o d 0 1 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co 0001 = p r o d 0 1 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0001 = p r o d 0 1 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]

g rp 0001 = p r o d 0 1 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 0 1 = pr o d 0 1 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 0 1 = g e o l o c 0 1 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 0 1 = g e o l o c 0 1 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]

l a t 0 0 1 = np . a r r a y ( l a t 0 0 0 1 ) [ 0 , : , : ]

l o n 0 0 1 = np . a r r a y ( l o n 0 0 0 1 ) [ 0 , : , : ]

co 001 = np . a r r a y ( co 0001 ) [ 0 , : , : ]
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qa 001 = np . a r r a y ( qa 0001 ) [ 0 , : , : ]

g r p 0 0 1 = np . a r r a y ( g rp 0001 ) [ : ]

s c l 0 0 1 = np . a r r a y ( s c l 0 0 0 1 ) [ : ]

l a t c 1 0 0 1 = np . a r r a y ( l a t c 0 0 0 1 ) [ 0 , : , : , 0 ]

l a t c 2 0 0 1 = np . a r r a y ( l a t c 0 0 0 1 ) [ 0 , : , : , 1 ]

l a t c 3 0 0 1 = np . a r r a y ( l a t c 0 0 0 1 ) [ 0 , : , : , 2 ]

l a t c 4 0 0 1 = np . a r r a y ( l a t c 0 0 0 1 ) [ 0 , : , : , 3 ]

l o n c 1 0 0 1 = np . a r r a y ( l o n c 0 0 0 1 ) [ 0 , : , : , 0 ]

l o n c 2 0 0 1 = np . a r r a y ( l o n c 0 0 0 1 ) [ 0 , : , : , 1 ]

l o n c 3 0 0 1 = np . a r r a y ( l o n c 0 0 0 1 ) [ 0 , : , : , 2 ]

l o n c 4 0 0 1 = np . a r r a y ( l o n c 0 0 0 1 ) [ 0 , : , : , 3 ]

n g r p 0 1 = g r p 0 0 1 . s i z e

n s c l 0 1 = s c l 0 0 1 . s i z e

s c l 0 0 1 = qa 001 ∗ 0

g r p 0 0 1 = qa 001 ∗ 0

f o r i i in range ( n s c l 0 1 ) :

f o r j j in range ( n g r p 0 1 ) :

s c l 0 0 1 [ i i ] [ j j ] = s c l 0 0 1 [ i i ]

g r p 0 0 1 [ i i ] [ j j ] = g r p 0 0 1 [ j j ]

( i , j ) = ( qa 001 >= 0 . 5 ) . nonze ro ( )

l a t 0 1 = l a t 0 0 1 [ ( i , j ) ]

l o n 0 1 = l o n 0 0 1 [ ( i , j ) ]

co 01 = co 001 [ ( i , j ) ]

g r p 0 1 = g r p 0 0 1 [ ( i , j ) ]

s c l 0 1 = s c l 0 0 1 [ ( i , j ) ]

l a t c 1 0 1 = l a t c 1 0 0 1 [ ( i , j ) ]

l a t c 2 0 1 = l a t c 2 0 0 1 [ ( i , j ) ]

l a t c 3 0 1 = l a t c 3 0 0 1 [ ( i , j ) ]

l a t c 4 0 1 = l a t c 4 0 0 1 [ ( i , j ) ]

l o n c 1 0 1 = l o n c 1 0 0 1 [ ( i , j ) ]

l o n c 2 0 1 = l o n c 2 0 0 1 [ ( i , j ) ]

l o n c 3 0 1 = l o n c 3 0 0 1 [ ( i , j ) ]

l o n c 4 0 1 = l o n c 4 0 0 1 [ ( i , j ) ]

l a t 0 1 = pd . DataFrame ( l a t 0 1 )

l o n 0 1 = pd . DataFrame ( l o n 0 1 )
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co 01 = pd . DataFrame ( co 01 )

g r p 0 1 = pd . DataFrame ( g r p 0 1 )

s c l 0 1 = pd . DataFrame ( s c l 0 1 )

o r b 0 1 = 0∗ l a t 0 1 + 3343

l a t c 1 0 1 = pd . DataFrame ( l a t c 1 0 1 )

l a t c 2 0 1 = pd . DataFrame ( l a t c 2 0 1 )

l a t c 3 0 1 = pd . DataFrame ( l a t c 3 0 1 )

l a t c 4 0 1 = pd . DataFrame ( l a t c 4 0 1 )

l o n c 1 0 1 = pd . DataFrame ( l o n c 1 0 1 )

l o n c 2 0 1 = pd . DataFrame ( l o n c 2 0 1 )

l o n c 3 0 1 = pd . DataFrame ( l o n c 3 0 1 )

l o n c 4 0 1 = pd . DataFrame ( l o n c 4 0 1 )

o r b i t 0 2 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T020817 20180606T035144 03344 01 010202

20190207 T155639 . nc ” , mode= ’ r ’ )

p r o d 0 2 = o r b i t 0 2 . g ro ups [ ’PRODUCT’ ]

s d a t a 0 2 = p ro d 0 2 . g rou ps [ ’SUPPORT DATA ’ ]

g e o l o c 0 2 = s d a t a 0 2 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 0 2 = p r o d 0 2 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 0 2 = p r o d 0 2 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co 0002 = p r o d 0 2 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0002 = p r o d 0 2 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]

g rp 0002 = p r o d 0 2 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 0 2 = pr o d 0 2 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 0 2 = g e o l o c 0 2 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 0 2 = g e o l o c 0 2 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]

l a t 0 0 2 = np . a r r a y ( l a t 0 0 0 2 ) [ 0 , : , : ]

l o n 0 0 2 = np . a r r a y ( l o n 0 0 0 2 ) [ 0 , : , : ]

co 002 = np . a r r a y ( co 0002 ) [ 0 , : , : ]

qa 002 = np . a r r a y ( qa 0002 ) [ 0 , : , : ]

g r p 0 0 2 = np . a r r a y ( g rp 0002 ) [ : ]

s c l 0 0 2 = np . a r r a y ( s c l 0 0 0 2 ) [ : ]

l a t c 1 0 0 2 = np . a r r a y ( l a t c 0 0 0 2 ) [ 0 , : , : , 0 ]

l a t c 2 0 0 2 = np . a r r a y ( l a t c 0 0 0 2 ) [ 0 , : , : , 1 ]

l a t c 3 0 0 2 = np . a r r a y ( l a t c 0 0 0 2 ) [ 0 , : , : , 2 ]

49



l a t c 4 0 0 2 = np . a r r a y ( l a t c 0 0 0 2 ) [ 0 , : , : , 3 ]

l o n c 1 0 0 2 = np . a r r a y ( l o n c 0 0 0 2 ) [ 0 , : , : , 0 ]

l o n c 2 0 0 2 = np . a r r a y ( l o n c 0 0 0 2 ) [ 0 , : , : , 1 ]

l o n c 3 0 0 2 = np . a r r a y ( l o n c 0 0 0 2 ) [ 0 , : , : , 2 ]

l o n c 4 0 0 2 = np . a r r a y ( l o n c 0 0 0 2 ) [ 0 , : , : , 3 ]

n g r p 0 2 = g r p 0 0 2 . s i z e

n s c l 0 2 = s c l 0 0 2 . s i z e

s c l 0 0 2 = qa 002 ∗ 0

g r p 0 0 2 = qa 002 ∗ 0

f o r i i in range ( n s c l 0 2 ) :

f o r j j in range ( n g r p 0 2 ) :

s c l 0 0 2 [ i i ] [ j j ] = s c l 0 0 2 [ i i ]

g r p 0 0 2 [ i i ] [ j j ] = g r p 0 0 2 [ j j ]

( i , j ) = ( qa 002 >= 0 . 5 ) . nonze ro ( )

l a t 0 2 = l a t 0 0 2 [ ( i , j ) ]

l o n 0 2 = l o n 0 0 2 [ ( i , j ) ]

co 02 = co 002 [ ( i , j ) ]

g r p 0 2 = g r p 0 0 2 [ ( i , j ) ]

s c l 0 2 = s c l 0 0 2 [ ( i , j ) ]

l a t c 1 0 2 = l a t c 1 0 0 2 [ ( i , j ) ]

l a t c 2 0 2 = l a t c 2 0 0 2 [ ( i , j ) ]

l a t c 3 0 2 = l a t c 3 0 0 2 [ ( i , j ) ]

l a t c 4 0 2 = l a t c 4 0 0 2 [ ( i , j ) ]

l o n c 1 0 2 = l o n c 1 0 0 2 [ ( i , j ) ]

l o n c 2 0 2 = l o n c 2 0 0 2 [ ( i , j ) ]

l o n c 3 0 2 = l o n c 3 0 0 2 [ ( i , j ) ]

l o n c 4 0 2 = l o n c 4 0 0 2 [ ( i , j ) ]

l a t 0 2 = pd . DataFrame ( l a t 0 2 )

l o n 0 2 = pd . DataFrame ( l o n 0 2 )

co 02 = pd . DataFrame ( co 02 )

g r p 0 2 = pd . DataFrame ( g r p 0 2 )

s c l 0 2 = pd . DataFrame ( s c l 0 2 )

o r b 0 2 = 0∗ l a t 0 2 + 3344

l a t c 1 0 2 = pd . DataFrame ( l a t c 1 0 2 )

l a t c 2 0 2 = pd . DataFrame ( l a t c 2 0 2 )
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l a t c 3 0 2 = pd . DataFrame ( l a t c 3 0 2 )

l a t c 4 0 2 = pd . DataFrame ( l a t c 4 0 2 )

l o n c 1 0 2 = pd . DataFrame ( l o n c 1 0 2 )

l o n c 2 0 2 = pd . DataFrame ( l o n c 2 0 2 )

l o n c 3 0 2 = pd . DataFrame ( l o n c 3 0 2 )

l o n c 4 0 2 = pd . DataFrame ( l o n c 4 0 2 )

o r b i t 0 3 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T034946 20180606T053314 03345 01 010202

20190207 T160913 . nc ” , mode= ’ r ’ )

p r o d 0 3 = o r b i t 0 3 . g ro ups [ ’PRODUCT’ ]

s d a t a 0 3 = p ro d 0 3 . g rou ps [ ’SUPPORT DATA ’ ]

g e o l o c 0 3 = s d a t a 0 3 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 0 3 = p r o d 0 3 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 0 3 = p r o d 0 3 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co 0003 = p r o d 0 3 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0003 = p r o d 0 3 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]

g rp 0003 = p r o d 0 3 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 0 3 = pr o d 0 3 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 0 3 = g e o l o c 0 3 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 0 3 = g e o l o c 0 3 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]

l a t 0 0 3 = np . a r r a y ( l a t 0 0 0 3 ) [ 0 , : , : ]

l o n 0 0 3 = np . a r r a y ( l o n 0 0 0 3 ) [ 0 , : , : ]

co 003 = np . a r r a y ( co 0003 ) [ 0 , : , : ]

qa 003 = np . a r r a y ( qa 0003 ) [ 0 , : , : ]

g r p 0 0 3 = np . a r r a y ( g rp 0003 ) [ : ]

s c l 0 0 3 = np . a r r a y ( s c l 0 0 0 3 ) [ : ]

l a t c 1 0 0 3 = np . a r r a y ( l a t c 0 0 0 3 ) [ 0 , : , : , 0 ]

l a t c 2 0 0 3 = np . a r r a y ( l a t c 0 0 0 3 ) [ 0 , : , : , 1 ]

l a t c 3 0 0 3 = np . a r r a y ( l a t c 0 0 0 3 ) [ 0 , : , : , 2 ]

l a t c 4 0 0 3 = np . a r r a y ( l a t c 0 0 0 3 ) [ 0 , : , : , 3 ]

l o n c 1 0 0 3 = np . a r r a y ( l o n c 0 0 0 3 ) [ 0 , : , : , 0 ]

l o n c 2 0 0 3 = np . a r r a y ( l o n c 0 0 0 3 ) [ 0 , : , : , 1 ]

l o n c 3 0 0 3 = np . a r r a y ( l o n c 0 0 0 3 ) [ 0 , : , : , 2 ]

l o n c 4 0 0 3 = np . a r r a y ( l o n c 0 0 0 3 ) [ 0 , : , : , 3 ]
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n g r p 0 3 = g r p 0 0 3 . s i z e

n s c l 0 3 = s c l 0 0 3 . s i z e

s c l 0 0 3 = qa 003 ∗ 0

g r p 0 0 3 = qa 003 ∗ 0

f o r i i in range ( n s c l 0 3 ) :

f o r j j in range ( n g r p 0 3 ) :

s c l 0 0 3 [ i i ] [ j j ] = s c l 0 0 3 [ i i ]

g r p 0 0 3 [ i i ] [ j j ] = g r p 0 0 3 [ j j ]

( i , j ) = ( qa 003 >= 0 . 5 ) . nonze ro ( )

l a t 0 3 = l a t 0 0 3 [ ( i , j ) ]

l o n 0 3 = l o n 0 0 3 [ ( i , j ) ]

co 03 = co 003 [ ( i , j ) ]

g r p 0 3 = g r p 0 0 3 [ ( i , j ) ]

s c l 0 3 = s c l 0 0 3 [ ( i , j ) ]

l a t c 1 0 3 = l a t c 1 0 0 3 [ ( i , j ) ]

l a t c 2 0 3 = l a t c 2 0 0 3 [ ( i , j ) ]

l a t c 3 0 3 = l a t c 3 0 0 3 [ ( i , j ) ]

l a t c 4 0 3 = l a t c 4 0 0 3 [ ( i , j ) ]

l o n c 1 0 3 = l o n c 1 0 0 3 [ ( i , j ) ]

l o n c 2 0 3 = l o n c 2 0 0 3 [ ( i , j ) ]

l o n c 3 0 3 = l o n c 3 0 0 3 [ ( i , j ) ]

l o n c 4 0 3 = l o n c 4 0 0 3 [ ( i , j ) ]

l a t 0 3 = pd . DataFrame ( l a t 0 3 )

l o n 0 3 = pd . DataFrame ( l o n 0 3 )

co 03 = pd . DataFrame ( co 03 )

g r p 0 3 = pd . DataFrame ( g r p 0 3 )

s c l 0 3 = pd . DataFrame ( s c l 0 3 )

o r b 0 3 = 0∗ l a t 0 3 + 3345

l a t c 1 0 3 = pd . DataFrame ( l a t c 1 0 3 )

l a t c 2 0 3 = pd . DataFrame ( l a t c 2 0 3 )

l a t c 3 0 3 = pd . DataFrame ( l a t c 3 0 3 )

l a t c 4 0 3 = pd . DataFrame ( l a t c 4 0 3 )

l o n c 1 0 3 = pd . DataFrame ( l o n c 1 0 3 )

l o n c 2 0 3 = pd . DataFrame ( l o n c 2 0 3 )

l o n c 3 0 3 = pd . DataFrame ( l o n c 3 0 3 )

l o n c 4 0 3 = pd . DataFrame ( l o n c 4 0 3 )
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o r b i t 0 4 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T053116 20180606T071410 03346 01 010202

20190207 T162115 . nc ” , mode= ’ r ’ )

p r o d 0 4 = o r b i t 0 4 . g ro ups [ ’PRODUCT’ ]

s d a t a 0 4 = p ro d 0 4 . g rou ps [ ’SUPPORT DATA ’ ]

g e o l o c 0 4 = s d a t a 0 4 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 0 4 = p r o d 0 4 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 0 4 = p r o d 0 4 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co 0004 = p r o d 0 4 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0004 = p r o d 0 4 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]

g rp 0004 = p r o d 0 4 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 0 4 = pr o d 0 4 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 0 4 = g e o l o c 0 4 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 0 4 = g e o l o c 0 4 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]

l a t 0 0 4 = np . a r r a y ( l a t 0 0 0 4 ) [ 0 , : , : ]

l o n 0 0 4 = np . a r r a y ( l o n 0 0 0 4 ) [ 0 , : , : ]

co 004 = np . a r r a y ( co 0004 ) [ 0 , : , : ]

qa 004 = np . a r r a y ( qa 0004 ) [ 0 , : , : ]

g r p 0 0 4 = np . a r r a y ( g rp 0004 ) [ : ]

s c l 0 0 4 = np . a r r a y ( s c l 0 0 0 4 ) [ : ]

l a t c 1 0 0 4 = np . a r r a y ( l a t c 0 0 0 4 ) [ 0 , : , : , 0 ]

l a t c 2 0 0 4 = np . a r r a y ( l a t c 0 0 0 4 ) [ 0 , : , : , 1 ]

l a t c 3 0 0 4 = np . a r r a y ( l a t c 0 0 0 4 ) [ 0 , : , : , 2 ]

l a t c 4 0 0 4 = np . a r r a y ( l a t c 0 0 0 4 ) [ 0 , : , : , 3 ]

l o n c 1 0 0 4 = np . a r r a y ( l o n c 0 0 0 4 ) [ 0 , : , : , 0 ]

l o n c 2 0 0 4 = np . a r r a y ( l o n c 0 0 0 4 ) [ 0 , : , : , 1 ]

l o n c 3 0 0 4 = np . a r r a y ( l o n c 0 0 0 4 ) [ 0 , : , : , 2 ]

l o n c 4 0 0 4 = np . a r r a y ( l o n c 0 0 0 4 ) [ 0 , : , : , 3 ]

n g r p 0 4 = g r p 0 0 4 . s i z e

n s c l 0 4 = s c l 0 0 4 . s i z e

s c l 0 0 4 = qa 004 ∗ 0

g r p 0 0 4 = qa 004 ∗ 0
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f o r i i in range ( n s c l 0 4 ) :

f o r j j in range ( n g r p 0 4 ) :

s c l 0 0 4 [ i i ] [ j j ] = s c l 0 0 4 [ i i ]

g r p 0 0 4 [ i i ] [ j j ] = g r p 0 0 4 [ j j ]

( i , j ) = ( qa 004 >= 0 . 5 ) . nonze ro ( )

l a t 0 4 = l a t 0 0 4 [ ( i , j ) ]

l o n 0 4 = l o n 0 0 4 [ ( i , j ) ]

co 04 = co 004 [ ( i , j ) ]

g r p 0 4 = g r p 0 0 4 [ ( i , j ) ]

s c l 0 4 = s c l 0 0 4 [ ( i , j ) ]

l a t c 1 0 4 = l a t c 1 0 0 4 [ ( i , j ) ]

l a t c 2 0 4 = l a t c 2 0 0 4 [ ( i , j ) ]

l a t c 3 0 4 = l a t c 3 0 0 4 [ ( i , j ) ]

l a t c 4 0 4 = l a t c 4 0 0 4 [ ( i , j ) ]

l o n c 1 0 4 = l o n c 1 0 0 4 [ ( i , j ) ]

l o n c 2 0 4 = l o n c 2 0 0 4 [ ( i , j ) ]

l o n c 3 0 4 = l o n c 3 0 0 4 [ ( i , j ) ]

l o n c 4 0 4 = l o n c 4 0 0 4 [ ( i , j ) ]

l a t 0 4 = pd . DataFrame ( l a t 0 4 )

l o n 0 4 = pd . DataFrame ( l o n 0 4 )

co 04 = pd . DataFrame ( co 04 )

g r p 0 4 = pd . DataFrame ( g r p 0 4 )

s c l 0 4 = pd . DataFrame ( s c l 0 4 )

o r b 0 4 = 0∗ l a t 0 4 + 3346

l a t c 1 0 4 = pd . DataFrame ( l a t c 1 0 4 )

l a t c 2 0 4 = pd . DataFrame ( l a t c 2 0 4 )

l a t c 3 0 4 = pd . DataFrame ( l a t c 3 0 4 )

l a t c 4 0 4 = pd . DataFrame ( l a t c 4 0 4 )

l o n c 1 0 4 = pd . DataFrame ( l o n c 1 0 4 )

l o n c 2 0 4 = pd . DataFrame ( l o n c 2 0 4 )

l o n c 3 0 4 = pd . DataFrame ( l o n c 3 0 4 )

l o n c 4 0 4 = pd . DataFrame ( l o n c 4 0 4 )

o r b i t 0 5 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T071246 20180606T085614 03347 01 010202

20190207 T162812 . nc ” , mode= ’ r ’ )
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p r o d 0 5 = o r b i t 0 5 . g ro ups [ ’PRODUCT’ ]

s d a t a 0 5 = p ro d 0 5 . g rou ps [ ’SUPPORT DATA ’ ]

g e o l o c 0 5 = s d a t a 0 5 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 0 5 = p r o d 0 5 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 0 5 = p r o d 0 5 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co 0005 = p r o d 0 5 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0005 = p r o d 0 5 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]

g rp 0005 = p r o d 0 5 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 0 5 = pr o d 0 5 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 0 5 = g e o l o c 0 5 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 0 5 = g e o l o c 0 5 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]

l a t 0 0 5 = np . a r r a y ( l a t 0 0 0 5 ) [ 0 , : , : ]

l o n 0 0 5 = np . a r r a y ( l o n 0 0 0 5 ) [ 0 , : , : ]

co 005 = np . a r r a y ( co 0005 ) [ 0 , : , : ]

qa 005 = np . a r r a y ( qa 0005 ) [ 0 , : , : ]

g r p 0 0 5 = np . a r r a y ( g rp 0005 ) [ : ]

s c l 0 0 5 = np . a r r a y ( s c l 0 0 0 5 ) [ : ]

l a t c 1 0 0 5 = np . a r r a y ( l a t c 0 0 0 5 ) [ 0 , : , : , 0 ]

l a t c 2 0 0 5 = np . a r r a y ( l a t c 0 0 0 5 ) [ 0 , : , : , 1 ]

l a t c 3 0 0 5 = np . a r r a y ( l a t c 0 0 0 5 ) [ 0 , : , : , 2 ]

l a t c 4 0 0 5 = np . a r r a y ( l a t c 0 0 0 5 ) [ 0 , : , : , 3 ]

l o n c 1 0 0 5 = np . a r r a y ( l o n c 0 0 0 5 ) [ 0 , : , : , 0 ]

l o n c 2 0 0 5 = np . a r r a y ( l o n c 0 0 0 5 ) [ 0 , : , : , 1 ]

l o n c 3 0 0 5 = np . a r r a y ( l o n c 0 0 0 5 ) [ 0 , : , : , 2 ]

l o n c 4 0 0 5 = np . a r r a y ( l o n c 0 0 0 5 ) [ 0 , : , : , 3 ]

n g r p 0 5 = g r p 0 0 5 . s i z e

n s c l 0 5 = s c l 0 0 5 . s i z e

s c l 0 0 5 = qa 005 ∗ 0

g r p 0 0 5 = qa 005 ∗ 0

f o r i i in range ( n s c l 0 5 ) :

f o r j j in range ( n g r p 0 5 ) :

s c l 0 0 5 [ i i ] [ j j ] = s c l 0 0 5 [ i i ]

g r p 0 0 5 [ i i ] [ j j ] = g r p 0 0 5 [ j j ]

( i , j ) = ( qa 005 >= 0 . 5 ) . nonze ro ( )
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l a t 0 5 = l a t 0 0 5 [ ( i , j ) ]

l o n 0 5 = l o n 0 0 5 [ ( i , j ) ]

co 05 = co 005 [ ( i , j ) ]

g r p 0 5 = g r p 0 0 5 [ ( i , j ) ]

s c l 0 5 = s c l 0 0 5 [ ( i , j ) ]

l a t c 1 0 5 = l a t c 1 0 0 5 [ ( i , j ) ]

l a t c 2 0 5 = l a t c 2 0 0 5 [ ( i , j ) ]

l a t c 3 0 5 = l a t c 3 0 0 5 [ ( i , j ) ]

l a t c 4 0 5 = l a t c 4 0 0 5 [ ( i , j ) ]

l o n c 1 0 5 = l o n c 1 0 0 5 [ ( i , j ) ]

l o n c 2 0 5 = l o n c 2 0 0 5 [ ( i , j ) ]

l o n c 3 0 5 = l o n c 3 0 0 5 [ ( i , j ) ]

l o n c 4 0 5 = l o n c 4 0 0 5 [ ( i , j ) ]

l a t 0 5 = pd . DataFrame ( l a t 0 5 )

l o n 0 5 = pd . DataFrame ( l o n 0 5 )

co 05 = pd . DataFrame ( co 05 )

g r p 0 5 = pd . DataFrame ( g r p 0 5 )

s c l 0 5 = pd . DataFrame ( s c l 0 5 )

o r b 0 5 = 0∗ l a t 0 5 + 3347

l a t c 1 0 5 = pd . DataFrame ( l a t c 1 0 5 )

l a t c 2 0 5 = pd . DataFrame ( l a t c 2 0 5 )

l a t c 3 0 5 = pd . DataFrame ( l a t c 3 0 5 )

l a t c 4 0 5 = pd . DataFrame ( l a t c 4 0 5 )

l o n c 1 0 5 = pd . DataFrame ( l o n c 1 0 5 )

l o n c 2 0 5 = pd . DataFrame ( l o n c 2 0 5 )

l o n c 3 0 5 = pd . DataFrame ( l o n c 3 0 5 )

l o n c 4 0 5 = pd . DataFrame ( l o n c 4 0 5 )

o r b i t 0 6 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T085416 20180606T103744 03348 01 010202

20190207 T164047 . nc ” , mode= ’ r ’ )

p r o d 0 6 = o r b i t 0 6 . g ro ups [ ’PRODUCT’ ]

s d a t a 0 6 = p ro d 0 6 . g rou ps [ ’SUPPORT DATA ’ ]

g e o l o c 0 6 = s d a t a 0 6 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 0 6 = p r o d 0 6 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 0 6 = p r o d 0 6 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]
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co 0006 = p r o d 0 6 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0006 = p r o d 0 6 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]

g rp 0006 = p r o d 0 6 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 0 6 = pr o d 0 6 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 0 6 = g e o l o c 0 6 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 0 6 = g e o l o c 0 6 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]

l a t 0 0 6 = np . a r r a y ( l a t 0 0 0 6 ) [ 0 , : , : ]

l o n 0 0 6 = np . a r r a y ( l o n 0 0 0 6 ) [ 0 , : , : ]

co 006 = np . a r r a y ( co 0006 ) [ 0 , : , : ]

qa 006 = np . a r r a y ( qa 0006 ) [ 0 , : , : ]

g r p 0 0 6 = np . a r r a y ( g rp 0006 ) [ : ]

s c l 0 0 6 = np . a r r a y ( s c l 0 0 0 6 ) [ : ]

l a t c 1 0 0 6 = np . a r r a y ( l a t c 0 0 0 6 ) [ 0 , : , : , 0 ]

l a t c 2 0 0 6 = np . a r r a y ( l a t c 0 0 0 6 ) [ 0 , : , : , 1 ]

l a t c 3 0 0 6 = np . a r r a y ( l a t c 0 0 0 6 ) [ 0 , : , : , 2 ]

l a t c 4 0 0 6 = np . a r r a y ( l a t c 0 0 0 6 ) [ 0 , : , : , 3 ]

l o n c 1 0 0 6 = np . a r r a y ( l o n c 0 0 0 6 ) [ 0 , : , : , 0 ]

l o n c 2 0 0 6 = np . a r r a y ( l o n c 0 0 0 6 ) [ 0 , : , : , 1 ]

l o n c 3 0 0 6 = np . a r r a y ( l o n c 0 0 0 6 ) [ 0 , : , : , 2 ]

l o n c 4 0 0 6 = np . a r r a y ( l o n c 0 0 0 6 ) [ 0 , : , : , 3 ]

n g r p 0 6 = g r p 0 0 6 . s i z e

n s c l 0 6 = s c l 0 0 6 . s i z e

s c l 0 0 6 = qa 006 ∗ 0

g r p 0 0 6 = qa 006 ∗ 0

f o r i i in range ( n s c l 0 6 ) :

f o r j j in range ( n g r p 0 6 ) :

s c l 0 0 6 [ i i ] [ j j ] = s c l 0 0 6 [ i i ]

g r p 0 0 6 [ i i ] [ j j ] = g r p 0 0 6 [ j j ]

( i , j ) = ( qa 006 >= 0 . 5 ) . nonze ro ( )

l a t 0 6 = l a t 0 0 6 [ ( i , j ) ]

l o n 0 6 = l o n 0 0 6 [ ( i , j ) ]

co 06 = co 006 [ ( i , j ) ]

g r p 0 6 = g r p 0 0 6 [ ( i , j ) ]

s c l 0 6 = s c l 0 0 6 [ ( i , j ) ]

l a t c 1 0 6 = l a t c 1 0 0 6 [ ( i , j ) ]
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l a t c 2 0 6 = l a t c 2 0 0 6 [ ( i , j ) ]

l a t c 3 0 6 = l a t c 3 0 0 6 [ ( i , j ) ]

l a t c 4 0 6 = l a t c 4 0 0 6 [ ( i , j ) ]

l o n c 1 0 6 = l o n c 1 0 0 6 [ ( i , j ) ]

l o n c 2 0 6 = l o n c 2 0 0 6 [ ( i , j ) ]

l o n c 3 0 6 = l o n c 3 0 0 6 [ ( i , j ) ]

l o n c 4 0 6 = l o n c 4 0 0 6 [ ( i , j ) ]

l a t 0 6 = pd . DataFrame ( l a t 0 6 )

l o n 0 6 = pd . DataFrame ( l o n 0 6 )

co 06 = pd . DataFrame ( co 06 )

g r p 0 6 = pd . DataFrame ( g r p 0 6 )

s c l 0 6 = pd . DataFrame ( s c l 0 6 )

o r b 0 6 = 0∗ l a t 0 6 + 3348

l a t c 1 0 6 = pd . DataFrame ( l a t c 1 0 6 )

l a t c 2 0 6 = pd . DataFrame ( l a t c 2 0 6 )

l a t c 3 0 6 = pd . DataFrame ( l a t c 3 0 6 )

l a t c 4 0 6 = pd . DataFrame ( l a t c 4 0 6 )

l o n c 1 0 6 = pd . DataFrame ( l o n c 1 0 6 )

l o n c 2 0 6 = pd . DataFrame ( l o n c 2 0 6 )

l o n c 3 0 6 = pd . DataFrame ( l o n c 3 0 6 )

l o n c 4 0 6 = pd . DataFrame ( l o n c 4 0 6 )

o r b i t 0 7 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T103546 20180606T121914 03349 01 010202

20190207 T165649 . nc ” , mode= ’ r ’ )

p r o d 0 7 = o r b i t 0 7 . g ro ups [ ’PRODUCT’ ]

s d a t a 0 7 = p ro d 0 7 . g rou ps [ ’SUPPORT DATA ’ ]

g e o l o c 0 7 = s d a t a 0 7 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 0 7 = p r o d 0 7 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 0 7 = p r o d 0 7 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co 0007 = p r o d 0 7 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0007 = p r o d 0 7 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]

g rp 0007 = p r o d 0 7 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 0 7 = pr o d 0 7 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 0 7 = g e o l o c 0 7 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 0 7 = g e o l o c 0 7 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]
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l a t 0 0 7 = np . a r r a y ( l a t 0 0 0 7 ) [ 0 , : , : ]

l o n 0 0 7 = np . a r r a y ( l o n 0 0 0 7 ) [ 0 , : , : ]

co 007 = np . a r r a y ( co 0007 ) [ 0 , : , : ]

qa 007 = np . a r r a y ( qa 0007 ) [ 0 , : , : ]

g r p 0 0 7 = np . a r r a y ( g rp 0007 ) [ : ]

s c l 0 0 7 = np . a r r a y ( s c l 0 0 0 7 ) [ : ]

l a t c 1 0 0 7 = np . a r r a y ( l a t c 0 0 0 7 ) [ 0 , : , : , 0 ]

l a t c 2 0 0 7 = np . a r r a y ( l a t c 0 0 0 7 ) [ 0 , : , : , 1 ]

l a t c 3 0 0 7 = np . a r r a y ( l a t c 0 0 0 7 ) [ 0 , : , : , 2 ]

l a t c 4 0 0 7 = np . a r r a y ( l a t c 0 0 0 7 ) [ 0 , : , : , 3 ]

l o n c 1 0 0 7 = np . a r r a y ( l o n c 0 0 0 7 ) [ 0 , : , : , 0 ]

l o n c 2 0 0 7 = np . a r r a y ( l o n c 0 0 0 7 ) [ 0 , : , : , 1 ]

l o n c 3 0 0 7 = np . a r r a y ( l o n c 0 0 0 7 ) [ 0 , : , : , 2 ]

l o n c 4 0 0 7 = np . a r r a y ( l o n c 0 0 0 7 ) [ 0 , : , : , 3 ]

n g r p 0 7 = g r p 0 0 7 . s i z e

n s c l 0 7 = s c l 0 0 7 . s i z e

s c l 0 0 7 = qa 007 ∗ 0

g r p 0 0 7 = qa 007 ∗ 0

f o r i i in range ( n s c l 0 7 ) :

f o r j j in range ( n g r p 0 7 ) :

s c l 0 0 7 [ i i ] [ j j ] = s c l 0 0 7 [ i i ]

g r p 0 0 7 [ i i ] [ j j ] = g r p 0 0 7 [ j j ]

( i , j ) = ( qa 007 >= 0 . 5 ) . nonze ro ( )

l a t 0 7 = l a t 0 0 7 [ ( i , j ) ]

l o n 0 7 = l o n 0 0 7 [ ( i , j ) ]

co 07 = co 007 [ ( i , j ) ]

g r p 0 7 = g r p 0 0 7 [ ( i , j ) ]

s c l 0 7 = s c l 0 0 7 [ ( i , j ) ]

l a t c 1 0 7 = l a t c 1 0 0 7 [ ( i , j ) ]

l a t c 2 0 7 = l a t c 2 0 0 7 [ ( i , j ) ]

l a t c 3 0 7 = l a t c 3 0 0 7 [ ( i , j ) ]

l a t c 4 0 7 = l a t c 4 0 0 7 [ ( i , j ) ]

l o n c 1 0 7 = l o n c 1 0 0 7 [ ( i , j ) ]

l o n c 2 0 7 = l o n c 2 0 0 7 [ ( i , j ) ]

l o n c 3 0 7 = l o n c 3 0 0 7 [ ( i , j ) ]
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l o n c 4 0 7 = l o n c 4 0 0 7 [ ( i , j ) ]

l a t 0 7 = pd . DataFrame ( l a t 0 7 )

l o n 0 7 = pd . DataFrame ( l o n 0 7 )

co 07 = pd . DataFrame ( co 07 )

g r p 0 7 = pd . DataFrame ( g r p 0 7 )

s c l 0 7 = pd . DataFrame ( s c l 0 7 )

o r b 0 7 = 0∗ l a t 0 7 + 3349

l a t c 1 0 7 = pd . DataFrame ( l a t c 1 0 7 )

l a t c 2 0 7 = pd . DataFrame ( l a t c 2 0 7 )

l a t c 3 0 7 = pd . DataFrame ( l a t c 3 0 7 )

l a t c 4 0 7 = pd . DataFrame ( l a t c 4 0 7 )

l o n c 1 0 7 = pd . DataFrame ( l o n c 1 0 7 )

l o n c 2 0 7 = pd . DataFrame ( l o n c 2 0 7 )

l o n c 3 0 7 = pd . DataFrame ( l o n c 3 0 7 )

l o n c 4 0 7 = pd . DataFrame ( l o n c 4 0 7 )

o r b i t 0 8 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T121716 20180606T140044 03350 01 010202

20190207 T171959 . nc ” , mode= ’ r ’ )

p r o d 0 8 = o r b i t 0 8 . g ro ups [ ’PRODUCT’ ]

s d a t a 0 8 = p ro d 0 8 . g rou ps [ ’SUPPORT DATA ’ ]

g e o l o c 0 8 = s d a t a 0 8 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 0 8 = p r o d 0 8 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 0 8 = p r o d 0 8 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co 0008 = p r o d 0 8 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0008 = p r o d 0 8 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]

g rp 0008 = p r o d 0 8 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 0 8 = pr o d 0 8 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 0 8 = g e o l o c 0 8 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 0 8 = g e o l o c 0 8 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]

l a t 0 0 8 = np . a r r a y ( l a t 0 0 0 8 ) [ 0 , : , : ]

l o n 0 0 8 = np . a r r a y ( l o n 0 0 0 8 ) [ 0 , : , : ]

co 008 = np . a r r a y ( co 0008 ) [ 0 , : , : ]

qa 008 = np . a r r a y ( qa 0008 ) [ 0 , : , : ]

g r p 0 0 8 = np . a r r a y ( g rp 0008 ) [ : ]
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s c l 0 0 8 = np . a r r a y ( s c l 0 0 0 8 ) [ : ]

l a t c 1 0 0 8 = np . a r r a y ( l a t c 0 0 0 8 ) [ 0 , : , : , 0 ]

l a t c 2 0 0 8 = np . a r r a y ( l a t c 0 0 0 8 ) [ 0 , : , : , 1 ]

l a t c 3 0 0 8 = np . a r r a y ( l a t c 0 0 0 8 ) [ 0 , : , : , 2 ]

l a t c 4 0 0 8 = np . a r r a y ( l a t c 0 0 0 8 ) [ 0 , : , : , 3 ]

l o n c 1 0 0 8 = np . a r r a y ( l o n c 0 0 0 8 ) [ 0 , : , : , 0 ]

l o n c 2 0 0 8 = np . a r r a y ( l o n c 0 0 0 8 ) [ 0 , : , : , 1 ]

l o n c 3 0 0 8 = np . a r r a y ( l o n c 0 0 0 8 ) [ 0 , : , : , 2 ]

l o n c 4 0 0 8 = np . a r r a y ( l o n c 0 0 0 8 ) [ 0 , : , : , 3 ]

n g r p 0 8 = g r p 0 0 8 . s i z e

n s c l 0 8 = s c l 0 0 8 . s i z e

s c l 0 0 8 = qa 008 ∗ 0

g r p 0 0 8 = qa 008 ∗ 0

f o r i i in range ( n s c l 0 8 ) :

f o r j j in range ( n g r p 0 8 ) :

s c l 0 0 8 [ i i ] [ j j ] = s c l 0 0 8 [ i i ]

g r p 0 0 8 [ i i ] [ j j ] = g r p 0 0 8 [ j j ]

( i , j ) = ( qa 008 >= 0 . 5 ) . nonze ro ( )

l a t 0 8 = l a t 0 0 8 [ ( i , j ) ]

l o n 0 8 = l o n 0 0 8 [ ( i , j ) ]

co 08 = co 008 [ ( i , j ) ]

g r p 0 8 = g r p 0 0 8 [ ( i , j ) ]

s c l 0 8 = s c l 0 0 8 [ ( i , j ) ]

l a t c 1 0 8 = l a t c 1 0 0 8 [ ( i , j ) ]

l a t c 2 0 8 = l a t c 2 0 0 8 [ ( i , j ) ]

l a t c 3 0 8 = l a t c 3 0 0 8 [ ( i , j ) ]

l a t c 4 0 8 = l a t c 4 0 0 8 [ ( i , j ) ]

l o n c 1 0 8 = l o n c 1 0 0 8 [ ( i , j ) ]

l o n c 2 0 8 = l o n c 2 0 0 8 [ ( i , j ) ]

l o n c 3 0 8 = l o n c 3 0 0 8 [ ( i , j ) ]

l o n c 4 0 8 = l o n c 4 0 0 8 [ ( i , j ) ]

l a t 0 8 = pd . DataFrame ( l a t 0 8 )

l o n 0 8 = pd . DataFrame ( l o n 0 8 )

co 08 = pd . DataFrame ( co 08 )

g r p 0 8 = pd . DataFrame ( g r p 0 8 )
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s c l 0 8 = pd . DataFrame ( s c l 0 8 )

o r b 0 8 = 0∗ l a t 0 8 + 3350

l a t c 1 0 8 = pd . DataFrame ( l a t c 1 0 8 )

l a t c 2 0 8 = pd . DataFrame ( l a t c 2 0 8 )

l a t c 3 0 8 = pd . DataFrame ( l a t c 3 0 8 )

l a t c 4 0 8 = pd . DataFrame ( l a t c 4 0 8 )

l o n c 1 0 8 = pd . DataFrame ( l o n c 1 0 8 )

l o n c 2 0 8 = pd . DataFrame ( l o n c 2 0 8 )

l o n c 3 0 8 = pd . DataFrame ( l o n c 3 0 8 )

l o n c 4 0 8 = pd . DataFrame ( l o n c 4 0 8 )

o r b i t 0 9 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T143822 20180606T145537 03351 01 010202

20190207 T172910 . nc ” , mode= ’ r ’ )

p r o d 0 9 = o r b i t 0 9 . g ro ups [ ’PRODUCT’ ]

s d a t a 0 9 = p ro d 0 9 . g rou ps [ ’SUPPORT DATA ’ ]

g e o l o c 0 9 = s d a t a 0 9 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 0 9 = p r o d 0 9 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 0 9 = p r o d 0 9 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co 0009 = p r o d 0 9 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0009 = p r o d 0 9 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]

g rp 0009 = p r o d 0 9 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 0 9 = pr o d 0 9 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 0 9 = g e o l o c 0 9 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 0 9 = g e o l o c 0 9 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]

l a t 0 0 9 = np . a r r a y ( l a t 0 0 0 9 ) [ 0 , : , : ]

l o n 0 0 9 = np . a r r a y ( l o n 0 0 0 9 ) [ 0 , : , : ]

co 009 = np . a r r a y ( co 0009 ) [ 0 , : , : ]

qa 009 = np . a r r a y ( qa 0009 ) [ 0 , : , : ]

g r p 0 0 9 = np . a r r a y ( g rp 0009 ) [ : ]

s c l 0 0 9 = np . a r r a y ( s c l 0 0 0 9 ) [ : ]

l a t c 1 0 0 9 = np . a r r a y ( l a t c 0 0 0 9 ) [ 0 , : , : , 0 ]

l a t c 2 0 0 9 = np . a r r a y ( l a t c 0 0 0 9 ) [ 0 , : , : , 1 ]

l a t c 3 0 0 9 = np . a r r a y ( l a t c 0 0 0 9 ) [ 0 , : , : , 2 ]

l a t c 4 0 0 9 = np . a r r a y ( l a t c 0 0 0 9 ) [ 0 , : , : , 3 ]

l o n c 1 0 0 9 = np . a r r a y ( l o n c 0 0 0 9 ) [ 0 , : , : , 0 ]
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l o n c 2 0 0 9 = np . a r r a y ( l o n c 0 0 0 9 ) [ 0 , : , : , 1 ]

l o n c 3 0 0 9 = np . a r r a y ( l o n c 0 0 0 9 ) [ 0 , : , : , 2 ]

l o n c 4 0 0 9 = np . a r r a y ( l o n c 0 0 0 9 ) [ 0 , : , : , 3 ]

n g r p 0 9 = g r p 0 0 9 . s i z e

n s c l 0 9 = s c l 0 0 9 . s i z e

s c l 0 0 9 = qa 009 ∗ 0

g r p 0 0 9 = qa 009 ∗ 0

f o r i i in range ( n s c l 0 9 ) :

f o r j j in range ( n g r p 0 9 ) :

s c l 0 0 9 [ i i ] [ j j ] = s c l 0 0 9 [ i i ]

g r p 0 0 9 [ i i ] [ j j ] = g r p 0 0 9 [ j j ]

( i , j ) = ( qa 009 >= 0 . 5 ) . nonze ro ( )

l a t 0 9 = l a t 0 0 9 [ ( i , j ) ]

l o n 0 9 = l o n 0 0 9 [ ( i , j ) ]

co 09 = co 009 [ ( i , j ) ]

g r p 0 9 = g r p 0 0 9 [ ( i , j ) ]

s c l 0 9 = s c l 0 0 9 [ ( i , j ) ]

l a t c 1 0 9 = l a t c 1 0 0 9 [ ( i , j ) ]

l a t c 2 0 9 = l a t c 2 0 0 9 [ ( i , j ) ]

l a t c 3 0 9 = l a t c 3 0 0 9 [ ( i , j ) ]

l a t c 4 0 9 = l a t c 4 0 0 9 [ ( i , j ) ]

l o n c 1 0 9 = l o n c 1 0 0 9 [ ( i , j ) ]

l o n c 2 0 9 = l o n c 2 0 0 9 [ ( i , j ) ]

l o n c 3 0 9 = l o n c 3 0 0 9 [ ( i , j ) ]

l o n c 4 0 9 = l o n c 4 0 0 9 [ ( i , j ) ]

l a t 0 9 = pd . DataFrame ( l a t 0 9 )

l o n 0 9 = pd . DataFrame ( l o n 0 9 )

co 09 = pd . DataFrame ( co 09 )

g r p 0 9 = pd . DataFrame ( g r p 0 9 )

s c l 0 9 = pd . DataFrame ( s c l 0 9 )

o r b 0 9 = 0∗ l a t 0 9 + 3351

l a t c 1 0 9 = pd . DataFrame ( l a t c 1 0 9 )

l a t c 2 0 9 = pd . DataFrame ( l a t c 2 0 9 )

l a t c 3 0 9 = pd . DataFrame ( l a t c 3 0 9 )

l a t c 4 0 9 = pd . DataFrame ( l a t c 4 0 9 )
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l o n c 1 0 9 = pd . DataFrame ( l o n c 1 0 9 )

l o n c 2 0 9 = pd . DataFrame ( l o n c 2 0 9 )

l o n c 3 0 9 = pd . DataFrame ( l o n c 3 0 9 )

l o n c 4 0 9 = pd . DataFrame ( l o n c 4 0 9 )

o r b i t 1 0 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T154016 20180606T172340 03352 01 010202

20190207 T173851 . nc ” , mode= ’ r ’ )

p r o d 1 0 = o r b i t 1 0 . g ro ups [ ’PRODUCT’ ]

s d a t a 1 0 = p ro d 1 0 . g rou ps [ ’SUPPORT DATA ’ ]

g e o l o c 1 0 = s d a t a 1 0 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 1 0 = p r o d 1 0 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 1 0 = p r o d 1 0 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co 0010 = p r o d 1 0 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0010 = p r o d 1 0 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]

g rp 0010 = p r o d 1 0 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 1 0 = pr o d 1 0 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 1 0 = g e o l o c 1 0 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 1 0 = g e o l o c 1 0 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]

l a t 0 1 0 = np . a r r a y ( l a t 0 0 1 0 ) [ 0 , : , : ]

l o n 0 1 0 = np . a r r a y ( l o n 0 0 1 0 ) [ 0 , : , : ]

co 010 = np . a r r a y ( co 0010 ) [ 0 , : , : ]

qa 010 = np . a r r a y ( qa 0010 ) [ 0 , : , : ]

g r p 0 1 0 = np . a r r a y ( g rp 0010 ) [ : ]

s c l 0 1 0 = np . a r r a y ( s c l 0 0 1 0 ) [ : ]

l a t c 1 0 1 0 = np . a r r a y ( l a t c 0 0 1 0 ) [ 0 , : , : , 0 ]

l a t c 2 0 1 0 = np . a r r a y ( l a t c 0 0 1 0 ) [ 0 , : , : , 1 ]

l a t c 3 0 1 0 = np . a r r a y ( l a t c 0 0 1 0 ) [ 0 , : , : , 2 ]

l a t c 4 0 1 0 = np . a r r a y ( l a t c 0 0 1 0 ) [ 0 , : , : , 3 ]

l o n c 1 0 1 0 = np . a r r a y ( l o n c 0 0 1 0 ) [ 0 , : , : , 0 ]

l o n c 2 0 1 0 = np . a r r a y ( l o n c 0 0 1 0 ) [ 0 , : , : , 1 ]

l o n c 3 0 1 0 = np . a r r a y ( l o n c 0 0 1 0 ) [ 0 , : , : , 2 ]

l o n c 4 0 1 0 = np . a r r a y ( l o n c 0 0 1 0 ) [ 0 , : , : , 3 ]

n g r p 1 0 = g r p 0 1 0 . s i z e

n s c l 1 0 = s c l 0 1 0 . s i z e
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s c l 0 1 0 = qa 010 ∗ 0

g r p 0 1 0 = qa 010 ∗ 0

f o r i i in range ( n s c l 1 0 ) :

f o r j j in range ( n g r p 1 0 ) :

s c l 0 1 0 [ i i ] [ j j ] = s c l 0 1 0 [ i i ]

g r p 0 1 0 [ i i ] [ j j ] = g r p 0 1 0 [ j j ]

( i , j ) = ( qa 010 >= 0 . 5 ) . nonze ro ( )

l a t 1 0 = l a t 0 1 0 [ ( i , j ) ]

l o n 1 0 = l o n 0 1 0 [ ( i , j ) ]

co 10 = co 010 [ ( i , j ) ]

g r p 1 0 = g r p 0 1 0 [ ( i , j ) ]

s c l 1 0 = s c l 0 1 0 [ ( i , j ) ]

l a t c 1 1 0 = l a t c 1 0 1 0 [ ( i , j ) ]

l a t c 2 1 0 = l a t c 2 0 1 0 [ ( i , j ) ]

l a t c 3 1 0 = l a t c 3 0 1 0 [ ( i , j ) ]

l a t c 4 1 0 = l a t c 4 0 1 0 [ ( i , j ) ]

l o n c 1 1 0 = l o n c 1 0 1 0 [ ( i , j ) ]

l o n c 2 1 0 = l o n c 2 0 1 0 [ ( i , j ) ]

l o n c 3 1 0 = l o n c 3 0 1 0 [ ( i , j ) ]

l o n c 4 1 0 = l o n c 4 0 1 0 [ ( i , j ) ]

l a t 1 0 = pd . DataFrame ( l a t 1 0 )

l o n 1 0 = pd . DataFrame ( l o n 1 0 )

co 10 = pd . DataFrame ( co 10 )

g r p 1 0 = pd . DataFrame ( g r p 1 0 )

s c l 1 0 = pd . DataFrame ( s c l 1 0 )

o r b 1 0 = 0∗ l a t 1 0 + 3352

l a t c 1 1 0 = pd . DataFrame ( l a t c 1 1 0 )

l a t c 2 1 0 = pd . DataFrame ( l a t c 2 1 0 )

l a t c 3 1 0 = pd . DataFrame ( l a t c 3 1 0 )

l a t c 4 1 0 = pd . DataFrame ( l a t c 4 1 0 )

l o n c 1 1 0 = pd . DataFrame ( l o n c 1 1 0 )

l o n c 2 1 0 = pd . DataFrame ( l o n c 2 1 0 )

l o n c 3 1 0 = pd . DataFrame ( l o n c 3 1 0 )

l o n c 4 1 0 = pd . DataFrame ( l o n c 4 1 0 )
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o r b i t 1 1 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T172145 20180606T190513 03353 01 010202

20190207 T175957 . nc ” , mode= ’ r ’ )

p r o d 1 1 = o r b i t 1 1 . g ro ups [ ’PRODUCT’ ]

s d a t a 1 1 = p ro d 1 1 . g rou ps [ ’SUPPORT DATA ’ ]

g e o l o c 1 1 = s d a t a 1 1 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 1 1 = p r o d 1 1 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 1 1 = p r o d 1 1 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co 0011 = p r o d 1 1 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0011 = p r o d 1 1 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]

g rp 0011 = p r o d 1 1 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 1 1 = pr o d 1 1 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 1 1 = g e o l o c 1 1 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 1 1 = g e o l o c 1 1 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]

l a t 0 1 1 = np . a r r a y ( l a t 0 0 1 1 ) [ 0 , : , : ]

l o n 0 1 1 = np . a r r a y ( l o n 0 0 1 1 ) [ 0 , : , : ]

co 011 = np . a r r a y ( co 0011 ) [ 0 , : , : ]

qa 011 = np . a r r a y ( qa 0011 ) [ 0 , : , : ]

g r p 0 1 1 = np . a r r a y ( g rp 0011 ) [ : ]

s c l 0 1 1 = np . a r r a y ( s c l 0 0 1 1 ) [ : ]

l a t c 1 0 1 1 = np . a r r a y ( l a t c 0 0 1 1 ) [ 0 , : , : , 0 ]

l a t c 2 0 1 1 = np . a r r a y ( l a t c 0 0 1 1 ) [ 0 , : , : , 1 ]

l a t c 3 0 1 1 = np . a r r a y ( l a t c 0 0 1 1 ) [ 0 , : , : , 2 ]

l a t c 4 0 1 1 = np . a r r a y ( l a t c 0 0 1 1 ) [ 0 , : , : , 3 ]

l o n c 1 0 1 1 = np . a r r a y ( l o n c 0 0 1 1 ) [ 0 , : , : , 0 ]

l o n c 2 0 1 1 = np . a r r a y ( l o n c 0 0 1 1 ) [ 0 , : , : , 1 ]

l o n c 3 0 1 1 = np . a r r a y ( l o n c 0 0 1 1 ) [ 0 , : , : , 2 ]

l o n c 4 0 1 1 = np . a r r a y ( l o n c 0 0 1 1 ) [ 0 , : , : , 3 ]

n g r p 1 1 = g r p 0 1 1 . s i z e

n s c l 1 1 = s c l 0 1 1 . s i z e

s c l 0 1 1 = qa 011 ∗ 0

g r p 0 1 1 = qa 011 ∗ 0

f o r i i in range ( n s c l 1 1 ) :

f o r j j in range ( n g r p 1 1 ) :
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s c l 0 1 1 [ i i ] [ j j ] = s c l 0 1 1 [ i i ]

g r p 0 1 1 [ i i ] [ j j ] = g r p 0 1 1 [ j j ]

( i , j ) = ( qa 011 >= 0 . 5 ) . nonze ro ( )

l a t 1 1 = l a t 0 1 1 [ ( i , j ) ]

l o n 1 1 = l o n 0 1 1 [ ( i , j ) ]

co 11 = co 011 [ ( i , j ) ]

g r p 1 1 = g r p 0 1 1 [ ( i , j ) ]

s c l 1 1 = s c l 0 1 1 [ ( i , j ) ]

l a t c 1 1 1 = l a t c 1 0 1 1 [ ( i , j ) ]

l a t c 2 1 1 = l a t c 2 0 1 1 [ ( i , j ) ]

l a t c 3 1 1 = l a t c 3 0 1 1 [ ( i , j ) ]

l a t c 4 1 1 = l a t c 4 0 1 1 [ ( i , j ) ]

l o n c 1 1 1 = l o n c 1 0 1 1 [ ( i , j ) ]

l o n c 2 1 1 = l o n c 2 0 1 1 [ ( i , j ) ]

l o n c 3 1 1 = l o n c 3 0 1 1 [ ( i , j ) ]

l o n c 4 1 1 = l o n c 4 0 1 1 [ ( i , j ) ]

l a t 1 1 = pd . DataFrame ( l a t 1 1 )

l o n 1 1 = pd . DataFrame ( l o n 1 1 )

co 11 = pd . DataFrame ( co 11 )

g r p 1 1 = pd . DataFrame ( g r p 1 1 )

s c l 1 1 = pd . DataFrame ( s c l 1 1 )

o r b 1 1 = 0∗ l a t 1 1 + 3353

l a t c 1 1 1 = pd . DataFrame ( l a t c 1 1 1 )

l a t c 2 1 1 = pd . DataFrame ( l a t c 2 1 1 )

l a t c 3 1 1 = pd . DataFrame ( l a t c 3 1 1 )

l a t c 4 1 1 = pd . DataFrame ( l a t c 4 1 1 )

l o n c 1 1 1 = pd . DataFrame ( l o n c 1 1 1 )

l o n c 2 1 1 = pd . DataFrame ( l o n c 2 1 1 )

l o n c 3 1 1 = pd . DataFrame ( l o n c 3 1 1 )

l o n c 4 1 1 = pd . DataFrame ( l o n c 4 1 1 )

o r b i t 1 2 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T190315 20180606T204643 03354 01 010202

20190207 T184522 . nc ” , mode= ’ r ’ )

p r o d 1 2 = o r b i t 1 2 . g ro ups [ ’PRODUCT’ ]

s d a t a 1 2 = p ro d 1 2 . g rou ps [ ’SUPPORT DATA ’ ]
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g e o l o c 1 2 = s d a t a 1 2 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 1 2 = p r o d 1 2 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 1 2 = p r o d 1 2 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co 0012 = p r o d 1 2 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0012 = p r o d 1 2 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]

g rp 0012 = p r o d 1 2 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 1 2 = pr o d 1 2 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 1 2 = g e o l o c 1 2 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 1 2 = g e o l o c 1 2 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]

l a t 0 1 2 = np . a r r a y ( l a t 0 0 1 2 ) [ 0 , : , : ]

l o n 0 1 2 = np . a r r a y ( l o n 0 0 1 2 ) [ 0 , : , : ]

co 012 = np . a r r a y ( co 0012 ) [ 0 , : , : ]

qa 012 = np . a r r a y ( qa 0012 ) [ 0 , : , : ]

g r p 0 1 2 = np . a r r a y ( g rp 0012 ) [ : ]

s c l 0 1 2 = np . a r r a y ( s c l 0 0 1 2 ) [ : ]

l a t c 1 0 1 2 = np . a r r a y ( l a t c 0 0 1 2 ) [ 0 , : , : , 0 ]

l a t c 2 0 1 2 = np . a r r a y ( l a t c 0 0 1 2 ) [ 0 , : , : , 1 ]

l a t c 3 0 1 2 = np . a r r a y ( l a t c 0 0 1 2 ) [ 0 , : , : , 2 ]

l a t c 4 0 1 2 = np . a r r a y ( l a t c 0 0 1 2 ) [ 0 , : , : , 3 ]

l o n c 1 0 1 2 = np . a r r a y ( l o n c 0 0 1 2 ) [ 0 , : , : , 0 ]

l o n c 2 0 1 2 = np . a r r a y ( l o n c 0 0 1 2 ) [ 0 , : , : , 1 ]

l o n c 3 0 1 2 = np . a r r a y ( l o n c 0 0 1 2 ) [ 0 , : , : , 2 ]

l o n c 4 0 1 2 = np . a r r a y ( l o n c 0 0 1 2 ) [ 0 , : , : , 3 ]

n g r p 1 2 = g r p 0 1 2 . s i z e

n s c l 1 2 = s c l 0 1 2 . s i z e

s c l 0 1 2 = qa 012 ∗ 0

g r p 0 1 2 = qa 012 ∗ 0

f o r i i in range ( n s c l 1 2 ) :

f o r j j in range ( n g r p 1 2 ) :

s c l 0 1 2 [ i i ] [ j j ] = s c l 0 1 2 [ i i ]

g r p 0 1 2 [ i i ] [ j j ] = g r p 0 1 2 [ j j ]

( i , j ) = ( qa 012 >= 0 . 5 ) . nonze ro ( )

l a t 1 2 = l a t 0 1 2 [ ( i , j ) ]

l o n 1 2 = l o n 0 1 2 [ ( i , j ) ]
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co 12 = co 012 [ ( i , j ) ]

g r p 1 2 = g r p 0 1 2 [ ( i , j ) ]

s c l 1 2 = s c l 0 1 2 [ ( i , j ) ]

l a t c 1 1 2 = l a t c 1 0 1 2 [ ( i , j ) ]

l a t c 2 1 2 = l a t c 2 0 1 2 [ ( i , j ) ]

l a t c 3 1 2 = l a t c 3 0 1 2 [ ( i , j ) ]

l a t c 4 1 2 = l a t c 4 0 1 2 [ ( i , j ) ]

l o n c 1 1 2 = l o n c 1 0 1 2 [ ( i , j ) ]

l o n c 2 1 2 = l o n c 2 0 1 2 [ ( i , j ) ]

l o n c 3 1 2 = l o n c 3 0 1 2 [ ( i , j ) ]

l o n c 4 1 2 = l o n c 4 0 1 2 [ ( i , j ) ]

l a t 1 2 = pd . DataFrame ( l a t 1 2 )

l o n 1 2 = pd . DataFrame ( l o n 1 2 )

co 12 = pd . DataFrame ( co 12 )

g r p 1 2 = pd . DataFrame ( g r p 1 2 )

s c l 1 2 = pd . DataFrame ( s c l 1 2 )

o r b 1 2 = 0∗ l a t 1 2 + 3354

l a t c 1 1 2 = pd . DataFrame ( l a t c 1 1 2 )

l a t c 2 1 2 = pd . DataFrame ( l a t c 2 1 2 )

l a t c 3 1 2 = pd . DataFrame ( l a t c 3 1 2 )

l a t c 4 1 2 = pd . DataFrame ( l a t c 4 1 2 )

l o n c 1 1 2 = pd . DataFrame ( l o n c 1 1 2 )

l o n c 2 1 2 = pd . DataFrame ( l o n c 2 1 2 )

l o n c 3 1 2 = pd . DataFrame ( l o n c 3 1 2 )

l o n c 4 1 2 = pd . DataFrame ( l o n c 4 1 2 )

o r b i t 1 3 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T204445 20180606T222813 03355 01 010202

20190207 T185801 . nc ” , mode= ’ r ’ )

p r o d 1 3 = o r b i t 1 3 . g ro ups [ ’PRODUCT’ ]

s d a t a 1 3 = p ro d 1 3 . g rou ps [ ’SUPPORT DATA ’ ]

g e o l o c 1 3 = s d a t a 1 3 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 1 3 = p r o d 1 3 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 1 3 = p r o d 1 3 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co 0013 = p r o d 1 3 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0013 = p r o d 1 3 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]
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grp 0013 = p r o d 1 3 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 1 3 = pr o d 1 3 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 1 3 = g e o l o c 1 3 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 1 3 = g e o l o c 1 3 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]

l a t 0 1 3 = np . a r r a y ( l a t 0 0 1 3 ) [ 0 , : , : ]

l o n 0 1 3 = np . a r r a y ( l o n 0 0 1 3 ) [ 0 , : , : ]

co 013 = np . a r r a y ( co 0013 ) [ 0 , : , : ]

qa 013 = np . a r r a y ( qa 0013 ) [ 0 , : , : ]

g r p 0 1 3 = np . a r r a y ( g rp 0013 ) [ : ]

s c l 0 1 3 = np . a r r a y ( s c l 0 0 1 3 ) [ : ]

l a t c 1 0 1 3 = np . a r r a y ( l a t c 0 0 1 3 ) [ 0 , : , : , 0 ]

l a t c 2 0 1 3 = np . a r r a y ( l a t c 0 0 1 3 ) [ 0 , : , : , 1 ]

l a t c 3 0 1 3 = np . a r r a y ( l a t c 0 0 1 3 ) [ 0 , : , : , 2 ]

l a t c 4 0 1 3 = np . a r r a y ( l a t c 0 0 1 3 ) [ 0 , : , : , 3 ]

l o n c 1 0 1 3 = np . a r r a y ( l o n c 0 0 1 3 ) [ 0 , : , : , 0 ]

l o n c 2 0 1 3 = np . a r r a y ( l o n c 0 0 1 3 ) [ 0 , : , : , 1 ]

l o n c 3 0 1 3 = np . a r r a y ( l o n c 0 0 1 3 ) [ 0 , : , : , 2 ]

l o n c 4 0 1 3 = np . a r r a y ( l o n c 0 0 1 3 ) [ 0 , : , : , 3 ]

n g r p 1 3 = g r p 0 1 3 . s i z e

n s c l 1 3 = s c l 0 1 3 . s i z e

s c l 0 1 3 = qa 013 ∗ 0

g r p 0 1 3 = qa 013 ∗ 0

f o r i i in range ( n s c l 1 3 ) :

f o r j j in range ( n g r p 1 3 ) :

s c l 0 1 3 [ i i ] [ j j ] = s c l 0 1 3 [ i i ]

g r p 0 1 3 [ i i ] [ j j ] = g r p 0 1 3 [ j j ]

( i , j ) = ( qa 013 >= 0 . 5 ) . nonze ro ( )

l a t 1 3 = l a t 0 1 3 [ ( i , j ) ]

l o n 1 3 = l o n 0 1 3 [ ( i , j ) ]

co 13 = co 013 [ ( i , j ) ]

g r p 1 3 = g r p 0 1 3 [ ( i , j ) ]

s c l 1 3 = s c l 0 1 3 [ ( i , j ) ]

l a t c 1 1 3 = l a t c 1 0 1 3 [ ( i , j ) ]

l a t c 2 1 3 = l a t c 2 0 1 3 [ ( i , j ) ]

l a t c 3 1 3 = l a t c 3 0 1 3 [ ( i , j ) ]
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l a t c 4 1 3 = l a t c 4 0 1 3 [ ( i , j ) ]

l o n c 1 1 3 = l o n c 1 0 1 3 [ ( i , j ) ]

l o n c 2 1 3 = l o n c 2 0 1 3 [ ( i , j ) ]

l o n c 3 1 3 = l o n c 3 0 1 3 [ ( i , j ) ]

l o n c 4 1 3 = l o n c 4 0 1 3 [ ( i , j ) ]

l a t 1 3 = pd . DataFrame ( l a t 1 3 )

l o n 1 3 = pd . DataFrame ( l o n 1 3 )

co 13 = pd . DataFrame ( co 13 )

g r p 1 3 = pd . DataFrame ( g r p 1 3 )

s c l 1 3 = pd . DataFrame ( s c l 1 3 )

o r b 1 3 = 0∗ l a t 1 3 + 3355

l a t c 1 1 3 = pd . DataFrame ( l a t c 1 1 3 )

l a t c 2 1 3 = pd . DataFrame ( l a t c 2 1 3 )

l a t c 3 1 3 = pd . DataFrame ( l a t c 3 1 3 )

l a t c 4 1 3 = pd . DataFrame ( l a t c 4 1 3 )

l o n c 1 1 3 = pd . DataFrame ( l o n c 1 1 3 )

l o n c 2 1 3 = pd . DataFrame ( l o n c 2 1 3 )

l o n c 3 1 3 = pd . DataFrame ( l o n c 3 1 3 )

l o n c 4 1 3 = pd . DataFrame ( l o n c 4 1 3 )

o r b i t 1 4 = D a t a s e t ( r ”C :

S5P RPRO L2 CO 20180606T222615 20180607T000943 03356 01 010202

20190207 T190506 . nc ” , mode= ’ r ’ )

p r o d 1 4 = o r b i t 1 4 . g ro ups [ ’PRODUCT’ ]

s d a t a 1 4 = p ro d 1 4 . g rou ps [ ’SUPPORT DATA ’ ]

g e o l o c 1 4 = s d a t a 1 4 . g ro ups [ ’GEOLOCATIONS ’ ]

l a t 0 0 1 4 = p r o d 1 4 . v a r i a b l e s [ ’ l a t i t u d e ’ ] [ : ]

l o n 0 0 1 4 = p r o d 1 4 . v a r i a b l e s [ ’ l o n g i t u d e ’ ] [ : ]

co 0014 = p r o d 1 4 . v a r i a b l e s [ ’ c a r b o n m o n o x i d e t o t a l c o l u m n ’ ] [ : ]

qa 0014 = p r o d 1 4 . v a r i a b l e s [ ’ q a v a l u e ’ ] [ : ]

g rp 0014 = p r o d 1 4 . v a r i a b l e s [ ’ g r o u n d p i x e l ’ ] [ : ]

s c l 0 0 1 4 = pr o d 1 4 . v a r i a b l e s [ ’ s c a n l i n e ’ ] [ : ]

l a t c 0 0 1 4 = g e o l o c 1 4 . v a r i a b l e s [ ’ l a t i t u d e b o u n d s ’ ] [ : ]

l o n c 0 0 1 4 = g e o l o c 1 4 . v a r i a b l e s [ ’ l o n g i t u d e b o u n d s ’ ] [ : ]

l a t 0 1 4 = np . a r r a y ( l a t 0 0 1 4 ) [ 0 , : , : ]
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l o n 0 1 4 = np . a r r a y ( l o n 0 0 1 4 ) [ 0 , : , : ]

co 014 = np . a r r a y ( co 0014 ) [ 0 , : , : ]

qa 014 = np . a r r a y ( qa 0014 ) [ 0 , : , : ]

g r p 0 1 4 = np . a r r a y ( g rp 0014 ) [ : ]

s c l 0 1 4 = np . a r r a y ( s c l 0 0 1 4 ) [ : ]

l a t c 1 0 1 4 = np . a r r a y ( l a t c 0 0 1 4 ) [ 0 , : , : , 0 ]

l a t c 2 0 1 4 = np . a r r a y ( l a t c 0 0 1 4 ) [ 0 , : , : , 1 ]

l a t c 3 0 1 4 = np . a r r a y ( l a t c 0 0 1 4 ) [ 0 , : , : , 2 ]

l a t c 4 0 1 4 = np . a r r a y ( l a t c 0 0 1 4 ) [ 0 , : , : , 3 ]

l o n c 1 0 1 4 = np . a r r a y ( l o n c 0 0 1 4 ) [ 0 , : , : , 0 ]

l o n c 2 0 1 4 = np . a r r a y ( l o n c 0 0 1 4 ) [ 0 , : , : , 1 ]

l o n c 3 0 1 4 = np . a r r a y ( l o n c 0 0 1 4 ) [ 0 , : , : , 2 ]

l o n c 4 0 1 4 = np . a r r a y ( l o n c 0 0 1 4 ) [ 0 , : , : , 3 ]

n g r p 1 4 = g r p 0 1 4 . s i z e

n s c l 1 4 = s c l 0 1 4 . s i z e

s c l 0 1 4 = qa 014 ∗ 0

g r p 0 1 4 = qa 014 ∗ 0

f o r i i in range ( n s c l 1 4 ) :

f o r j j in range ( n g r p 1 4 ) :

s c l 0 1 4 [ i i ] [ j j ] = s c l 0 1 4 [ i i ]

g r p 0 1 4 [ i i ] [ j j ] = g r p 0 1 4 [ j j ]

( i , j ) = ( qa 014 >= 0 . 5 ) . nonze ro ( )

l a t 1 4 = l a t 0 1 4 [ ( i , j ) ]

l o n 1 4 = l o n 0 1 4 [ ( i , j ) ]

co 14 = co 014 [ ( i , j ) ]

g r p 1 4 = g r p 0 1 4 [ ( i , j ) ]

s c l 1 4 = s c l 0 1 4 [ ( i , j ) ]

l a t c 1 1 4 = l a t c 1 0 1 4 [ ( i , j ) ]

l a t c 2 1 4 = l a t c 2 0 1 4 [ ( i , j ) ]

l a t c 3 1 4 = l a t c 3 0 1 4 [ ( i , j ) ]

l a t c 4 1 4 = l a t c 4 0 1 4 [ ( i , j ) ]

l o n c 1 1 4 = l o n c 1 0 1 4 [ ( i , j ) ]

l o n c 2 1 4 = l o n c 2 0 1 4 [ ( i , j ) ]

l o n c 3 1 4 = l o n c 3 0 1 4 [ ( i , j ) ]

l o n c 4 1 4 = l o n c 4 0 1 4 [ ( i , j ) ]
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l a t 1 4 = pd . DataFrame ( l a t 1 4 )

l o n 1 4 = pd . DataFrame ( l o n 1 4 )

co 14 = pd . DataFrame ( co 14 )

g r p 1 4 = pd . DataFrame ( g r p 1 4 )

s c l 1 4 = pd . DataFrame ( s c l 1 4 )

o r b 1 4 = 0∗ l a t 1 4 + 3356

l a t c 1 1 4 = pd . DataFrame ( l a t c 1 1 4 )

l a t c 2 1 4 = pd . DataFrame ( l a t c 2 1 4 )

l a t c 3 1 4 = pd . DataFrame ( l a t c 3 1 4 )

l a t c 4 1 4 = pd . DataFrame ( l a t c 4 1 4 )

l o n c 1 1 4 = pd . DataFrame ( l o n c 1 1 4 )

l o n c 2 1 4 = pd . DataFrame ( l o n c 2 1 4 )

l o n c 3 1 4 = pd . DataFrame ( l o n c 3 1 4 )

l o n c 4 1 4 = pd . DataFrame ( l o n c 4 1 4 )

l a t ESA = pd . c o n c a t ( [ l a t 0 1 , l a t 0 2 , l a t 0 3 , l a t 0 4 , l a t 0 5 , l a t 0 6 , l a t 0 7 ,

l a t 0 8 , l a t 0 9 , l a t 1 0 , l a t 1 1 , l a t 1 2 , l a t 1 3 , l a t 1 4 ] )

l a t ESA = np . a r r a y ( l a t ESA )

lon ESA = pd . c o n c a t ( [ lon 01 , lon 02 , lon 03 , lon 04 , lon 05 , lon 06 , lon 07 ,

lon 08 , lon 09 , lon 10 , lon 11 , lon 12 , lon 13 , l o n 1 4 ] )

lon ESA = np . a r r a y ( lon ESA )

co ESA = pd . c o n c a t ( [ co 01 , co 02 , co 03 , co 04 , co 05 , co 06 , co 07 ,

co 08 , co 09 , co 10 , co 11 , co 12 , co 13 , co 14 ] )

co ESA = np . a r r a y ( co ESA )

grp ESA = pd . c o n c a t ( [ g rp 01 , grp 02 , grp 03 , grp 04 , grp 05 , grp 06 , grp 07 ,

grp 08 , grp 09 , grp 10 , grp 11 , grp 12 , grp 13 , g r p 1 4 ] )

grp ESA = np . a r r a y ( grp ESA )

scl ESA = pd . c o n c a t ( [ s c l 0 1 , s c l 0 2 , s c l 0 3 , s c l 0 4 , s c l 0 5 , s c l 0 6 , s c l 0 7 ,

s c l 0 8 , s c l 0 9 , s c l 1 0 , s c l 1 1 , s c l 1 2 , s c l 1 3 , s c l 1 4 ] )

sc l ESA = np . a r r a y ( sc l ESA )

orb ESA = pd . c o n c a t ( [ o rb 01 , orb 02 , orb 03 , orb 04 , orb 05 , orb 06 , orb 07 ,

orb 08 , orb 09 , orb 10 , orb 11 , orb 12 , orb 13 , o r b 1 4 ] )

orb ESA = np . a r r a y ( orb ESA )
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l a t c 1 E S A = pd . c o n c a t ( [ l a t c 1 0 1 , l a t c 1 0 2 , l a t c 1 0 3 , l a t c 1 0 4 , l a t c 1 0 5 ,

l a t c 1 0 6 , l a t c 1 0 7 ,

l a t c 1 0 8 , l a t c 1 0 9 , l a t c 1 1 0 , l a t c 1 1 1 , l a t c 1 1 2 , l a t c 1 1 3 ,

l a t c 1 1 4 ] )

l a t c 1 E S A = np . a r r a y ( l a t c 1 E S A )

l a t c 2 E S A = pd . c o n c a t ( [ l a t c 2 0 1 , l a t c 2 0 2 , l a t c 2 0 3 , l a t c 2 0 4 , l a t c 2 0 5 ,

l a t c 2 0 6 , l a t c 2 0 7 ,

l a t c 2 0 8 , l a t c 2 0 9 , l a t c 2 1 0 , l a t c 2 1 1 , l a t c 2 1 2 , l a t c 2 1 3 ,

l a t c 2 1 4 ] )

l a t c 2 E S A = np . a r r a y ( l a t c 2 E S A )

l a t c 3 E S A = pd . c o n c a t ( [ l a t c 3 0 1 , l a t c 3 0 2 , l a t c 3 0 3 , l a t c 3 0 4 , l a t c 3 0 5 ,

l a t c 3 0 6 , l a t c 3 0 7 ,

l a t c 3 0 8 , l a t c 3 0 9 , l a t c 3 1 0 , l a t c 3 1 1 , l a t c 3 1 2 , l a t c 3 1 3 ,

l a t c 3 1 4 ] )

l a t c 3 E S A = np . a r r a y ( l a t c 3 E S A )

l a t c 4 E S A = pd . c o n c a t ( [ l a t c 4 0 1 , l a t c 4 0 2 , l a t c 4 0 3 , l a t c 4 0 4 , l a t c 4 0 5 ,

l a t c 4 0 6 , l a t c 4 0 7 ,

l a t c 4 0 8 , l a t c 4 0 9 , l a t c 4 1 0 , l a t c 4 1 1 , l a t c 4 1 2 , l a t c 4 1 3 ,

l a t c 4 1 4 ] )

l a t c 4 E S A = np . a r r a y ( l a t c 4 E S A )

lon c1 ESA = pd . c o n c a t ( [ l o n c 1 0 1 , l o n c 1 0 2 , l o n c 1 0 3 , l o n c 1 0 4 , l o n c 1 0 5 ,

l o n c 1 0 6 , l o n c 1 0 7 ,

l o n c 1 0 8 , l o n c 1 0 9 , l o n c 1 1 0 , l o n c 1 1 1 , l o n c 1 1 2 , l o n c 1 1 3 ,

l o n c 1 1 4 ] )

lon c1 ESA = np . a r r a y ( lon c1 ESA )

lon c2 ESA = pd . c o n c a t ( [ l o n c 2 0 1 , l o n c 2 0 2 , l o n c 2 0 3 , l o n c 2 0 4 , l o n c 2 0 5 ,

l o n c 2 0 6 , l o n c 2 0 7 ,

l o n c 2 0 8 , l o n c 2 0 9 , l o n c 2 1 0 , l o n c 2 1 1 , l o n c 2 1 2 , l o n c 2 1 3 ,

l o n c 2 1 4 ] )

lon c2 ESA = np . a r r a y ( lon c2 ESA )

lon c3 ESA = pd . c o n c a t ( [ l o n c 3 0 1 , l o n c 3 0 2 , l o n c 3 0 3 , l o n c 3 0 4 , l o n c 3 0 5 ,

l o n c 3 0 6 , l o n c 3 0 7 ,

l o n c 3 0 8 , l o n c 3 0 9 , l o n c 3 1 0 , l o n c 3 1 1 , l o n c 3 1 2 , l o n c 3 1 3 ,

l o n c 3 1 4 ] )
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lon c3 ESA = np . a r r a y ( lon c3 ESA )

lon c4 ESA = pd . c o n c a t ( [ l o n c 4 0 1 , l o n c 4 0 2 , l o n c 4 0 3 , l o n c 4 0 4 , l o n c 4 0 5 ,

l o n c 4 0 6 , l o n c 4 0 7 ,

l o n c 4 0 8 , l o n c 4 0 9 , l o n c 4 1 0 , l o n c 4 1 1 , l o n c 4 1 2 , l o n c 4 1 3 ,

l o n c 4 1 4 ] )

lon c4 ESA = np . a r r a y ( lon c4 ESA )

n ESA = co ESA . s i z e

S5P 20180606 co ESA = open ( r ”C : S5P 20180606 co ESA . t x t ” , ”w” )

S5P 20180606 co ESA . w r i t e ( ” l a t , l a t c 1 , l a t c 2 , l a t c 3 , l a t c 4 , lon , l o n c 1 ,

l o n c 2 , l o n c 3 , l o n c 4 , co\n ” )

f o r k in np . a r a n g e ( n ESA ) :

S5P 20180606 co ESA . w r i t e ( ” %10.5 f %10.5 f %10.5 f %10.5 f %10.5 f %10.5 f %10.5 f

%10.5 f %10.5 f %10.5 f %10.5 f \n ” % ( la t ESA [ k ] , l a t c 1 E S A [ k ] , l a t c 2 E S A [ k

] , l a t c 3 E S A [ k ] , l a t c 4 E S A [ k ] , lon ESA [ k ] , lon c1 ESA [ k ] , lon c2 ESA [ k ] ,

lon c3 ESA [ k ] , lon c4 ESA [ k ] , co ESA [ k ] ) )

S5P 20180606 co ESA . c l o s e ( )

# c o n d i t i o n : o n l y da ta f o r bo th ESA and IUP

l a t ESA = la t ESA [ : , 0 ]

lon ESA = lon ESA [ : , 0 ]

co ESA = co ESA [ : , 0 ]

l a t c 1 E S A = l a t c 1 E S A [ : , 0 ]

l a t c 2 E S A = l a t c 2 E S A [ : , 0 ]

l a t c 3 E S A = l a t c 3 E S A [ : , 0 ]

l a t c 4 E S A = l a t c 4 E S A [ : , 0 ]

lon c1 ESA = lon c1 ESA [ : , 0 ]

lon c2 ESA = lon c2 ESA [ : , 0 ]

lon c3 ESA = lon c3 ESA [ : , 0 ]

lon c4 ESA = lon c4 ESA [ : , 0 ]

l a t E S A c o l = [ ]

l on ESA co l = [ ]

co ESA col = [ ]

l a t I U P c o l = [ ]
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l o n I U P c o l = [ ]

c o I U P c o l = [ ]

l a t c 1 E S A c o l = [ ]

l a t c 2 E S A c o l = [ ]

l a t c 3 E S A c o l = [ ]

l a t c 4 E S A c o l = [ ]

l o n c 1 E S A c o l = [ ]

l o n c 2 E S A c o l = [ ]

l o n c 3 E S A c o l = [ ]

l o n c 4 E S A c o l = [ ]

S 5 P 2 0 1 8 0 6 0 6 c o c o l = open ( r ”C : S 5 P 2 0 1 8 0 6 0 6 c o c o l . t x t ” , ”w” )

S 5 P 2 0 1 8 0 6 0 6 c o c o l . w r i t e ( ” l a t , l a t c 1 , l a t c 2 , l a t c 3 , l a t c 4 , lon , l o n c 1 ,

l o n c 2 , l o n c 3 , l o n c 4 , co ESA , co IUP\n ” )

f o r j in np . a r a n g e ( n ESA ) :

mask = ( s c l I U P == scl ESA [ j ] ) & ( grp IUP == grp ESA [ j ] ) & ( orb IUP ==

orb ESA [ j ] )

i f l e n ( l a t I U P [ mask ] ) > 0 :

l a t E S A c o l = np . append ( l a t E S A c o l , l a t ESA [ j ] )

l a t c 1 E S A c o l = np . append ( l a t c 1 E S A c o l , l a t c 1 E S A [ j ] )

l a t c 2 E S A c o l = np . append ( l a t c 2 E S A c o l , l a t c 2 E S A [ j ] )

l a t c 3 E S A c o l = np . append ( l a t c 3 E S A c o l , l a t c 3 E S A [ j ] )

l a t c 4 E S A c o l = np . append ( l a t c 4 E S A c o l , l a t c 4 E S A [ j ] )

l on ESA co l = np . append ( lon ESA col , lon ESA [ j ] )

l o n c 1 E S A c o l = np . append ( lon c1 ESA co l , lon c1 ESA [ j ] )

l o n c 2 E S A c o l = np . append ( lon c2 ESA co l , lon c2 ESA [ j ] )

l o n c 3 E S A c o l = np . append ( lon c3 ESA co l , lon c3 ESA [ j ] )

l o n c 4 E S A c o l = np . append ( lon c4 ESA co l , lon c4 ESA [ j ] )

co ESA col = np . append ( co ESA col , co ESA [ j ] )

l a t I U P c o l = np . append ( l a t I U P c o l , l a t I U P [ mask ] )

l o n I U P c o l = np . append ( l o n I U P c o l , lon IUP [ mask ] )

c o I U P c o l = np . append ( c o IUP co l , co IUP [ mask ] )

S 5 P 2 0 1 8 0 6 0 6 c o c o l . w r i t e ( ” %10.5 f %10.5 f %10.5 f %10.5 f %10.5 f %10.5 f %10.5 f

%10.5 f %10.5 f %10.5 f %10.5 f %10.5 f \n ” % ( la t ESA [ j ] , l a t c 1 E S A [ j ] ,

l a t c 2 E S A [ j ] , l a t c 3 E S A [ j ] , l a t c 4 E S A [ j ] , lon ESA [ j ] , lon c1 ESA [ j ] ,

lon c2 ESA [ j ] , lon c3 ESA [ j ] , lon c4 ESA [ j ] , co ESA [ j ] , co IUP [ mask ] ) )
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S 5 P 2 0 1 8 0 6 0 6 c o c o l . c l o s e ( )
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Appendix 2: Global Maps

from m p l t o o l k i t s . basemap import Basemap

import numpy as np

import m a t p l o t l i b . p y p l o t a s p l t

from m a t p l o t l i b . p a t c h e s import Polygon

from m a t p l o t l i b import cm

l a t c o l , l a t c 1 c o l , l a t c 2 c o l , l a t c 3 c o l , l a t c 4 c o l , l o n c o l , l o n c 1 c o l ,

l o n c 2 c o l , l o n c 3 c o l , l o n c 4 c o l , ESA col , I U P c o l = np . g e n f r o m t x t ( r ”

S 5 P 2 0 1 8 0 6 0 6 c o c o l . t x t ” , unpack=True , s k i p h e a d e r =1)

l a t I U P , l a t c 1 I U P , l a t c 2 I U P , l a t c 3 I U P , l a t c 4 I U P , lon IUP , lon c1 IUP ,

lon c2 IUP , lon c3 IUP , lon c4 IUP , co IUP = np . g e n f r o m t x t ( r ”

S5P 20180606 co IUP . t x t ” , unpack=True , s k i p h e a d e r =1)

la t ESA , l a t c1 ESA , l a t c2 ESA , l a t c3 ESA , l a t c4 ESA , lon ESA , lon c1 ESA ,

lon c2 ESA , lon c3 ESA , lon c4 ESA , co ESA = np . g e n f r o m t x t ( r ”

S5P 20180606 co ESA . t x t ” , unpack=True , s k i p h e a d e r =1)

## IUP ( c o l l o c a t e d )

map = Basemap ( )

map . d r a w c o a s t l i n e s ( )

map . d rawlsmask ( l a n d c o l o r = ’ l i g h t g r a y ’ , o c e a n c o l o r = ’ whi tesmoke ’ , l smask =None ,

l s m a s k l o n s =None , l s m a s k l a t s =None , l a k e s =True , r e s o l u t i o n = ’ l ’ , g r i d =5)

c l r m i n = 0 . 0 1

c l r m a x = 0 . 0 4

c l r n = 150

p x c o l = cm . ge t cmap ( ’ v i r i d i s ’ , c l r n )

f o r k in range ( l e n ( l a t c o l ) ) :

c l r = i n t ( np . f l o o r ( ( I U P c o l [ k]− c l r m i n ) / ( ( c l r m a x − c l r m i n ) / c l r n ) ) )
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i f I U P c o l [ k ] < c l r m i n :

c l r = 0

i f I U P c o l [ k ] > c l r m a x :

c l r = c l r n

x1 , y1 = map ( l o n c 1 c o l [ k ] , l a t c 1 c o l [ k ] )

x2 , y2 = map ( l o n c 2 c o l [ k ] , l a t c 2 c o l [ k ] )

x3 , y3 = map ( l o n c 3 c o l [ k ] , l a t c 3 c o l [ k ] )

x4 , y4 = map ( l o n c 4 c o l [ k ] , l a t c 4 c o l [ k ] )

i f ( ( np . s i g n ( l o n c 1 c o l [ k ] ) == np . s i g n ( l o n c 2 c o l [ k ] ) ) & ( np . s i g n ( l o n c 1 c o l

[ k ] ) == np . s i g n ( l o n c 3 c o l [ k ] ) ) &

( np . s i g n ( l o n c 1 c o l [ k ] ) == np . s i g n ( l o n c 4 c o l [ k ] ) ) & ( np . s i g n ( l o n c 2 c o l [ k

] ) == np . s i g n ( l o n c 3 c o l [ k ] ) ) &

( np . s i g n ( l o n c 2 c o l [ k ] ) == np . s i g n ( l o n c 4 c o l [ k ] ) ) & ( np . s i g n ( l o n c 3 c o l [ k

] ) == np . s i g n ( l o n c 4 c o l [ k ] ) ) ) :

po ly = Polygon ( [ ( x1 , y1 ) , ( x2 , y2 ) , ( x3 , y3 ) , ( x4 , y4 ) ] , f a c e c o l o r = p x c o l ( c l r ) )

p l t . gca ( ) . a d d p a t c h ( po ly )

p l t . s c a t t e r ( l o n c o l , l a t c o l , c= IUP col , cmap= pxcol , vmin= c l r m i n , vmax=

c l r max , s =0)

p l t . c o l o r b a r ( o r i e n t a t i o n = ’ h o r i z o n t a l ’ )

p l t . a x i s ( [−180 ,180 ,−90 ,90] )

p l t . t i t l e ( ’ S5P Carbon Monoxide WFMD[@SICOR] , 20180606 ’ , f o n t s i z e = ’ l a r g e ’ )

p l t . x l a b e l ( ’CO [ mol m$ˆ{−2}$ ] ’ , f o n t s i z e = ’ l a r g e ’ )

## ESA ( c o l l o c a t e d )

map = Basemap ( )

map . d r a w c o a s t l i n e s ( )

map . d rawlsmask ( l a n d c o l o r = ’ l i g h t g r a y ’ , o c e a n c o l o r = ’ whi tesmoke ’ , l smask =None ,

l s m a s k l o n s =None , l s m a s k l a t s =None , l a k e s =True , r e s o l u t i o n = ’ l ’ , g r i d =5)
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c l r m i n = 0 . 0 1

c l r m a x = 0 . 0 4

c l r n = 150

p x c o l = cm . ge t cmap ( ’ v i r i d i s ’ , c l r n )

f o r k in range ( l e n ( l a t c o l ) ) :

c l r = i n t ( np . f l o o r ( ( ESA col [ k]− c l r m i n ) / ( ( c l r m a x − c l r m i n ) / c l r n ) ) )

i f ESA col [ k ] < c l r m i n :

c l r = 0

i f ESA col [ k ] > c l r m a x :

c l r = c l r n

x1 , y1 = map ( l o n c 1 c o l [ k ] , l a t c 1 c o l [ k ] )

x2 , y2 = map ( l o n c 2 c o l [ k ] , l a t c 2 c o l [ k ] )

x3 , y3 = map ( l o n c 3 c o l [ k ] , l a t c 3 c o l [ k ] )

x4 , y4 = map ( l o n c 4 c o l [ k ] , l a t c 4 c o l [ k ] )

i f ( ( np . s i g n ( l o n c 1 c o l [ k ] ) == np . s i g n ( l o n c 2 c o l [ k ] ) ) & ( np . s i g n ( l o n c 1 c o l

[ k ] ) == np . s i g n ( l o n c 3 c o l [ k ] ) ) &

( np . s i g n ( l o n c 1 c o l [ k ] ) == np . s i g n ( l o n c 4 c o l [ k ] ) ) & ( np . s i g n ( l o n c 2 c o l [ k

] ) == np . s i g n ( l o n c 3 c o l [ k ] ) ) &

( np . s i g n ( l o n c 2 c o l [ k ] ) == np . s i g n ( l o n c 4 c o l [ k ] ) ) & ( np . s i g n ( l o n c 3 c o l [ k

] ) == np . s i g n ( l o n c 4 c o l [ k ] ) ) ) :

po ly = Polygon ( [ ( x1 , y1 ) , ( x2 , y2 ) , ( x3 , y3 ) , ( x4 , y4 ) ] , f a c e c o l o r = p x c o l ( c l r ) )

p l t . gca ( ) . a d d p a t c h ( po ly )

p l t . s c a t t e r ( l o n c o l , l a t c o l , c=ESA col , cmap= pxcol , vmin= c l r m i n , vmax=

c l r max , s =0)

p l t . c o l o r b a r ( o r i e n t a t i o n = ’ h o r i z o n t a l ’ )

p l t . a x i s ( [−180 ,180 ,−90 ,90] )

p l t . t i t l e ( ’ S5P Carbon Monoxide SICOR [@WFMD] , 20180606 ’ , f o n t s i z e = ’ l a r g e ’ )

p l t . x l a b e l ( ’CO [ mol m$ˆ{−2}$ ] ’ , f o n t s i z e = ’ l a r g e ’ ) ;
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p l t . s a v e f i g ( ’ S5P20180606 co worldmap SICORcol ’ , d p i =720)

p l t . c l o s e ( )

## a b s o l u t e d i f f e r e n c e

d i f f c o l = ( I U P c o l − ESA col )

map = Basemap ( )

map . d r a w c o a s t l i n e s ( )

map . d rawlsmask ( l a n d c o l o r = ’ l i g h t g r a y ’ , o c e a n c o l o r = ’ whi tesmoke ’ , l smask =None ,

l s m a s k l o n s =None , l s m a s k l a t s =None , l a k e s =True , r e s o l u t i o n = ’ l ’ , g r i d =5)

c l r m i n = −0.003

c l r m a x = 0 .003

c l r n = 150

p x c o l = cm . ge t cmap ( ’ RdYlBu ’ , c l r n )

f o r k in range ( l e n ( l a t c o l ) ) :

c l r = i n t ( np . f l o o r ( ( d i f f c o l [ k]− c l r m i n ) / ( ( c l r m a x − c l r m i n ) / c l r n ) ) )

i f d i f f c o l [ k ] < c l r m i n :

c l r = 0

i f d i f f c o l [ k ] > c l r m a x :

c l r = c l r n

x1 , y1 = map ( l o n c 1 c o l [ k ] , l a t c 1 c o l [ k ] )

x2 , y2 = map ( l o n c 2 c o l [ k ] , l a t c 2 c o l [ k ] )

x3 , y3 = map ( l o n c 3 c o l [ k ] , l a t c 3 c o l [ k ] )

x4 , y4 = map ( l o n c 4 c o l [ k ] , l a t c 4 c o l [ k ] )

i f ( ( np . s i g n ( l o n c 1 c o l [ k ] ) == np . s i g n ( l o n c 2 c o l [ k ] ) ) & ( np . s i g n ( l o n c 1 c o l

[ k ] ) == np . s i g n ( l o n c 3 c o l [ k ] ) ) &

( np . s i g n ( l o n c 1 c o l [ k ] ) == np . s i g n ( l o n c 4 c o l [ k ] ) ) & ( np . s i g n ( l o n c 2 c o l [ k

] ) == np . s i g n ( l o n c 3 c o l [ k ] ) ) &
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( np . s i g n ( l o n c 2 c o l [ k ] ) == np . s i g n ( l o n c 4 c o l [ k ] ) ) & ( np . s i g n ( l o n c 3 c o l [ k

] ) == np . s i g n ( l o n c 4 c o l [ k ] ) ) ) :

po ly = Polygon ( [ ( x1 , y1 ) , ( x2 , y2 ) , ( x3 , y3 ) , ( x4 , y4 ) ] , f a c e c o l o r = p x c o l ( c l r ) )

p l t . gca ( ) . a d d p a t c h ( po ly )

p l t . s c a t t e r ( l o n c o l , l a t c o l , c= d i f f c o l , cmap= pxcol , vmin= c l r m i n , vmax=

c l r max , s =0)

p l t . c o l o r b a r ( o r i e n t a t i o n = ’ h o r i z o n t a l ’ )

p l t . a x i s ( [−180 ,180 ,−90 ,90] )

p l t . t i t l e ( ’ S5P CO A b s o l u t e D i f f e r e n c e , 20180606 ’ , f o n t s i z e = ’ l a r g e ’ )

p l t . x l a b e l ( ’ $\D e l t a $ CO [ mol m$ˆ{−2}$ ] ’ , f o n t s i z e = ’ l a r g e ’ )

## r e l a t i v e d i f f e r e n c e

r e l d i f f = ( ( I UP c o l − ESA col ) / ESA col ) ∗100

map = Basemap ( )

map . d r a w c o a s t l i n e s ( )

map . d rawlsmask ( l a n d c o l o r = ’ l i g h t g r a y ’ , o c e a n c o l o r = ’ whi tesmoke ’ , l smask =None ,

l s m a s k l o n s =None , l s m a s k l a t s =None , l a k e s =True , r e s o l u t i o n = ’ l ’ , g r i d =5)

c l r m i n = −10

c l r m a x = 10

c l r n = 150

p x c o l = cm . ge t cmap ( ’ RdYlBu ’ , c l r n )

f o r k in range ( l e n ( l a t c o l ) ) :

c l r = i n t ( np . f l o o r ( ( r e l d i f f [ k]− c l r m i n ) / ( ( c l r m a x − c l r m i n ) / c l r n ) ) )

i f r e l d i f f [ k ] < c l r m i n :

c l r = 0

82



i f r e l d i f f [ k ] > c l r m a x :

c l r = c l r n

x1 , y1 = map ( l o n c 1 c o l [ k ] , l a t c 1 c o l [ k ] )

x2 , y2 = map ( l o n c 2 c o l [ k ] , l a t c 2 c o l [ k ] )

x3 , y3 = map ( l o n c 3 c o l [ k ] , l a t c 3 c o l [ k ] )

x4 , y4 = map ( l o n c 4 c o l [ k ] , l a t c 4 c o l [ k ] )

i f ( ( np . s i g n ( l o n c 1 c o l [ k ] ) == np . s i g n ( l o n c 2 c o l [ k ] ) ) & ( np . s i g n ( l o n c 1 c o l

[ k ] ) == np . s i g n ( l o n c 3 c o l [ k ] ) ) &

( np . s i g n ( l o n c 1 c o l [ k ] ) == np . s i g n ( l o n c 4 c o l [ k ] ) ) & ( np . s i g n ( l o n c 2 c o l [ k

] ) == np . s i g n ( l o n c 3 c o l [ k ] ) ) &

( np . s i g n ( l o n c 2 c o l [ k ] ) == np . s i g n ( l o n c 4 c o l [ k ] ) ) & ( np . s i g n ( l o n c 3 c o l [ k

] ) == np . s i g n ( l o n c 4 c o l [ k ] ) ) ) :

po ly = Polygon ( [ ( x1 , y1 ) , ( x2 , y2 ) , ( x3 , y3 ) , ( x4 , y4 ) ] , f a c e c o l o r = p x c o l ( c l r ) )

p l t . gca ( ) . a d d p a t c h ( po ly )

p l t . s c a t t e r ( l o n c o l , l a t c o l , c= r e l d i f f , cmap= pxcol , vmin= c l r m i n , vmax=

c l r max , s =0)

p l t . c o l o r b a r ( o r i e n t a t i o n = ’ h o r i z o n t a l ’ )

p l t . a x i s ( [−180 ,180 ,−90 ,90] )

p l t . t i t l e ( ’ S5P CO R e l a t i v e D i f f e r e n c e , 20180606 ’ , f o n t s i z e = ’ l a r g e ’ )

p l t . x l a b e l ( ’ $\D e l t a $ CO [%] ’ , f o n t s i z e = ’ l a r g e ’ )
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Appendix 3: Additional Plots

import numpy as np

import m a t p l o t l i b . p y p l o t a s p l t

import s t a t i s t i c s a s s t a t

import s c i p y . s t a t s

## work ing w i t h t e x t f i l e

l a t c o l , l a t c 1 c o l , l a t c 2 c o l , l a t c 3 c o l , l a t c 4 c o l , l o n c o l , l o n c 1 c o l ,

l o n c 2 c o l , l o n c 3 c o l , l o n c 4 c o l , ESA col , I U P c o l = np . g e n f r o m t x t ( r ”

S 5 P 2 0 1 8 0 6 0 6 c o c o l . t x t ” , unpack=True , s k i p h e a d e r =1)

l a t I U P , l a t c 1 I U P , l a t c 2 I U P , l a t c 3 I U P , l a t c 4 I U P , lon IUP , lon c1 IUP ,

lon c2 IUP , lon c3 IUP , lon c4 IUP , co IUP = np . g e n f r o m t x t ( r ”

S5P 20180606 co IUP . t x t ” , unpack=True , s k i p h e a d e r =1)

la t ESA , l a t c1 ESA , l a t c2 ESA , l a t c3 ESA , l a t c4 ESA , lon ESA , lon c1 ESA ,

lon c2 ESA , lon c3 ESA , lon c4 ESA , co ESA = np . g e n f r o m t x t ( r ”

S5P 20180606 co ESA . t x t ” , unpack=True , s k i p h e a d e r =1)

n I U P c o l = l e n ( I U P c o l )

n I U P c o l s t r = s t r ( n I U P c o l )

n ESA col = l e n ( ESA col )

n E S A c o l s t r = s t r ( n ESA col )

n IUP = l e n ( co IUP )

n I U P s t r = s t r ( n IUP )

n ESA = l e n ( co ESA )

n E S A s t r = s t r ( n ESA )

ESA col = np . a r r a y ( ESA col )

I U P c o l = np . a r r a y ( IU P c o l )

co ESA = np . a r r a y ( co ESA )

co IUP = np . a r r a y ( co IUP )

### PLOT CO ESA ( d e e p p i n k ) OVER IUP (BLUE)
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# CO ESA ALL

p l t . s c a t t e r ( la t ESA , co ESA , c o l o r = ’ d e e p p i n k ’ , s = 0 . 1 )

p l t . a x i s ([−90 , 90 , −0.15 , 0 . 4 ] )

p l t . t e x t ( 4 0 , 0 . 3 8 , ’N−OPER = ’ + n ESA st r , h o r i z o n t a l a l i g n m e n t = ’ l e f t ’ ,

v e r t i c a l a l i g n m e n t = ’ t o p ’ , c o l o r = ’ d e e p p i n k ’ )

# CO IUP ALL

p l t . s c a t t e r ( l a t I U P , co IUP , c o l o r = ’ b ’ , s = 0 . 1 )

p l t . a x i s ([−90 , 90 , −0.15 , 0 . 4 ] )

p l t . t e x t ( 4 0 , 0 . 3 4 , ’N−WFMD = ’ + n I U P s t r , h o r i z o n t a l a l i g n m e n t = ’ l e f t ’ ,

v e r t i c a l a l i g n m e n t = ’ t o p ’ , c o l o r = ’ b ’ )

p l t . x l a b e l ( ’ l a t i t u d e [ deg ] ’ )

p l t . y l a b e l ( ’ xco [ mol m−2] ’ )

p l t . t i t l e ( ’ S5P c a r bo n monoxide WFMD & OPER ( q u a l =good ) , 20180606 ’ )

### PLOT CO ESA ( d e e p p i n k ) OVER IUP (BLUE) COLLOCATED

# CO ESA c o l l o c a t e d

p l t . s c a t t e r ( l a t c o l , ESA col , c o l o r = ’ d e e p p i n k ’ , s = 0 . 1 )

p l t . a x i s ([−90 , 90 , −0.15 , 0 . 4 ] )

p l t . t e x t ( 4 0 , 0 . 3 8 , ’N−OPER = ’ + n E S A c o l s t r , h o r i z o n t a l a l i g n m e n t = ’ l e f t ’ ,

v e r t i c a l a l i g n m e n t = ’ t o p ’ , c o l o r = ’ d e e p p i n k ’ )

# CO IUP c o l l o c a t e d

p l t . s c a t t e r ( l a t c o l , IUP col , c o l o r = ’ b ’ , s = 0 . 1 )

p l t . a x i s ([−90 , 90 , −0.15 , 0 . 4 ] )

p l t . t e x t ( 4 0 , 0 . 3 4 , ’N−WFMD = ’ + n I U P c o l s t r , h o r i z o n t a l a l i g n m e n t = ’ l e f t ’ ,

v e r t i c a l a l i g n m e n t = ’ t o p ’ , c o l o r = ’ b ’ )

p l t . x l a b e l ( ’ l a t i t u d e [ deg ] ’ )

p l t . y l a b e l ( ’ xco [ mol m−2] ’ )

p l t . t i t l e ( ’ S5P c a r bo n monoxide WFMD & OPER ( c o l l o c a t e d ) , 20180606 ’ )
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### PLOT DIFFERENCE IUP − ESA COLLOCATED

# CO IUP − ESA

d i f f IUP ESA = np . a r r a y ( IUP col−ESA col )

mean di f f IUP ESA = s t r ( s t a t . mean ( d i f f IUP ESA ) )

# p r i n t ( ’ mean d i f f e r e n c e : ’ + mean d i f f IUP ESA )

s t d d i f f I U P E S A = s t r ( s t a t . s t d e v ( d i f f IUP ESA ) )

# p r i n t ( ’ s t d d i f f e r e n c e : ’ + s t d d i f f I U P E S A )

n d i f f IUP ESA = l e n ( d i f f IUP ESA )

p l t . s c a t t e r ( l a t c o l , d i f f IUP ESA , c o l o r = ’ c ’ , s = 0 . 1 )

p l t . a x i s ([−90 , 90 , −0.04 , 0 . 0 4 ] )

p l t . x l a b e l ( ’ l a t i t u d e [ deg ] ’ )

p l t . y l a b e l ( ’ xco (WFMD − OPER) [ mol m−2] ’ )

p l t . a x h l i n e ( y =0 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 5 , l i n e s t y l e = ’ : ’ )

p l t . t i t l e ( ’ S5P Carbon Monoxide WFMD − OPER, 20180606 ’ )

# mask01 = ( l a t c o l > −90) & ( l a t c o l < −80)

#mean01 = s t a t . mean ( d i f f I U P E S A [ mask01 ] )

# s t d 0 1 = s t a t . s t d e v ( d i f f I U P E S A [ mask01 ] )

# mask02 = ( l a t c o l > −80) & ( l a t c o l < −70)

#mean02 = s t a t . mean ( d i f f I U P E S A [ mask02 ] )

# s t d 0 2 = s t a t . s t d e v ( d i f f I U P E S A [ mask02 ] )

# mask03 = ( l a t c o l > −70) & ( l a t c o l < −60)

#mean03 = s t a t . mean ( d i f f I U P E S A [ mask03 ] )

# s t d 0 3 = s t a t . s t d e v ( d i f f I U P E S A [ mask03 ] )

# mask04 = ( l a t c o l > −60) & ( l a t c o l < −50)

#mean04 = s t a t . mean ( d i f f I U P E S A [ mask04 ] )

# s t d 0 4 = s t a t . s t d e v ( d i f f I U P E S A [ mask04 ] )

mask05 = ( l a t c o l > −50) & ( l a t c o l < −40)

mean05 = s t a t . mean ( d i f f IUP ESA [ mask05 ] )

s t d 0 5 = s t a t . s t d e v ( d i f f IUP ESA [ mask05 ] )
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mask06 = ( l a t c o l > −40) & ( l a t c o l < −30)

mean06 = s t a t . mean ( d i f f IUP ESA [ mask06 ] )

s t d 0 6 = s t a t . s t d e v ( d i f f IUP ESA [ mask06 ] )

mask07 = ( l a t c o l > −30) & ( l a t c o l < −20)

mean07 = s t a t . mean ( d i f f IUP ESA [ mask07 ] )

s t d 0 7 = s t a t . s t d e v ( d i f f IUP ESA [ mask07 ] )

mask08 = ( l a t c o l > −20) & ( l a t c o l < −10)

mean08 = s t a t . mean ( d i f f IUP ESA [ mask08 ] )

s t d 0 8 = s t a t . s t d e v ( d i f f IUP ESA [ mask08 ] )

mask09 = ( l a t c o l > −10) & ( l a t c o l < 0)

mean09 = s t a t . mean ( d i f f IUP ESA [ mask09 ] )

s t d 0 9 = s t a t . s t d e v ( d i f f IUP ESA [ mask09 ] )

mask10 = ( l a t c o l > 0) & ( l a t c o l < 10)

mean10 = s t a t . mean ( d i f f IUP ESA [ mask10 ] )

s t d 1 0 = s t a t . s t d e v ( d i f f IUP ESA [ mask10 ] )

mask11 = ( l a t c o l > 10) & ( l a t c o l < 20)

mean11 = s t a t . mean ( d i f f IUP ESA [ mask11 ] )

s t d 1 1 = s t a t . s t d e v ( d i f f IUP ESA [ mask11 ] )

mask12 = ( l a t c o l > 20) & ( l a t c o l < 30)

mean12 = s t a t . mean ( d i f f IUP ESA [ mask12 ] )

s t d 1 2 = s t a t . s t d e v ( d i f f IUP ESA [ mask12 ] )

mask13 = ( l a t c o l > 30) & ( l a t c o l < 40)

mean13 = s t a t . mean ( d i f f IUP ESA [ mask13 ] )

s t d 1 3 = s t a t . s t d e v ( d i f f IUP ESA [ mask13 ] )

mask14 = ( l a t c o l > 40) & ( l a t c o l < 50)

mean14 = s t a t . mean ( d i f f IUP ESA [ mask14 ] )

s t d 1 4 = s t a t . s t d e v ( d i f f IUP ESA [ mask14 ] )

mask15 = ( l a t c o l > 50) & ( l a t c o l < 60)

mean15 = s t a t . mean ( d i f f IUP ESA [ mask15 ] )

s t d 1 5 = s t a t . s t d e v ( d i f f IUP ESA [ mask15 ] )
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mask16 = ( l a t c o l > 60) & ( l a t c o l < 70)

mean16 = s t a t . mean ( d i f f IUP ESA [ mask16 ] )

s t d 1 6 = s t a t . s t d e v ( d i f f IUP ESA [ mask16 ] )

mask17 = ( l a t c o l > 70) & ( l a t c o l < 80)

mean17 = s t a t . mean ( d i f f IUP ESA [ mask17 ] )

s t d 1 7 = s t a t . s t d e v ( d i f f IUP ESA [ mask17 ] )

mask18 = ( l a t c o l > 80) & ( l a t c o l < 90)

mean18 = s t a t . mean ( d i f f IUP ESA [ mask18 ] )

s t d 1 8 = s t a t . s t d e v ( d i f f IUP ESA [ mask18 ] )

x=−85

# p l t . e r r o r b a r ( x , mean01 , y e r r=s td01 , x e r r =5 , c o l o r =’ b l a c k ’ , l i n e w i d t h =0 .65)

# p l t . e r r o r b a r ( x +10 , mean02 , y e r r=s td02 , x e r r =5 , c o l o r =’ b l a c k ’ , l i n e w i d t h =0 .65)

# p l t . e r r o r b a r ( x +20 , mean03 , y e r r=s td03 , x e r r =5 , c o l o r =’ b l a c k ’ , l i n e w i d t h =0 .65)

# p l t . e r r o r b a r ( x +30 , mean04 , y e r r=s td04 , x e r r =5 , c o l o r =’ b l a c k ’ , l i n e w i d t h =0 .65)

p l t . e r r o r b a r ( x +40 , mean05 , y e r r = s td05 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

p l t . e r r o r b a r ( x +50 , mean06 , y e r r = s td06 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

p l t . e r r o r b a r ( x +60 , mean07 , y e r r = s td07 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

p l t . e r r o r b a r ( x +70 , mean08 , y e r r = s td08 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

p l t . e r r o r b a r ( x +80 , mean09 , y e r r = s td09 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

p l t . e r r o r b a r ( x +90 , mean10 , y e r r = s td10 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

p l t . e r r o r b a r ( x +100 , mean11 , y e r r = s td11 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

p l t . e r r o r b a r ( x +110 , mean12 , y e r r = s td12 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

p l t . e r r o r b a r ( x +120 , mean13 , y e r r = s td13 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

p l t . e r r o r b a r ( x +130 , mean14 , y e r r = s td14 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

p l t . e r r o r b a r ( x +140 , mean15 , y e r r = s td15 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

p l t . e r r o r b a r ( x +150 , mean16 , y e r r = s td16 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

p l t . e r r o r b a r ( x +160 , mean17 , y e r r = s td17 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

p l t . e r r o r b a r ( x +170 , mean18 , y e r r = s td18 , x e r r =5 , c o l o r = ’ b l a c k ’ , l i n e w i d t h = 0 . 6 5 )

### HEATMAP

# ESA vs IUP HEXBIN / / HEATMAP

p l t . h ex b i n ( ESA col , IUP col , mincn t =1 , cmap= ’ ra inbow ’ , g r i d s i z e =150)

p l t . c o l o r b a r ( )
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p l t . a x i s ( [ 0 . 0 , 0 . 1 2 , 0 . 0 , 0 . 1 2 ] )

p l t . g r i d ( l i n e s t y l e = ’ : ’ )

x = np . l i n s p a c e (−0.15 , 0 . 4 , 5 )

y=x

p l t . p l o t ( x , y , ’−r ’ , l i n e s t y l e = ’−− ’ )

p l t . x l a b e l ( ’ xco OPER [ mol m−2] ’ )

p l t . y l a b e l ( ’ xco WFMD [ mol m−2] ’ )

p l t . t i t l e ( ’ xco OPER − xco WFMD, 20180606 ’ )

N = s t r ( l e n ( I U P c o l ) )

D = s t r ( s t a t . mean ( np . a r r a y ( IUP col−ESA col ) ) ) [ : 7 ]

S = s t r ( s t a t . s t d e v ( IUP col−ESA col ) ) [ : 7 ]

R = s t r ( s c i p y . s t a t s . p e a r s o n r ( ESA col , I U P c o l ) ) [ 1 : ] [ : 7 ]

p l t . t e x t ( 0 . 1 , 0 . 0 6 , ’N = ’ + N, h o r i z o n t a l a l i g n m e n t = ’ l e f t ’ , v e r t i c a l a l i g n m e n t

= ’ bot tom ’ , c o l o r = ’ b l a c k ’ )

p l t . t e x t ( 0 . 1 , 0 . 0 5 , ’D = ’ + D, h o r i z o n t a l a l i g n m e n t = ’ l e f t ’ , v e r t i c a l a l i g n m e n t

= ’ bot tom ’ , c o l o r = ’ b l a c k ’ )

p l t . t e x t ( 0 . 1 , 0 . 0 4 , ’S = ’ + S , h o r i z o n t a l a l i g n m e n t = ’ l e f t ’ , v e r t i c a l a l i g n m e n t

= ’ bot tom ’ , c o l o r = ’ b l a c k ’ )

p l t . t e x t ( 0 . 1 , 0 . 0 3 , ’R = ’ + R , h o r i z o n t a l a l i g n m e n t = ’ l e f t ’ , v e r t i c a l a l i g n m e n t

= ’ bot tom ’ , c o l o r = ’ b l a c k ’ )
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