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by Assimila 

Sections 2.1.2 and 
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Acronyms  
 

Acronym Definition 
AIRS Atmospheric Infrared Sounder 
AMSU Advanced Microwave Sounding Unit 
ATBD Algorithm Theoretical Basis Document 
BESD Bremen optimal EStimation DOAS 
CAR Climate Assessment Report 
C3S Copernicus Climate Change Service 
CCDAS Carbon Cycle Data Assimilation System 
CCI Climate Change Initiative 
CDR Climate Data Record 
CDS (Copernicus) Climate Data Store 
CMUG Climate Modelling User Group (of ESA’s CCI) 
CRG Climate Research Group 
D/B Data base 
DOAS Differential Optical Absorption Spectroscopy 
EC European Commission 
ECMWF European Centre for Medium Range Weather Forecasting 
ECV Essential Climate Variable 
EMMA Ensemble Median Algorithm 
ENVISAT Environmental Satellite (of ESA) 
EO Earth Observation 
ESA European Space Agency 
EU European Union 
EUMETSAT European Organisation for the Exploitation of Meteorological Satellites 
FCDR Fundamental Climate Data Record 
FoM Figure of Merit 
FP Full Physics retrieval method 
FTIR Fourier Transform InfraRed 
FTS Fourier Transform Spectrometer 
GCOS Global Climate Observing System 
GEO Group on Earth Observation 
GEOSS Global Earth Observation System of Systems 
GHG GreenHouse Gas 
GOS GOSAT 
GO2 GOSAT-2 
GOME Global Ozone Monitoring Experiment 
GMES Global Monitoring for Environment and Security 
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GOSAT Greenhouse Gases Observing Satellite 
GOSAT-2 Greenhouse Gases Observing Satellite 2 
IASI Infrared Atmospheric Sounding Interferometer 
IMAP-DOAS (or IMAP) Iterative Maximum A posteriori DOAS 
IPCC International Panel in Climate Change 
IUP Institute of Environmental Physics (IUP) of the University of Bremen, Germany 
JAXA Japan Aerospace Exploration Agency 
JCGM Joint Committee for Guides in Metrology 
L1 Level 1 
L2 Level 2  
L3 Level 3  
L4 Level 4  
LMD Laboratoire de Météorologie Dynamique 
MACC Monitoring Atmospheric Composition and Climate, EU GMES project 
NA Not applicable 
NASA National Aeronautics and Space Administration 
NetCDF Network Common Data Format 
NDACC Network for the Detection of Atmospheric Composition Change 
NIES National Institute for Environmental Studies 
NIR Near Infra-Red 
NLIS LMD/CNRS neuronal network mid/upper tropospheric CO2 and CH4 retrieval 

algorithm 
NOAA National Oceanic and Atmospheric Administration 
Obs4MIPs Observations for Climate Model Intercomparisons 
OCFP OCO-2 Full Physics (FP) algorithm (used by Univ. Leicester) 
OCO Orbiting Carbon Observatory 
OCPR OCO-2 Proxy (PR) algorithm (used by Univ. Leicester) 
OE Optimal Estimation 
PBL Planetary Boundary Layer 
ppb Parts per billion 
ppm Parts per million 
PQAD Product Quality Assurance Document 
PQAR Product Quality Assessment Report 
PR (light path) PRoxy retrieval method 
PVIR Product Validation and Intercomparison Report 
QA Quality Assurance 
QC Quality Control 
RemoTeC Retrieval algorithm developed by SRON 
REQ Requirement 
RMS Root-Mean-Square 
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RTM Radiative transfer model 
SCIAMACHY SCanning Imaging Absorption spectroMeter for Atmospheric ChartographY 
SCIATRAN  SCIAMACHY radiative transfer model 
SRON SRON Netherlands Institute for Space Research 
SRFP SRON’s Full Physics (FP) algorithm (also referred to a RemoTeC FP) 
SRPR SRON’s Proxy (PR) algorithm (also referred to a RemoTeC PR) 
SWIR Short Wave InfraRed 
TANSO Thermal And Near infrared Sensor for carbon Observation 
TANSO-FTS Fourier Transform Spectrometer on GOSAT 
TANSO-FTS-2 Fourier Transform Spectrometer on GOSAT-2 
TBC To be confirmed 
TBD To be defined / to be determined 
TCCON Total Carbon Column Observing Network 
TIR Thermal InfraRed 
TR Target Requirements 
TRD Target Requirements Document 
WFM-DOAS (or WFMD) Weighting Function Modified DOAS 
UoL University of Leicester, United Kingdom 
URD User Requirements Document 
WMO World Meteorological Organization 
Y2Y Year-to-year (bias variability) 

 
 
 
  



 
 
Copernicus Climate Change Service 2 

 
 
 
 

C3S2_312a_Lot2_DLR_2021SC1 - ATBD ANNEX-E v6.2 
 9 of 40  1/31/2023 

 

General definitions  
 
Essential climate variable (ECV) 

An ECV is a physical, chemical, or biological variable or a group of linked variables that critically 
contributes to the characterization of Earth’s climate. 

Climate data record (CDR) 

The US National Research Council (NRC) defines a CDR as a time series of measurements of sufficient 
length, consistency, and continuity to determine climate variability and change. 

Fundamental climate data record (FCDR) 

A fundamental climate data record (FCDR) is a CDR of calibrated and quality-controlled data designed 
to allow the generation of homogeneous products that are accurate and stable enough for climate 
monitoring. 

Thematic climate data record (TCDR) 

A thematic climate data record (TCDR) is a long time series of an essential climate variable (ECV). 

Intermediate climate data record (ICDR) 

An intermediate climate data record (ICDR) is a TCDR which undergoes regular and consistent 
updates, for example because it is being generated by a satellite sensor in operation. 

Satellite data processing levels 

The NASA Earth Observing System (EOS) distinguishes six processing levels of satellite data, ranging 
from Level 0 (L0) to Level 4 (L4) as follows. 

L0 Unprocessed instrument data 

L1A Unprocessed instrument data alongside ancillary information 

L1B Data processed to sensor units (geo-located calibrated spectral radiance and solar 
irradiance) 

L2 Derived geophysical variables (e.g., XCO2) over one orbit 

L3 Geophysical variables averaged in time and mapped on a global longitude/latitude 
horizontal grid 

L4 Model output derived by assimilation of observations, or variables derived from 
multiple measurements (or both) 
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Scope of document 
 
This document is an Algorithm Theoretical Basis Document (ATBD) for the Copernicus Climate 
Change Service (C3S, https://climate.copernicus.eu/) greenhouse gas (GHG) component as covered 
by project C3S3_312a_Lot2. 
 
Within this project satellite-derived atmospheric carbon dioxide (CO2) and methane (CH4) Essential 
Climate Variable (ECV) data products are generated and delivered to ECMWF for inclusion into the 
Copernicus Climate Data Store (CDS) from which users can access these data products and the 
corresponding documentation. 
 
The satellite-derived GHG data products are:  

• Column-average dry-air mixing ratios (mole fractions) of CO2 and CH4, denoted XCO2 (in 
parts per million, ppm) and XCH4 (in parts per billion, ppb), respectively. 

• Mid/upper tropospheric mixing ratios of CO2 (in ppm) and CH4 (in ppb). 
 
This document describes the retrieval algorithms (CNRS-LMD Non Linear Inference Scheme -NLIS) to 
generate the C3S products CO2_IASA_NLIS, CH4_IASA_NLIS, CO2_IASB_NLIS, CH4_IASB_NLIS. 
 
These products are mid-tropospheric CO2 and CH4 Level 2 products as retrieved from the Infrared 
Atmospheric Sounding Interferometer (IASI) sensors on Metop-A and Metop-B European platforms 
using algorithms developed at CNRS-LMD, France. 
 
The NLIS algorithm is also used to retrieve mid-tropospheric CO2 from AIRS (product CO2_AIR_NLIS) 
and a description of NLIS as applied to AIRS is also given in this document. 
 
 
 
 
 
  

https://climate.copernicus.eu/
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Executive summary 
 
This document describes the retrieval algorithms developed at CNRS-LMD to retrieve mid-
tropospheric column of CO2 and CH4 from the IASI and AMSU instruments flying onboard the 
European Metop satellites. It details the various input data required for retrievals, the physical 
theory, and the mathematical background underlying retrieval assumptions, and also outlines the 
retrieval implementation and the limitations of the approach used.  
 
The Non Linear Inference Scheme (NLIS) algorithms are based on the non-linear regression inverse 
radiative transfer model using Multi-Layer Perceptrons (Crevoisier et al., 2009a, 2009b), that was 
first designed to retrieve CO2 from the first generation TOVS instruments flying onboard the NOAA 
polar platforms (Chédin et al., 2003). The input data are radiances measured by IASI and AMSU 
instruments onboard Metop-A (2007-2021) and Metop-B (since 2013) space platforms. IASI and 
AMSU instruments are vertical sounders measuring in the thermal infrared and microwave spectral 
domains, respectively. Auxiliary data are also used to provide additional information on the 
atmosphere. The output data are mid-tropospheric columns of CO2 and CH4, to which are 
associated vertical weighting functions that give information on the sensitivity of IASI to variations 
of the gases along the atmospheric column.  
 
Throughout the lifetime of the missions, changes have happened at instrument level (spectral 
changes, noise increase) in 2015, 2017, 2019 and 2021. They had an impact on the retrievals 
themselves. Successive versions of the retrieval scheme have thus been designed to cope with these 
changes. They are detailed in the document. 
 
Section 1 gives an overview of the data product including a description of the satellites. Section 2 
introduces the various input data which enter into the retrieval algorithm. Sections 3 and 4 describe 
in detail the retrieval algorithm and its output, respectively.  
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1. Instruments 
 

1.1.1 The IASI instrument onboard the Metop satellites 
 
The Infrared Atmospheric Sounding Interferometer (IASI) is a high resolution Fourier Transform 
Spectrometer based on a Michelson Interferometer coupled to an integrated imaging system that 
measures infrared radiation emitted from the Earth (https://iasi.cnes.fr/en/IASI/index.htm). 
Developed by the Center National d’Etudes Spatiales (CNES) in collaboration with the European 
Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), IASI was launched in 
October 2006 onboard the polar orbiting Meteorological Operational Platform (Metop-A), in 
September 2012 onboard Metop-B, and in October 2018 onboard Metop-C. Metop-A has been 
decommissioned in November 2022, after 15 years of nominal operation. The last data delivery 
happened on October 15th 2022. Starting in late August 2021, so-called end-of-life experiments 
were conducted by CNES and EUMETSAT, yielding a few days without data, as well as a full month 
(September 15th to October 15th 2022) with IASI operating in a narrow swath configuration (220 km 
instead of 2200 km) in order to provide oversampling along the orbits. 
 
The comparison between the 3 IASI instruments at level1 shows that the three instruments agree at 
the level of 0.1 K or less for most of the spectrum. The retrieval of mid-tropospheric CO2 and CH4 
will be extended to IASI/Metop-C for the next release and should show the same performances as 
the two previous instruments. 
 
IASI provides 8461 spectral samples, ranging from 645 cm−1 to 2760 cm−1 (15.5 µm and 3.6 µm), 
with a spectral sampling of 0.25 cm−1, and a spectral resolution of 0.5 cm−1. IASI is an across track 
scanning system, whose swath width is of 2200 km, allowing global coverage twice a day. The IFOV 
is sampled by 2×2 circular pixels whose ground resolution is 12 km at nadir at 9:30 am/pm local 
time.  
 
The combined use of both Metop satellites, which are flying on the same orbit but with nearly half 
an orbit out of phase, yields a complete coverage of the Earth in one day. Combining Metop-A, -B 
and -C, the time series will cover about 20 years. In order to be useful for climate studies, it is 
mandatory that the time series derived from the 3 successive platforms are consistent in order to 
allow the study of trends and growth rates of several essential climate variables such as greenhouse 
gases. 
 
  

https://iasi.cnes.fr/en/IASI/index.htm
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Figure 1: IASI and AMSU scanning geometry IASI individual field of views are shown as yellow circles 
while AMSU individual field of views are shown as red circles (from IASI Level 1 Product Guide 
available at http://eodg.atm.ox.ac.uk/user/dudhia/iasi/documents/PDF_IASI_LEVEL_1_PROD_GUIDE.pdf). 
 

 
 

1.1.2 The AMSU instrument onboard the Metop satellites 
 
Also flying onboard Metop satellites is the AMSU-A (Advanced Microwave Sounding Unit) 
instrument, which is a 15-channel microwave radiometer, which measure scene radiances in 15 
discrete frequency channels spanning 23-90 GHz. Thirty consecutive field of views of 48 km 
diameter at nadir are sampled, yielding a 2,074 km swath width. AMSU-A uses oxygen absorption 
bands/lines for atmospheric temperature sounding, while window channels provide information on 
surface temperature and emissivity.  
 
As seen in Figure 1, scanning of both sounders is synchronized, with 4 IASI fields of view (FOV) 
(yellow lozenges) embedded in 1 AMSU FOV (red lozenge), allowing the same atmospheric situation 
to be simultaneously observed by both instruments. 
 
On all Metop satellites, several AMSU channels have experienced behaviors outside of 
specifications. In particular, among the 3 AMSU channels 6, 7 and 8 that are particularly important 
for the retrieval procedure, only AMSU 6 channels are available for all Metop satellites for the 
whole time period covered by each satellite. For instance, for Metop-A, the AMSU 7 channel 
stopped operating in 2008 while AMSU 8 channels stopped operating in 2015. This has led to some 
changes in the retrieval procedure that are described below. 
 

1.1.3 The AIRS and AMSU instruments onboard the Aqua satellite 
 
The Atmospheric Infrared Sounder (AIRS) is a polar orbiting nadir-viewing high-resolution infrared 
sounder operating in a cross-track-scanning mode. It was launched onboard the EOS Aqua satellite 
in May 2002, with two operational microwave sounders, AMSU and HSB, and is operational since 
September 2002. It is a high-spectral resolution, grating multispectral infrared sounder with 2378 
channels. Its spectral domain ranges from 650 cm−1 to 2665 cm−1 (15.4 µm and 3.8 µm), with a 

http://eodg.atm.ox.ac.uk/user/dudhia/iasi/documents/PDF_IASI_LEVEL_1_PROD_GUIDE.pdf
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spectral resolving power of 1200 (i.e., a spectral resolution ranging from 0.5 cm−1 to 2 cm−1). This 
domain is divided into three spectral bands, from 650 to 1135 cm−1, from 1215 to 1615 cm−1 and 
from 2180 to 2665 cm−1. AIRS cross-track scanning is 1650 km and covers 70% of the earth every 
day (Figure 2). The instantaneous field of view (IFOV) is sampled by 3×3 circular pixels whose 
ground resolution is 13 km at nadir. Measurements from AIRS and AMSU are analyzed jointly to 
filter out the effects of clouds from the IR data in order to derive various atmospheric and surface 
variable in clear conditions.  
 
As seen in Figure 2, scanning of both sounders is synchronized, with 9 AIRS fields of view (FOV) (dark 
yellow circles) embedded in 1 AMSU FOV (light yellow circle with dashed outline), allowing the 
same atmospheric situation to be simultaneously observed by both instruments. 
 
 
Figure 2: AIRS and AMSU scan geometrics. (Left) A typical one-day scan pattern of AIRS is shown. 
(Middle) An artistic view of AIRS and it scan geometry. (Right) AIRS (dark yellow) and AMSU (light 
yellow) instantaneous fields of view (Jason, 2008). 
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2. Input and auxiliary data 
 

2.1 Level 1 data 
 
IASI and AMSU input data are Level 1c and Level 1b data respectively, disseminated in near-real 
time through the EUMETCast system of EUMETSAT. Metop-A data have been available between July 
2007 and September 2021 when Metop-A was decommissioned. Metop-B data are available since 
February 2013. Metop-C data are available since July 2019. 
 
AIRS and AMSU onboard Aqua input data are Level 1b data, disseminated in near-real time by 
NOAA. Aqua was launched in 2002. 
 

2.2 Other data 
 

2.2.1 The TIGR database  
 
CNRS-LMD Non Linear Inference Scheme (NLIS) used to retrieved mid-tropospheric columns of 
greenhouse gases is based on artificial neural networks trained on a dataset of well-known 
atmospheric situation: the Thermodynamic Initial Guess Retrieval (TIGR). In its latest version, 
available at https://ara.lmd.polytechnique.fr/index.php?page=tigr, is a climatological library of 2311 
representative atmospheric situations selected by statistical methods from 80,000 radiosonde 
reports. Each situation is described, from the surface to the top of the atmosphere, by the values of 
the temperature, water vapour and ozone concentrations on a given pressure grid. For each 
situation are available the radiances of each IASI/AMSU channel simulated under several conditions 
of observation (satellite zenith angle, surface characteristics, etc.), as well as the atmospheric 
transmittances and Jacobians (partial derivatives of the brightness temperature with respect to 
temperature, gas concentration for H2O, O3, CO2, N2O CO, CH4, surface temperature and emissivity). 
Radiances, transmittances and Jacobians profiles are generated using the 4A forward radiative 
transfer model. 
 

2.2.2 The ARSA database 
 
The computation of the radiative biases, which plays a critical role in the retrieval process, is based 
on the ARSA (Analyzed RadioSoundings Archive) database, which is available at 
http://ara.abct.lmd.polytechnique.fr/index.php?page=arsa. ARSA builds on radiosondes 
observations made by worldwide distributed radiosonde stations and combines them with surface 
and other auxiliary observations. Physically coherent quality control tests have been developed to 
detect and eliminate gross errors: format problems, redundant radiosounding and levels, unrealistic 
jumps, physically implausible values, temporal and vertical inconsistencies in temperature and dew 
point temperatures. The current ARSA database (about 6 million elements) starts in January 1979, 
and is extended onwards, on a monthly basis.  

https://ara.lmd.polytechnique.fr/index.php?page=tigr
http://ara.abct.lmd.polytechnique.fr/index.php?page=arsa
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3. Algorithms 
 

3.1 Algorithm for IASI mid-tropospheric CO2 and CH4 retrieval 

3.1.1 General description 
 
Mid-tropospheric columns of methane (CH4) and carbon dioxide (CO2) are retrieved from 
simultaneous observations of the IASI and AMSU instruments flying together onboard the Metop 
satellites using a non-linear inference scheme. As described in Crevoisier et al. (2009ab), this 
scheme is based on artificial neural networks. The weakness of the signal induced on IASI radiances 
by CO2 and CH4 variations, associated with the complexity (in particular its non-Gaussian behavior 
and the low signal-to-noise ratio) of the relationship between CO2 or CH4 concentration and 
observed radiances, makes it difficult to solve this inverse problem. Therefore, a non-linear 
inference method, based on the Multilayer Perceptron (MLP) neural network (Rumelhart et al., 
1986) with two hidden layers, has been preferred to a more classical one. Introduced to derive 
tropospheric CO2 integrated content from TOVS (Chédin et al., 2003), it has been modified to 
process observations from AIRS and IASI. 
 
The main difficulty in estimating global distribution of CO2 or CH4 from infrared sounders comes 
from the fact that infrared measurements are sensitive to both temperature and CO2/CH4 
variations. Independent information on temperature is thus needed to allow the separation of 
these two effects. IASI hyperspectral observations in the thermal infrared, which are sensitive to 
both temperature and gas concentrations of CO2 or CH4 are used in conjunction with microwave 
observations form the AMSU instruments, only sensitive to temperature, to decorrelate both 
signals. For CH4, channels located in the 7.7 µm spectral region are used; for CO2, channels located 
in the 15 µm region are used. 
 
Only a subset of channels presenting the best properties with regards to the retrieval performances, 
for instance in terms of gas sensitivity and vertical coverage as explained in Crevoisier (2018), are 
used. The neural networks are trained on a learning dataset with couples of known inputs-outputs 
coming from the TIGR database and evaluated on an evaluation dataset (the ARSA database). The 
retrievals are performed during day and night-time (9:30 am/pm local time), both over land and 
over sea. The CO2 retrievals are limited to the tropical region (from 30N to 30S); this is because the 
decorrelation between CO2 and temperature signals in the IASI radiances is more complex outside 
of the tropical band due to the higher variability of the temperature profile compared to the 
tropical one, yielding too high retrieval uncertainty.  
 
Through comparisons with regular aircraft (Machida et al., 2008) or balloon (Membrive et al., 2017) 
measurements as well as observations made at the surface, we have shown (e.g. Crevoisier et al., 
2013) that, once the radiometric characterization of the instruments is performed, IASI and AMSU 
capture well the trend and interannual variation of CH4, with an excellent agreement with the rate 
of increase measured at the surface, giving confidence in the ability of IASI and AMSU to follow its 
evolution over the 20 years of the Metop program.  
 



 
 
Copernicus Climate Change Service 2 

 
 
 
 

C3S2_312a_Lot2_DLR_2021SC1 - ATBD ANNEX-E v6.2 
 19 of 40  1/31/2023 

3.1.2 Forward model and spectroscopic database 
 
The radiative simulations in the thermal infrared performed in this study are based on the fast and 
accurate line-by-line radiative transfer model 4A (Automatized Atmospheric Absorption Atlas) (Scott 
and Chédin, 1981). 4A is an advanced version of the nominal line-by-line STRANSAC model (Scott, 
1974) and is basically a compressed look-up-table of optical depths calculated once and for all. It 
can be coupled to any spectroscopic databases and can simulate any instrumental configurations 
(ground, airborne, satellite). In addition to the simulation of atmospheric transmissions and 
radiance (or equivalently brightness temperature (BT)) spectra, 4A analytically computes Jacobians 
for all relevant atmospheric variables. Jacobians are defined as the partial derivative of the channel 
brightness temperature with respect to a layer physical variable such as a gas mixing ratio, a 
temperature or the emissivity. Since the beginning of 2001, an operational version denoted 4A/OP 
has been developed by the company Noveltis (https://4aop.noveltis.com/) in collaboration with 
CNES and LMD. 4A is the official code chosen by CNES for calibration/validation and preparation 
activities of several space missions, including IASI and IASI-NG. For this study, the spectrometric 
parameters used as inputs to 4A, are taken form the GEISA-2011 database (Jacquinet-Husson et al., 
2011). 
 

3.1.3 Channel selection 
 
IASI presents 8461 channels covering most of the infrared spectrum. Approximately a hundred of 
them are sensitive to methane, whilst a few hundred are sensitive to CO2.   
 

3.1.3.1 Channels for CH4 
 
IASI channels sensitive to methane are either located in band ν4 of methane, around 7.7 µm (1306 
cm-1), or in band ν3, around 3.8 µm (2630 cm-1), and have different sensitivities to methane and 
other atmospheric or surface components. The sensitivity to methane concentration variations of 
channels located in the 3.8 µm band is much lower than that of channels located in the 7.7 µm band 
due to weaker absorption lines: they won’t be considered here. In the 7.7 µm band, channels are 
sensitive to water vapour (H2O), nitrous oxide (N2O) and surface characteristics.  
 
The main interference, as far as CH4 is concerned, comes from H2O, which dominates the infrared 
spectrum in methane absorption bands. Since water vapour variability is quite high, especially in the 
tropics, and knowledge of its tropospheric distribution still limited, separating the CH4 signal from 
water vapour is quite challenging and precludes the use of most of the channels. Due to much lower 
water vapour content in the mid-latitude regions as opposed to the tropics, the interferences 
between H2O and CH4 is less pronounced in the extra-tropical regions, giving access to more 
channels with a high signal-to-interference ratio. Altogether, only a few successive channels located 
in the 1301-1303 cm-1 interval present a low-enough sensitivity to water vapour to be used to 
retrieve methane.  
 

https://4aop.noveltis.com/
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24 channels have been selected to optimize the signal-to-interference ratio. They are not sensitive 
to variations of methane in two parts of the atmosphere: the lower troposphere (roughly below 500 
hPa) and the tropopause (Crevoisier et al., 2003). The Jacobians of the selected channels have very 
similar shapes and all peak around 260 hPa. Hence, IASI only allows the retrieval of a mid-
tropospheric column of methane. It is equivalent to say that IASI observations are characterized by 
only one degree of freedom for CH4 along the vertical. 
 

3.1.3.2 Channels for CO2 
 
IASI channels sensitive to carbon dioxide are either located in band ν2 of CO2, around 15 µm (670 
cm-1), or in band ν3, around 4.3 µm (2260 cm-1), and present various sensitivities to methane and 
other atmospheric or surface components. The 4.3 µm band is characterized by a very high 
radiometric noise that precludes using this channel for retrieving CO2. The main interference, as far 
as CO2 is concerned, comes from H2O and ozone. Consequently, use is made of a few successive 
channels located in the 670 cm-1 interval.  
 
These channels are not sensitive to variations of CO2 in two parts of the atmosphere: the lower 
troposphere (roughly below 500 hPa) and the tropopause (Crevoisier et al., 2003). The Jacobians of 
the selected channels have very similar shapes and all peak around 200 hPa. Hence, IASI only allows 
the retrieval of a mid-tropospheric column of carbon dioxide. It is equivalent to say that IASI 
observations are characterized by only one degree of freedom on the vertical for CO2. 
 

3.1.4 Neural architecture 
 
The weakness of the signal induced on IASI brightness temperature (BT) by CH4 or CO2 variations, 
associated with the complexity (in particular its non-Gaussianity) of the relationship between the 
gas concentration and observed BT, makes it difficult to solve this inverse problem. To tackle this 
problem, use is made of a non-linear inference method, based on the Multilayer Perceptron (MLP) 
neural network (Rumelhart et al., 1986) with two hidden layers. Following the selection of IASI and 
AMSU channels described previously, the chosen neural architectures are the following.  
 

3.1.4.1 Architecture for CH4 
 

• Until version 8.4 
The input layer is composed of:  

(i) 24 IASI BT. Among them, the first 5 channels are not sensitive to CH4 but to stratospheric 
temperature only. They have been included in order to deal with the slight sensitivity of 
the selected CH4 IASI channels to stratospheric temperature;  

(ii) 2 AMSU BT of channels 6 and 8;  
(iii) 10 differences between IASI and AMSU BT, to help constraining the convergence process 

: 6-2497, 8-2497, 6-2553, 8-2553, 6-2634, 8-2634, 6- 2637, 8-2637, 6-2809, 8-2809.  
Altogether, there are 36 predictors. 
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The output layer of the network is composed of:  
(i) the difference between the true value of CH4 concentration (associated with inputs) and 

the TIGR reference one (1860 ppb);  
(ii) 24 differences between the ‘‘true’’ IASI BT (associated with the true CH4 concentration 

value) and the ‘‘reference’’ one (associated with the reference CH4 concentration value), 
once again to constrain the solution.  

Altogether, there are 25 predictands.  
 
Our past experience and several trials have led us to choose 70 neurons for the first hidden layer 
and 40 for the second one.  
 

• Version 9.1  
 
In order to be able to process the entire time series of IASI-A and IASI-B data with the same retrieval 
code and obtain a homogeneous data set of mid-tropospheric CH4 from both instruments, a new 
architecture has been used to process the observations. This new version 9.1 copes with the failure 
of AMSU8 channels on Metop-A in 2015 by removing the use of this channel for all Metop satellites. 
 
The input layer is now composed of: (i) 24 IASI BT. Among them, the first 5 channels are not 
sensitive to CH4 but to stratospheric temperature only. They have been included in order to deal 
with the slight sensitivity of the selected CH4 IASI channels to stratospheric temperature; (ii)  1 
AMSU BT of channel 6; (iii) 5 differences between IASI and AMSU BT, to help constraining the 
convergence process : 6-2497, 6-2553, 6-2634, 6- 2637, 6-2809. Altogether, there are 30 predictors. 
 
The output layer of the network is composed of: (i) the difference between the true value of CH4 
concentration (associated with inputs) and the TIGR reference one (1860 ppb); (ii) 14 differences 
between the ‘‘true’’ IASI BT (associated with the true CH4 concentration value) and the ‘‘reference’’ 
one (associated with the reference CH4 concentration value), once again to constrain the solution. 
Altogether, there are 15 predictands.  
 
The hidden layers are still made up of 70 neurons for the first layer and 40 for the second one.  
 
 

3.1.4.2 Architecture for CO2 
 

• Until version 8.n  
 
The input layer is composed of:  

(i) 89 IASI BT. Among them, the first 5 channels are not sensitive to CO2 but to stratospheric 
temperature only. They have been included in order to deal with the slight sensitivity of 
the selected CO2 IASI channels to stratospheric temperature;  

(ii) 2 AMSU BT of channels 6 and 8;  
(iii) 10 differences between IASI and AMSU BT, to help constraining the convergence 

process.  
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Altogether, there are 101 predictors. 
 
The output layer of the network is composed of:  

(i) the difference between the true value of CO2 concentration (associated with inputs) and 
the TIGR reference one (372 ppm);  

(ii) 24 differences between the ‘‘true’’ IASI BT (associated with the true CO2 concentration 
value) and the ‘‘reference’’ one (associated with the reference CO2 concentration value), 
once again to constrain the solution.  

Altogether, there are 25 predictands.  
 
Our past experience and several trials have led us to choose 70 neurons for the first hidden layer 
and 40 for the second one.  
 

• Version 9.1  
 
In order to be able to process the entire time series of IASI-A and IASI-B data with the same retrieval 
code and obtain a homogeneous data set of mid-tropospheric CO2 from both instruments, a new 
architecture has been used to process the observations. This new version 9.1 copes with the failure 
of AMSU8 channels on Metop-A in 2015 by removing the use of this channel for all Metop satellites. 
 
The input layer is now composed of:  

(i) 84 IASI BT;  
(ii) 1 AMSU BT of channel 6;  
(iii) 8 differences between IASI and AMSU BT, to help constraining the convergence process: 

6-199, 6-205, 6-207, 6-208, 6-211, 6-214, 6-222, 6-299.  
Altogether, there are 93 predictors. 
 
The output layer of the network is composed of:  

(i) the difference between the true value of CO2 concentration (associated with inputs) and 
the TIGR reference one (372 ppm);  

(ii) 84 differences between the ‘‘true’’ IASI BT (associated with the true CH4 concentration 
value) and the ‘‘reference’’ one (associated with the reference CH4 concentration value), 
once again to constrain the solution.  

Altogether, there are 85 predictands.  
 
The hidden layers are still made up of 70 neurons for the first layer and 40 for the second one.  
 
 

3.1.5 Training of the networks 
 
The learning algorithm is the optimization technique that estimates the optimal network 
parameters by minimizing a positive-definite cost function which measures, for a set of 
representative situations for which inputs (here the brightness temperatures) and outputs (gas) are 
known (the learning set), the mismatch between the neural network outputs and the desired 
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outputs. Here, the Error Back-Propagation algorithm (Rumelhart et al., 1986) is used to minimize 
the cost function. It is a gradient descent algorithm well adapted to the MLP hierarchical 
architecture because the computational cost is linearly related to the number of parameters. To 
avoid being trapped in local minima during the minimization of the cost function, stochastic 
steepest descent is used. The learning step is made sample by sample, chosen iteratively and 
stochastically in the learning data set. 
 
The training database from which the networks learn the relationship existing between inputs and 
outputs is based on the TIGR database. For all TIGR atmospheric situations, for all scan angles, and 
for the whole IASI channels used in the retrieval process, clear-sky brightness temperatures, 
transmittances and Jacobians have been computed using the 4A/OP radiative transfer model with 
the spectroscopic database GEISA-2011 as input. The required AMSU BTs are computed using the 
STRANSAC microwave forward model. Network input BTs correspond to randomly drawn values of 
concentration in the range 1760-1960 ppb for CH4 and in the range 362-382 ppm for CO2, centred 
on the TIGR reference value of 1860 ppb for CH4 and 372 ppm for CO2; they are computed using the 
stored CH4 and CO2 Jacobians. It is worth noting that no prior information is thus given to the 
networks in terms of seasonality, trend, or geographical patterns of the gases. 
 
Neural networks are trained for each of the 15 AMSU scan angles and for 2 air-masses (tropical or 
mid-latitude) independently. Surface elevation is also taken into account. Altogether, for a given 
neural architecture, 240 networks are trained. For each network corresponding to one air-mass, 
one scan angle and one surface type, the learning steps are the following: 

1) One atmosphere is randomly chosen among the TIGR atmospheres of the considered air-
mass. 

2) A CH4 (resp. CO2) mixing ratio is drawn randomly (uniform distribution) in the range 1760-
1960 ppb (resp. 362-382 ppm), which is centred on the reference CH4 (resp. CO2) mixing 
ratio of TIGR.  

3) A perturbation of the surface temperature is randomly chosen according to the normal 
distribution, with a null mean value and a standard deviation of 4 K. 

4) The input BTs at the drawn CH4 (resp. CO2) mixing ratio are computed using BTs and CH4 
(resp. CO2) Jacobians from TIGR for the considered atmosphere. 

5) For IASI channels, noise equivalent temperatures are computed at the BT according to Eq. 1: 
   

                      𝑁𝑁𝑁𝑁Δ𝑇𝑇[𝑇𝑇𝐵𝐵(𝜈𝜈), 𝜈𝜈] = 𝑁𝑁𝑁𝑁Δ𝑇𝑇�𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟, 𝜈𝜈�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝜈𝜈�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑇𝑇𝐵𝐵(𝜈𝜈),𝜈𝜈)
                  (1) 

where NE∆T is the equivalent noise temperature taken at the brightness temperature TB, of 
the channel located at frequency ν, and B is the radiance. The reference noise corresponding 
to a reference temperature Tref of 280 K is taken from the in-flight noise measurement 
(CNES, priv. comm.). To increase the signal to noise ratio, and speed the learning phase, 
these noises have been divided by 2. Since 4 IASI spots are localized within one AMSU spot, 
the average of IASI BT contained in a single AMSU field-of-view are therefore used as inputs 
to the networks. 

6) The quadratic sum of the instrument noise and the forward radiative transfer model noise, 
are computed and added to the BT.  
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7) The inputs and outputs are normalized in order to homogenise the input values between 0 
and 1. 

8) The Error Back-Propagation algorithm (Rumelhart et al., 1986) is used to minimize the cost 
function. 

9) The parameters of the networks are updated. 
10) The networks are applied to the whole ARSA atmospheres following the same procedure as 

TIGR (steps 4 to 7) and the root mean square (RMS) error of the output is computed.  
11) Go back to step 1, until the predefined number of iterations has been reached. 

 
 

3.1.6 Application to observations 

3.1.6.1 General description 
 
Once the learning phase is completed, observations of IASI and AMSU can be used to infer mid-
tropospheric columns of CH4 or CO2. The retrieval is performed at the AMSU resolution: when 4 IASI 
FOVs included in 1 AMSU FOV are declared clear (meaning that no cloud nor aerosol has been 
detected), the BTs of the channels are averaged over the 4 IASI FOVs and used together with AMSU 
BTs, to perform the retrieval. 
 
Since the networks are trained with simulated data, potential systematic radiative biases existing 
between simulations used in the learning phase and observations must be removed before using 
these BTs as inputs to the network corresponding to the situation according to the scan angle, 
surface elevation and air-mass type. These systematic radiative biases are computed with the 
calibration/validation chain that has been developed for many years at LMD (Armante et al., 2016). 
For each channel, the differences between simulations and collocated (in time and space) satellite 
observations are averaged over several full years of operation. These differences are called ‘calc-
obs’ residuals. The simulations are performed using the 4A/OP forward model and radiosonde 
measurements from ARSA as inputs. One key element is that, during this computation, the CH4 and 
CO2 mixing ratios are kept at the reference value of the TIGR database (1860 ppb and 372 ppm 
respectively) to avoid making the CH4 nor CO2 signals disappearing in the BT used as input to the 
networks. Every month, about 100 collocations are available, giving access to robust statistics. 
 
By averaging thousands of situations together, it is possible to derive the evolution of the averaged 
biases with the scan angle. In order to avoid potential biases due to the incorrect modelling of the 
radiative effect of scan angles close to the edges of the orbit, which is particularly the case for 
microwave observation, specific radiative biases have to be taken into account for each scan angle.  
 

3.1.6.2 Case of Metop-A from 2015 
 
From the beginning of 2015, some channels of AMSU onboard Metop-A, including channel 8, 
started degrading, and subsequently became out of nominal specifications and were finally declared 
non-operational by the end of the year. The continuous degradation of channel 8 had a direct 
impact on the CO2 and CH4 time series derived from Metop-A as seen in Fig. 3. 
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Figure 3: (Top) AMSU channel 8 Ne∆T from January 2007 to October 2015. Red and blue horizontal 
lines show noise specification pre and post launch (Bottom) Mid-tropospheric CO2 derived from 
Metop-A (blue) and from Metop-B (red) from February 2013 to December 2017. Although the 
agreement between Metop-A and Metop-B CO2 is excellent between February 2013 and May 2015, 
an increasing bias between the 2 products can be clearly seen from June up to the end of Metop-
A/AMSU channel 8 in October 2015. 
 

 
 
 
Following the degradation, a full characterization of the spectral and radiometric characteristics of 
AMUS onboard Metop-A has been carried on to evaluate its impact on the retrieval. It has been 
found that the degradation had the largest impact after June 2015 and that no correction could be 
applied for the following months to correct the very large drift of AMSU channel 8 (Fig. 3 left). 
Several attempts to find proper replacements for AMSU 8 channel have then been made. The 
optimal scenario (lowest impact on both bias and uncertainty) has been found to be using channel 6 
only (see section 3.1.4) 
 
As of version 9.1, AMSU 8 channel is no longer used in the retrieval scheme and a full reprocessing 
of the Metop-A time series has been made and has been delivered as CRDP4.  
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3.1.6.3 Case of Metop-B from August 2nd 2017 
 
On August, 2nd 2017, the on-board processing of IASI/Metop-B changed, due to the update of the 
correction of the non-linearity of detectors. This change had a noticeable impact on IASI spectral 
band 1 where the channels used to retrieve CO2 are located. Typically, it induced a 0.2 K bias in the 
measured brightness temperatures, which corresponds to a bias of about 5 ppm. To deal with this 
problem, a new set of radiative biases have been computed for IASI/Metop-B. The radiative bias 
corresponding to the August 2nd change has been computed by comparing the ‘calc-obs’ residuals 
computed over 1 month after and before the change. Atmospheric situations were taken from 
ECMWF analyses collocated in time and space with IASI/Metop-B. Depending on the date, a 
different set of radiative biases must now be considered before and after August 2nd for the 
processing of IASI/Metop-B. 
 
As of version 9.1, AMSU 8 channel is no longer used in the retrieval scheme and a full reprocessing 
of the Metop-B time series has been made and has been delivered as CRDP4.  
 

3.1.6.4 Case of Metop-A from September 30th 2019 
 
On September 30th 2019, the on-board processing of IASI/Metop-A changed, due to the update of 
the correction of the non-linearity of detectors. This change at instrument level had a noticeable 
impact on IASI spectral band 1 where the channels used to retrieve CO2 are located. Typically, it 
induced a 0.1 K bias in the measured brightness temperatures, which correspond to a bias of about 
2 ppm that is seen in the retrieval. This change has been fully characterized at Level 1 and 
implemented in the retrieval process. 
 

3.1.6.5 Case of Metop-A between September 15th and October 15th 2021 
 
As part of end-of-life scenarios for Metop-A that have been implemented by EUMETSAT and CNES, 
the IASI instrument has been turned to a ‘super-sampled mode’: as seen in Fig 4, all FOVs that 
usually cover a swath of 2 200 km (left) were now covering a swath of 220 km only (right), with a 
typical distance between two consecutive FOVs of less than 2km. The processing chains developed 
at LMD were able to cope with this situation and all retrievals have been performed smoothly. 
 
Figure 4: (Left) Nominal swath of IASI (here MT-CH4 on 24th Sept. 2020). (Right) Oversampling mode 
of IASI-A between Sept. 15th and Oct. 15th 2021 (here MT-CH4 on 24th Sept. 2022). 
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3.1.7 Vertical characterization of the retrieval 
 
As stated before, IASI channels located in the 7.7 µm and 15 µm bands are mostly sensitive to 
tropospheric variations of gases. The averaging kernels, which indicate which part of the 
atmosphere the retrievals are representative of, are determined through radiative transfer 
simulations. A uniform perturbation of CH4 or CO2 mixing ratio is applied sequentially to each of the 
40 pressure layers used in ARSA to characterize atmospheric profiles. IASI and AMSU brightness 
temperatures are then computed for each of the perturbed atmospheric profiles and used as inputs 
to the neural networks. The theoretical change Fi in ppbv/ppbv of the column mean apparent 
mixing ratio ( ) given a mixing ratio perturbation of  dqref at level i, is then given by 
 

 

                                    𝐹𝐹𝑖𝑖 = 𝑞𝑞��∆𝑞𝑞𝑖𝑖−𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟�−𝑞𝑞�(∆𝑞𝑞𝑖𝑖−0)
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟

           (2) 

 
The mean of the averaging kernel for CH4 computed over the ARSA dataset is plotted in Fig. 5. In the 
tropics, the height of the tropopause is approximately 17 km, whereas it is closer to 8km in the mid-
latitudes. The non-linear inference scheme gives access to a mid-to-upper tropospheric integrated 
content of CH4 covering: (i) the range 100-500 hPa (roughly 9-15 km), with the highest sensitivity 
around 230 hPa in the tropics; (ii) the range 250-700 hPa (roughly 6-12 km), with the highest 
sensitivity around 400 hPa in the mid-latitudes. 
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Figure 5: Vertical sensitivity of IASI CH4 retrievals (until V8.4) as a function of latitude. 
 

 
 
 
 
Since AMSU8 channel is no longer used in the retrieval process in version 9.1, the vertical 
sensitivities of CH4 retrievals slightly changed, as shown in Figure 6. Since the only AMSU channel (6) 
that is used is a tropospheric channel, the sensitivity is slightly increased in the troposphere 
compared to previous versions. 
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Figure 6: Averaged vertical sensitivity of IASI CH4 (in the mid-latitudes, top, and in the tropics, 
middle) and CO2 retrievals (bottom) before (blue) and after (green) version 9.1. 
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3.2 Algorithm for AIRS mid-tropospheric CO2 retrieval 
 

3.2.1 General description 
 
Mid-tropospheric columns of carbon dioxide (CO2) are retrieved from simultaneous observations of 
the AIRS and AMSU instruments flying together onboard the Aqua satellite using a first version of 
the non-linear inference scheme used for processing IASI and AMSU data as described in Section 
3.1. This inference scheme is based on Multi-Layer Perceptron artificial neural networks with 2 
hidden layers. AIRS hyperspectral observations in the thermal infrared at 15 and 4.3 µm, which are 
sensitive to both temperature and gas concentrations of CO2, are used in conjunction with 
microwave observations form the AMSU instruments, only sensitive to temperature, to decorrelate 
both signals.  
 
Only a subset of channels presenting the best properties with regards to the retrieval performances 
are used. The neural networks are trained on a learning dataset with couples of known inputs-
outputs (TIGR). As opposed to the processing of IASI and AMSU observations from the Metop series, 
no continuous evaluation of the neural networks performance throughout the training has been 
performed. The retrievals are performed during day and night-time (1:30 am/pm local time), both 
over land and over sea. The CO2 retrievals are limited to the tropical region (25N:25S). 
 
Through comparisons with regular aircraft (Machida et al., 2008) measurements, it has been shown 
that, once the radiometric characterization of the instruments is performed, AIRS and AMSU 
capture well the trend and interannual variation of CO2, until the loss of some of channels used in 
the retrieval process in July 2007. The retrieval of CO2 from AIRS has been stopped ever since. 
 

3.2.2 Forward model and spectroscopic database 
 
The radiative simulations in the thermal infrared performed in the retrieval process are based on 
fast and accurate line-by-line radiative transfer model 4A (Automatized Atmospheric Absorption 
Atlas) (Scott and Chédin, 1981). 4A is an advanced version of the nominal line-by-line STRANSAC 
model (Scott, 1974) and is basically a compressed look-up-table of optical depths calculated once 
and for all. It can be coupled to any spectroscopic databases and can simulate any instrumental 
configurations (ground, airborne, satellite). In addition to the simulation of atmospheric 
transmissions and radiance (or equivalently brightness temperature) spectra, 4A analytically 
computes Jacobians for all relevant atmospheric variables. Jacobians are defined as the partial 
derivative of the channel brightness temperature with respect to a layer physical variable such as a 
gas mixing ratio, a temperature or the emissivity. Since the beginning of 2001, an operational 
version denoted 4A/OP has been developed by Noveltis (https://4aop.noveltis.com/) in 
collaboration with CNES and LMD. 4A is the official code chosen by CNES for calibration/validation 
and preparation activities of several space missions, including IASI and IASI-NG. For generating AIRS 
CO2, the spectrometric parameters used as inputs to 4A, are taken form the GEISA-2008 database 
(Jacquinet-Husson et al., 2009). 
 

https://4aop.noveltis.com/
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3.2.3 Channel selection 
 
AIRS presents 2378 channels covering most of the infrared spectrum. Only a few hundred of them 
are sensitive to CO2. They are either located in band ν2 of CO2, around 15 µm (670 cm-1), or in band 
ν3, around 4.3 µm (2260 cm-1), and present various sensitivities to CO2 and other atmospheric or 
surface components. As opposed to IASI, the AIRS channels located in the 4.3 µm band are 
characterized by a radiometric noise of the same order as for the channels located at 15µm, which 
means that both CO2 absorption bands are used to perform the retrieval. As will be detailed in 
Section 3.2.7, the use of channels located at 4.3 µm yields a sensitivity to CO2 at lower altitudes 
than for IASI. The main interference, as far as CO2 is concerned, comes from H2O and ozone.  
 
A set of AIRS and AMSU channels presenting optimal characteristics to estimate CO2 has been 
selected in Crevoisier et al. (2003) prior to the launch of the Aqua satellite. Based on increasing 
experience with the instruments, the channel selection has been refined, based on three criteria: (1) 
their sensitivity to CO2; (2) their sensitivity to other atmospheric components, as well as to surface 
characteristics; and (3) to their sensitivity to variation of CO2 along the vertical. A set of 15 channels 
has been selected; 9 of them are located in the 15 µm band (channels 173, 175, 180, 185, 193, 213, 
218 and 250), the other being located in the 4.3 µm band. 
 
These channels are not sensitive to variations of CO2 in two parts of the atmosphere: the lower 
troposphere (roughly below 500 hPa) and the tropopause (Crevoisier et al., 2003). The Jacobians of 
the selected channels have very similar shapes and all peak around 200-300 hPa. Hence, AIRS only 
allows the retrieval of a mid-tropospheric column of carbon dioxide. It is equivalent to say that AIRS 
observations are characterized by only one degree of freedom on the vertical for CO2. 
 

3.2.4 Neural architecture 
 
The weakness of the signal induced on AIRS brightness temperature (BT) by CO2 variations, 
associated with the complexity (in particular its non-Gaussianity) of the relationship between the 
gas concentration and observed BT, makes it difficult to solve this inverse problem. To tackle this 
problem, use is made of a non-linear inference method, based on the Multilayer Perceptron (MLP) 
neural network (Rumelhart et al., 1986) with two hidden layers. Following the selection of AIRS and 
AMSU channels described previously, the chosen neural architectures are the following.  
 
The input layer is composed of:  

(i) 15 AIRS BT;  
(ii) 2 AMSU BT of channels 6 and 8 ;  
(iii) 15 differences between the 15 AIRS channels and AMSU 6 BT, to help constraining the 

convergence process.  
Altogether, there are 32 predictors. 
 
The output layer of the network is composed of:  

(i) the difference between the true value of CO2 concentration (associated with inputs) and 
the TIGR reference one (372 ppm);  
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(ii) 24 differences between the ‘‘true’’ AIRS BT (associated with the true CO2 concentration 
value) and the ‘‘reference’’ one (associated with the reference CO2 concentration value), 
once again to constrain the solution.  

Altogether, there are 16 predictands. The first and second hidden layers are made of 70 and 40 
neurons, respectively.  
 

3.2.5 Training of the networks 
 
The learning algorithm is the optimization technique that estimates the optimal network 
parameters by minimizing a positive-definite cost function which measures, for a set of 
representative situations for which inputs (here the brightness temperatures) and outputs (gas) are 
known (the learning set), the mismatch between the neural network outputs and the desired 
outputs. Here, the Error Back-Propagation algorithm (Rumelhart et al., 1986) is used to minimize 
the cost function. It is a gradient descent algorithm well adapted to the MLP hierarchical 
architecture because the computational cost is linearly related to the number of parameters. To 
avoid being trapped in local minima during the minimization of the cost function, stochastic 
steepest descent is used. The learning step is made sample by sample, chosen iteratively and 
stochastically in the learning data set. 
 
The training database from which the networks learn the relationship existing between inputs and 
outputs is based on the TIGR database. For all TIGR atmospheric situations, for all scan angles, and 
for the whole IASI channels used in the retrieval process, clear-sky brightness temperatures (BT), 
transmittances and Jacobians have been computed using the 4A/OP radiative transfer model with 
the spectroscopic database GEISA-2011 as input. The required AMSU BTs are computed using the 
STRANSAC microwave forward model. Network input BTs correspond to randomly drawn values of 
CO2 concentration among the values [362:4:382] ppm, centered on the TIGR reference value of 372 
ppm; they are computed using the stored CO2 Jacobians. It is worth noting that no prior information 
is thus given to the networks in terms of seasonality, trend, or geographical patterns of the gases. 
 
Neural networks are trained for each of the 10 first AMSU scan angles and for tropical situations, 
independently. Surface elevation is also taken into account. All together, for a given neural 
architecture, 80 networks are trained. For each network corresponding to one air-mass, one scan 
angle and one surface type, the learning steps are the following: 

1) One atmosphere is randomly chosen among the TIGR atmospheres of the considered air-
mass. 

2) A CO2 mixing ratio is drawn randomly among the values [362:4:382] ppm, centered on the 
reference CO2 mixing ratio of TIGR.  

3) A perturbation of the surface temperature is randomly chosen according to the normal 
distribution, with a null mean value and a standard deviation of 4 K. 

4) The input BTs at the drawn CO2 mixing ratio are computed using BTs and CO2 Jacobians from 
TIGR for the considered atmosphere. 

5) For AIRS channels, noise equivalent temperatures are computed at the BT according to Eq. 
1: 
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                                   𝑁𝑁𝑁𝑁Δ𝑇𝑇[𝑇𝑇𝐵𝐵(𝜈𝜈), 𝜈𝜈] = 𝑁𝑁𝑁𝑁Δ𝑇𝑇�𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 , 𝜈𝜈�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝜈𝜈�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑇𝑇𝐵𝐵(𝜈𝜈),𝜈𝜈)
                              (3) 

where NE∆T is the equivalent noise temperature taken at the brightness temperature TB, of 
the channel located at frequency ν, and B is the radiance. The reference noise corresponding 
to a reference temperature Tref of 280 K is taken from the in-flight noise measurement. To 
increase the signal to noise ratio, and speed the learning phase, these noises have been 
divided by 3. Since 9 IASI spots are localized within one AMSU spot, the average of IASI BT 
contained in a single AMSU field-of-view are therefore used as inputs to the networks. 

6) The quadratic sum of the instrument noise and the forward radiative transfer model noise, 
are computed and added to the BT.  

7) The inputs and outputs are normalized in order to homogenise the input values between 0 
and 1. 

8) The Error Back-Propagation algorithm (Rumelhart et al., 1986) is used to minimize the cost 
function. 

9) The parameters of the networks are updated. 
10) Come back to step 1, until the predefined number of iterations has been reached. 

 

3.2.6 Application to observations 
 
Once the learning phase is completed, observations of AIRS and AMSU can be used to infer mid-
tropospheric columns of CO2. The retrieval is performed at the AMSU resolution: when 9 AIRS FOVs 
included in 1 AMSU FOV are declared clear (meaning that no cloud nor aerosol has been detected), 
the BTs of the channels are averaged over the 9 AIRS FOVs and used together with AMSU BTs, to 
perform the retrieval. 
 
Since the networks are trained with simulated data, potential systematic radiative biases existing 
between simulations used in the learning phase and observations must be removed before using 
these BTs as inputs to the network corresponding to the situation according to the scan angle, 
surface elevation and air-mass type. These systematic radiative biases are computed with one of 
the first version of the calibration/validation chain that has been developed for many years at LMD. 
For each channel, the differences between simulations and collocated (in time and space) satellite 
observations were averaged over 5 years of operation. These differences are called ‘calc-obs’ 
residuals. The simulations were performed using the 4A/OP forward model and radiosonde 
measurements from the ECMWF database as inputs. One key element is that, during this 
computation, CO2 mixing ratio is kept at the reference value of the TIGR database (372 ppm) to 
avoid making the CO2 signal disappear in the BT used as input to the networks. Every month, about 
100 collocations were available, giving access to robust statistics. No scan-angle was applied to the 
biases, restricting the retrieval to the 10 smallest AMSU scan angle. 
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Figure 7: AIRS and IASI CO2 averaging kernel computed over the TIGR tropical atmospheric 
situations.  
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3.2.7 Vertical characterization of the retrieval 
 
As stated before, AIRS channels located in the 15 and 4.3 µm bands are mostly sensitive to 
tropospheric variations of gases. The averaging kernels, which indicate which part of the 
atmosphere the retrievals are representative of, are determined through radiative transfer 
simulations. A uniform perturbation of CO2 mixing ratio is applied sequentially to each of the 40 
pressure layers used in TIGR to characterize atmospheric profiles. AIRS and AMSU brightness 
temperatures are then computed for each of the perturbed atmospheric profiles and used as inputs 
to the neural networks. The theoretical change Fi in ppm/ppm of the column mean apparent mixing 
ratio ( ) given a mixing ratio perturbation of  dqref at level i, is then given (Crevoisier, 2004) by 
 

                                                     𝐹𝐹𝑖𝑖 = 𝑞𝑞��∆𝑞𝑞𝑖𝑖−𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟�−𝑞𝑞�(∆𝑞𝑞𝑖𝑖−0)
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟

                               (4) 

 
The mean of the averaging kernel for CO2 computed over the TIGR dataset is plotted in Fig. 7. The 
non-linear inference scheme gives access to a mid-to-upper tropospheric integrated content of CO2 
covering the range 100-600 hPa (roughly 5-15 km), with the highest sensitivity around 250 hPa in 
the tropics. The sensitivity to lower atmospheric layers for AIRS than for IASI comes from the use of 
AIRS channels located at 4.3. µm, which are sensitive to higher pressure than channels located at 15 
µm, the only ones used for IASI. 
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4. Output data 
 
Four Level 2 products derived from combined IASI/AMSU spectral data are delivered by CNRS-LMD:  

• CO2_IASA_NLIS: CO2 from IASI/Metop-A. 
• CH4_IASA_NLIS: CH4 from IASI/Metop-A.  
• CO2_IASB_NLIS: CO2 from IASI/Metop-B. 
• CH4_IASB_NLIS: CH4 from IASI/Metop-B.  

These products are mid-tropospheric columns retrieved by the CNRS-LMD non-linear inference 
scheme (NLIS) algorithm, which is discussed in Section 3.  
 
Another product (a brokered product from ESA’s GHG-CCI project) is mid-tropospheric CO2 from 
AIRS and the corresponding algorithm is also described in this document. 
 
The retrieval outputs are provided as daily netCDF files. Additional information, such as quality 
flags, averaging kernels, and geolocation information are also recorded in these files. 
 
Note that the format of the main output data, which are the Level 2 data products, is described in 
the separate Product User Guide and Specification (PUGS) document.  
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