

ECMWF COPERNICUS REPORT

Copernicus Climate Change Service

Product User Guide and Specification (PUGS) – Main document for Greenhouse Gas (GHG: CO₂ & CH₄) data set CDR7 (01.2003-12.2022)

C3S2_312a_Lot2_DLR – Atmosphere

Issued by: Michael Buchwitz, University of Bremen, Institute of Environmental Physics (IUP) Date: 17/01/2024 Ref: C3S2_312a_Lot2_D-WP2_PUGS-GHG_MAIN_v7.3 Official reference number service contract: 2021/C3S2_312a_Lot2_DLR/SC1

PROGRAMME OF THE EUROPEAN UNION

This document has been produced in the context of the Copernicus Climate Change Service (C3S).

The activities leading to these results have been contracted by the European Centre for Medium-Range Weather Forecasts, operator of C3S on behalf on the European Union (Contribution Agreement signed on 22/07/2021). All information in this document is provided "as is" and no guarantee of warranty is given that the information is fit for any particular purpose.

The users thereof use the information at their sole risk and liability. For the avoidance of all doubt, the European Commission and the European Centre for Medium-Range Weather Forecasts have no liability in respect of this document, which is merely representing the author's view.

Contributors

INSTITUTE OF ENVIRONMENTAL PHYSICS (IUP), UNIVERSITY OF BREMEN, BREMEN, GERMANY (IUP) M. Buchwitz M. Reuter O. Schneising-Weigel A. Di Noia H. Boesch SRON NETHERLANDS INSTITUTE FOR SPACE RESEARCH,

SRON NETHERLANDS INSTITUTE FOR SPACE RESEARCH, LEIDEN, THE NETHERLANDS (SRON) A. Barr T. Borsdorff O. P. Hasekamp

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), LABORATOIRE DE METEOROLOGIE DYNAMIQUE (LMD), PALAISEAU, FRANCE (LMD/CNRS)

C. Crevoisier N. Meilhac

History of modifications

Version	Date	Description of modification	Chapters / Sections
1.3	20-October-2017	New document for data set CDR1 (temporal coverage: 2003-2016)	All
2.0	16-October-2018	Update for data set CDR2 (temporal coverage: 2003-2017)	All
3.0	12-August-2019	Update for data set CDR3 (temporal coverage: 2003-2018)	All
4.0	17-September-2020	Update for data set CDR4 (temporal coverage: 2003-mid2019)	All
5.0	18-February-2021	Update for data set CDR5 (temporal coverage: 2003-mid2020)	All
6.0	04-August-2022	Update for data set CDR6 (temporal coverage: 2003-2021)	All
6.1	06-December-2022	Update after review (use of new template, several improvements at various places)	All
6.2	14-February-2023	Update after 2 nd review with several improvements at various places.	All
6.3	18-April-2023	Update after 3rd review with several improvements at various places.	All
7.0	24-August-2023	Update for data set CDR7 (temporal coverage: 2003-2022)	All
7.2	13-November-2023	Improvements after review	All
7.3	17-January-2024	Improvements after review	Typos caption tables 1 and 2; Improved text Sect. 4.2 incl. Tab. 14

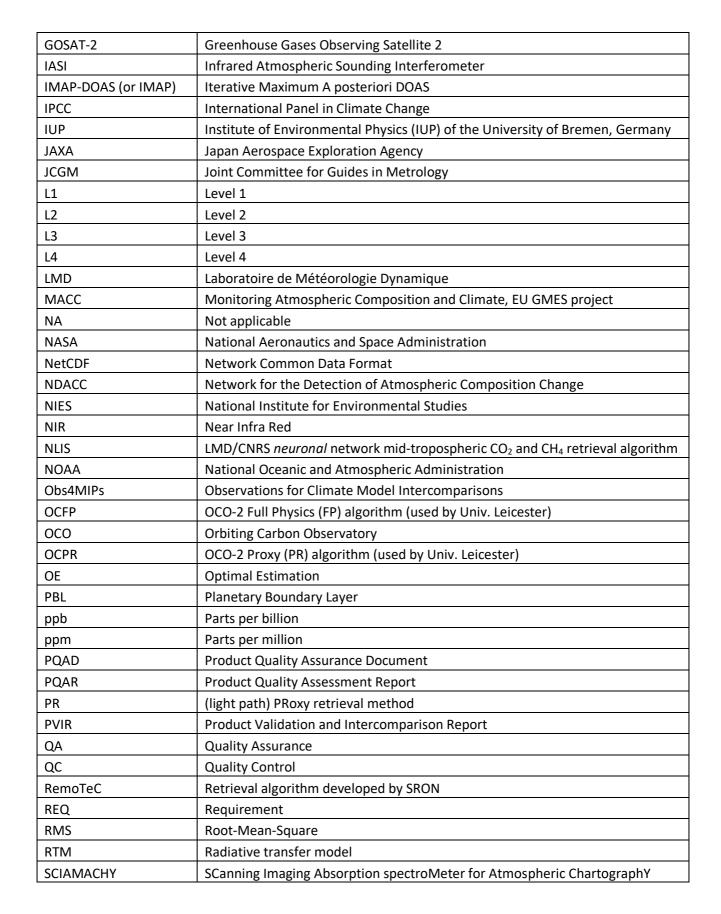
List of datasets covered by this document

Deliverable ID	Product title (*)	Product type (CDR, ICDR)	Version number	Delivery date
WP2-FDDP-GHG-v2	CO2_GOS_OCFP (ANNEX A)	CDR 7	7.3	31-Aug-2023
WP2-FDDP-GHG-v2	CH4_GOS_OCFP (ANNEX A)	CDR 7	7.3	31-Aug-2023
WP2-FDDP-GHG-v2	CH4_GOS_OCPR (ANNEX A)	CDR 7	9.0	31-Aug-2023
WP2-FDDP-GHG-v2	CO2_GO2_SRFP (ANNEX B)	CDR 7	2.0.0	31-Aug-2023
WP2-FDDP-GHG-v2	CH4_GO2_SRFP (ANNEX B)	CDR 7	2.0.0	31-Aug-2023
WP2-FDDP-GHG-v2	CH4_GO2_SRPR (ANNEX C)	CDR 7	2.0.1	31-Aug-2023
WP2-FDDP-GHG-v2	XCO2_EMMA, XCH4_EMMA, XCO2_OBS4MIPS, XCH4_OBS4MIPS (ANNEX D)	CDR 7	4.5	31-Aug-2023
WP2-FDDP-GHG-v2	(ANNEX E) (#): CO2_IASA_NLIS, CH4_IASA_NLIS, CO2_IASB_NLIS, CH4_IASB_NLIS, CO2_IASC_NLIS, CH4_IASC_NLIS	CDR 7	10.1 10.2 10.1 10.2 10.1 10.2	31-Aug-2023

(*) In brackets: see listed ANNEXes to this MAIN document for details on listed product(s).
(#) ANNEX E also includes some information on product CO2_AIRS_NLIS (v3.0) but that product has been generated in a pre-cursor project and no assessments have been carried out in this project. Therefore, this product is not listed here.

Related documents

Reference ID	Document
D1	GCOS-154: Global Climate Observing System (GCOS), SYSTEMATIC OBSERVATION REQUIREMENTS FOR SATELLITE-BASED PRODUCTS FOR CLIMATE, Supplemental details to the satellite-based component of the "Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 update)", Prepared by World Meteorological Organization (WMO), Intergovernmental Oceanographic Commission, United Nations Environment Programme (UNEP), International Council for Science, Doc.: GCOS 154, 2011.
	Link: https://library.wmo.int/doc num.php?explnum id=3710
D2	GCOS-195: Status of the Global Observing System for Climate, GCOS-195, 2015.
DZ	Link: https://library.wmo.int/doc_num.php?explnum_id=7213
D3	GCOS-200: The Global Observing System for Climate: Implementation Needs, GCOS 2016 Implementation Plan, World Meteorological Organization (WMO), GCOS-200 (GOOS-214), pp. 325, 2016.
	Link: https://unfccc.int/sites/default/files/gcos ip 10oct2016.pdf
D4	ESA-CCI-GHG-URDv3.0: Chevallier, F., et al., User Requirements Document (URD), ESA Climate Change Initiative (CCI) GHG-CCI project, Version 3.0, 17 Feb 2020, pp. 42, 2020.
	Link: <u>https://www.iup.uni-bremen.de/carbon_ghg/docs/GHG-</u> CCIplus/URD/URDv3.0_GHG-CCIp_Final.pdf
D5	CMUG-RBD, 2012: Climate Modelling User Group Requirements Baseline Document, Deliverable 1.2, Number D1.2, ESA Climate Change Initiative (CCI), Version 1.6, 17 Dec 2012, 2012.
	Link: https://climate.esa.int/media/documents/CMUG_D1.2_URD_v2.0.pdf
	GCOS-245: The 2022 GCOS ECVs Requirements, WMO, pp. 244, 2022.
D6	Link: <u>https://library.wmo.int/doc_num.php?explnum_id=11318</u>
D7	TRD GAD GHG, 2021: Buchwitz, M., Reuter, M., Schneising-Weigel, O., Aben, I., Wu, L., Hasekamp, O. P., Boesch, H., Di Noia, A., Crevoisier, C., Armante, R.: Target Requirement and Gap Analysis Document, Copernicus Climate Change Service (C3S) project on satellite-derived Essential Climate Variable (ECV) Greenhouse Gases (CO ₂ and CH ₄) data products, Version 3.1, 19-February-2021, pp. 81, 2021. Latest version:
	http://wdc.dlr.de/C3S_312b_Lot2/Documentation/GHG/C3S2_312a_Lot2_TRD- GAD_GHG_latest.pdf



D8	ATBD GHG, 2023: Buchwitz, M., Barr, A., Boesch, H., Borsdorff, T., Crevoisier, C., Di Noia, A., Hasekamp, O. P., Landgraf, J., Meilhac, N., Parker, R., Reuter, M., Schneising-Weigel, O.: Algorithm Theoretical Basis Document (ATBD) – Main document for Greenhouse Gas (GHG: CO ₂ & CH ₄) data set CDR7 (01.2003-12.2022), C3S project C3S2_312a_Lot2_DLR, 2023.
D9	PQAR GHG, 2023: Buchwitz, M., Barr, A., Boesch, H., Borsdorff, T., Crevoisier, C., Di Noia, A., Hasekamp, O. P., Landgraf, J., Meilhac, N., Parker, R., Reuter, M., Schneising-Weigel, O.: Product Quality Assessment Report (PQAR) – Main document for Greenhouse Gas (GHG: CO ₂ & CH ₄) data set CDR7 (01.2003-12.2022), C3S project C3S2_312a_Lot2_DLR, 2023.

Acronyms

Acronym	Definition		
AIRS	Atmospheric Infrared Sounder		
AMSU	Advanced Microwave Sounding Unit		
ATBD	Algorithm Theoretical Basis Document		
BESD	Bremen optimal EStimation DOAS		
CAR	Climate Assessment Report		
C3S	Copernicus Climate Change Service		
CCDAS	Carbon Cycle Data Assimilation System		
CCI	Climate Change Initiative		
CDR	Climate Data Record		
CDS	(Copernicus) Climate Data Store		
CMUG	Climate Modelling User Group (of ESA's CCI)		
CRG	Climate Research Group		
D/B	Data base		
DOAS	Differential Optical Absorption Spectroscopy		
EC	European Commission		
ECMWF	European Centre for Medium Range Weather Forecasting		
ECV	Essential Climate Variable		
EMMA	Ensemble Median Algorithm		
ENVISAT	Environmental Satellite (of ESA)		
EO	Earth Observation		
ESA	European Space Agency		
EU	European Union		
EUMETSAT	European Organisation for the Exploitation of Meteorological Satellites		
FCDR	Fundamental Climate Data Record		
FoM	Figure of Merit		
FP	Full Physics retrieval method		
FTIR	Fourier Transform InfraRed		
FTS	Fourier Transform Spectrometer		
GCOS	Global Climate Observing System		
GEO	Group on Earth Observation		
GEOSS	Global Earth Observation System of Systems		
GHG	GreenHouse Gas		
GOS	GOSAT		
G02	GOSAT-2		
GOME	Global Ozone Monitoring Experiment		
GMES	Global Monitoring for Environment and Security		
GOSAT	Greenhouse Gases Observing Satellite		

SCIATRAN	SCIAMACHY radiative transfer model	
SRON	SRON Netherlands Institute for Space Research	
SRFP	SRON's Full Physics (FP) algorithm (also referred to a RemoTeC FP)	
SRPR	SRON's Proxy (PR) algorithm (also referred to a RemoTeC PR)	
SWIR	Short Wava Infra Red	
TANSO	Thermal And Near infrared Sensor for carbon Observation	
TANSO-FTS	Fourier Transform Spectrometer on GOSAT	
TANSO-FTS-2	Fourier Transform Spectrometer on GOSAT-2	
ТВС	To be confirmed	
TBD	To be defined / to be determined	
TCCON	Total Carbon Column Observing Network	
TIR	Thermal Infra Red	
TR	Target Requirements	
TRD	Target Requirements Document	
WFM-DOAS (or WFMD)	Weighting Function Modified DOAS	
UoL	University of Leicester, United Kingdom	
URD	User Requirements Document	
WMO	World Meteorological Organization	
Y2Y	Year-to-year (bias variability)	

General definitions

Essential climate variable (ECV)

An ECV is a physical, chemical, or biological variable or a group of linked variables that critically contributes to the characterization of Earth's climate.

Climate data record (CDR)

The US National Research Council (NRC) defines a CDR as a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change.

Fundamental climate data record (FCDR)

A fundamental climate data record (FCDR) is a CDR of calibrated and quality-controlled data designed to allow the generation of homogeneous products that are accurate and stable enough for climate monitoring.

Thematic climate data record (TCDR)

A thematic climate data record (TCDR) is a long time series of an essential climate variable (ECV).

Intermediate climate data record (ICDR)

An intermediate climate data record (ICDR) is a TCDR which undergoes regular and consistent updates, for example because it is being generated by a satellite sensor in operation.

Satellite data processing levels

The NASA Earth Observing System (EOS) distinguishes six processing levels of satellite data, ranging from Level 0 (L0) to Level 4 (L4) as follows.

- L0 Unprocessed instrument data
- L1A Unprocessed instrument data alongside ancillary information
- L1B Data processed to sensor units (geo-located calibrated spectral radiance and solar irradiance)
- L2 Derived geophysical variables (e.g., XCO₂) over one orbit
- L3 Geophysical variables averaged in time and mapped on a global longitude/latitude horizontal grid
- L4 Model output derived by assimilation of observations, or variables derived from multiple measurements (or both)

Table of Contents

History of modifications	4
List of datasets covered by this document	5
Related documents	6
Acronyms	8
General definitions	11
Scope of document	14
Executive summary	17
1. Overview of data products	19
1.1 Column-average mixing ratios of CO ₂ and CH ₄ (XCO ₂ and XCH ₄)	21
1.1.1 Overview	21
1.1.2 XCO ₂	21
1.1.3 XCH ₄	22
1.1.4 List of XCO ₂ and XCH ₄ data products	24
1.2 Mid-tropospheric mixing ratios of CO ₂ and CH ₄	34
1.2.1 Overview	34
1.2.2 CO ₂	34
1.2.3 CH ₄ 1.2.4 List of mid-tropospheric CO ₂ and CH ₄ data products	40 46
2. Level 2 XCO_2 and XCH_4 data products	47
2.1 Product description	47
2.1.1 Common parameters	48
2.1.2 How to use the averaging kernels (AK)?	53
2.2 Target requirements	63
2.2.1 Overview	63
2.2.2 Required versus achieved performance of the Level 2 XCO_2 and XCH_4 products	64
2.3 Data usage information	71
3. Level 3 XCO ₂ and XCH ₄ data products	73
3.1 Product description	73
3.1.1 Obs4MIPS XCO ₂ product format	76
3.1.2 Obs4MIPS XCH ₄ product format	78
3.2 Target requirements	80

3.3 Data usage information	83
4. Level 2 mid-tropospheric CO ₂ and CH ₄ data products	84
4.1 Product description4.2 Target requirements4.3 Data usage information	84 85 87
5. Data access information	88
6. Acknowledgement	89
7. List of ANNEXes	90
 7.1 ANNEX A: PUGS for products CO2_GOS_OCFP, CH4_GOS_OCFP and CH4_OCPR 7.2 ANNEX B: PUGS for products CO2_GO2_SRFP and CH4_GO2_SRFP 7.3 ANNEX C: PUGS for product CH4_GO2_SRPR 7.4 ANNEX D: PUGS for XCO2_EMMA, XCH4_EMMA, XCO2_OBS4MPIS, XCH4_OBS4MII 7.5 ANNEX E: PUGS for IASI CO2 and CH4 and AIRS CO2 mid-tropospheric products 	90 90 90 PS 90 90
References	91

Scope of document

This document is the Product User Guide and Specification (PUGS) for the Copernicus Climate Change Service (C3S, <u>https://climate.copernicus.eu/</u>) component as covered by the greenhouse gas (GHG) activities of project C3S2_312a_Lot2 led by DLR, Germany (a follow-on activity of project C3S_312b_Lot2 led by DLR and project C3S_312a_Lot6 led by University of Bremen, Germany), in the following referred to as C3S/GHG project.

Within this project, satellite-derived atmospheric carbon dioxide (CO₂) and methane (CH₄) Essential Climate Variable (ECV) data products have been generated and delivered to ECMWF for inclusion into the Copernicus Climate Data Store (CDS), from where users can access these data products and the corresponding documentation.

These satellite-derived data products are (see also Reuter et al., 2020):

- Column-averaged dry-air mixing ratios (mole fractions) of CO₂ and CH₄, denoted XCO₂ (in parts per million, ppm) and XCH₄ (in parts per billion, ppb), respectively.
- Mid-tropospheric mixing ratios of CO₂ (in ppm) and CH₄ (in ppb).

An overview of the products is given in Table 1 for the CO₂ products and in Table 2 for the CH₄ products.

For an overview of the merged Level 2 data products XCO2_EMMA and XCH4_EMMA and of the merged Level 3 data products XCO2_OBS4MIPS and XCH4_OBS4MIPS see also Reuter et al., 2020.

Requirements on data quality are formulated in the corresponding Target Requirement Document (TRD) (Reference ID *D7*). They are based on requirements as formulated in documents *D1*, *D2*, *D3*, *D4* and *D5*.

The main purpose of this document is to describe the satellite-derived CO_2 and CH_4 greenhouse gas (GHG) ECV data products for users of these data products.

Note that this document does not contain a description of the retrieval algorithms which have been used to generate these products. These algorithms are described in a separate document (Reference ID *D8*): Algorithm Theoretical Basis Document (ATBD).

Note also that this document does not contain detailed validation results. Detailed data quality and validation results are reported in a separate document (Reference ID *D9*): Product Quality Assessment Report (PQAR).

Table 1: Overview CO₂ products. "CDR#" indicates the Climate Data Record (CDR) Number. Level 2 (L2) products contains information for each individual satellite footprint (ground pixel) whereas Level 3 (L3) products are gridded /averaged spatially and temporally.

Product ID (Level)	Version	CDR#	Temporal coverage	Comments
CO2_GOS_OCFP (L2)	7.3	7	04.2009 – 12.2022	XCO ₂ from GOSAT as retrieved with the OCFP algorithm (previously Univ. of Leicester, now Univ. of Bremen).
CO2_GO2_SRFP (L2)	2.0.0	7	02.2019 – 12.2022	XCO₂ from GOSAT-2 as retrieved with SRON's SRFP (RemoTeC) algorithm.
XCO2_EMMA (L2)	4.5	7	01.2003 - 12.2022	Merged L2 XCO ₂ product using Univ. Bremen's EMMA algorithm.
XCO2_OBS4MIPS (L3)	4.5	7	01.2003 – 12.2022	Merged L3 XCO ₂ product in OBS4MIPS format.
CO2_IASA_NLIS (L2)	10.1	7	07.2007 – 10.2021	Mid-tropospheric CO ₂ mixing ratios as retrieved from IASI/Metop-A using LMD's NLIS algorithm.
CO2_IASB_NLIS (L2)	10.1	7	02.2013 – 12.2022	Mid-tropospheric CO ₂ mixing ratios as retrieved from IASI/Metop-B using LMD's NLIS algorithm.
CO2_IASC_NLIS (L2)	10.1	7	05.2019 – 12.2022	Mid-tropospheric CO ₂ mixing ratios as retrieved from IASI/Metop-C using LMD's NLIS algorithm.

Table 2: Overview CH₄ products. "CDR#" indicates the Climate Data Record (CDR) Number. Level 2 (L2) products contains information for each individual satellite footprint (ground pixel) whereas Level 3 (L3) products are gridded /averaged spatially and temporally.

Product ID (Level)	Version	CDR#	Temporal coverage	Comments
CH4_GOS_OCFP (L2)	7.3	7	04.2009 - 12.2021	XCH₄ from GOSAT as retrieved with the OCFP algorithm (previously Univ. of Leicester, now Univ. of Bremen).
CH4_GOS_OCPR (L2)	9.0	7	04.2009 – 12.2021	XCH₄ from GOSAT as retrieved with the OCPR algorithm (previously Univ. of Leicester, now Univ. of Bremen).
CH4_GO2_SRFP (L2)	2.0.0	7	02.2019 – 12.2021	XCH₄ from GOSAT-2 as retrieved with SRON's SRFP (RemoTeC) algorithm.
CH4_GO2_SRPR (L2)	2.0.1	7	02.2019 – 12.2021	XCH₄ from GOSAT-2 as retrieved with SRON's SRPR (RemoTeC) algorithm.
XCH4_EMMA (L2)	4.5	7	01.2003 – 12.2021	Merged L2 XCH₄ product using Univ. Bremen's EMMA algorithm.
XCH4_OBS4MIPS (L3)	4.5	7	01.2003 – 12.2021	Merged L3 XCH₄ product in OBS4MIPS format.
CH4_IASA_NLIS (L2)	10.2	7	07.2007 – 10.2021	Mid-tropospheric CH₄ mixing ratios as retrieved from IASI/Metop-A using LMD's NLIS algorithm.
CH4_IASB_NLIS (L2)	10.2	7	02.2013 – 12.2022	Mid-tropospheric CH ₄ mixing ratios as retrieved from IASI/Metop-B using LMD's NLIS algorithm.
CH4_IASC_NLIS (L2)	10.2	7	05.2019 – 12.2022	Mid-tropospheric CH ₄ mixing ratios as retrieved from IASI/Metop-C using LMD's NLIS algorithm.

Executive summary

CO₂ and CH₄ are important climate-relevant atmospheric gases, so-called greenhouse gases (GHG). Because of their important role for climate, they are classified as Essential Climate Variables (ECVs). The ECV GHG as formulated by GCOS (Global Climate Observing System) is defined as: "Retrievals of greenhouse gases, such as CO₂ and CH₄, of sufficient quality to estimate regional sources and sinks" (*GCOS-154*). This definition contains already the main application of these atmospheric data products, namely to use them (in combination with appropriate modelling) to obtain (improved) information on their (primarily surface) sources and sinks.

CO₂ and CH₄, have relatively long atmospheric lifetimes. Because of this, and associated human emissions, the atmospheric concentrations of these gases can be relatively high compared to some other atmospheric trace gases. Moderate to strong (surface) source or sink typically may only result in relatively small local or regional change (enhancement or depletion relative to the surrounding region) in their vertical columns or their mid-tropospheric concentration. Given the small magnitude of these perturbations, it is important to give appropriate consideration to random and systematic errors.

To obtain source/sink information from the atmospheric observations it is therefore required to consider atmospheric transport (and associated atmospheric chemistry) as well as the exact time and location of observations.

Therefore, the most relevant data products are Level 2 (L2) products, which contain detailed information (time, location, etc.) for each individual satellite ground pixel. The requirements as formulated in the Target Requirement Document (*D7*) are, therefore, mostly L2 requirements. However, for XCO₂ and XCH₄ also (gridded) Level 3 (L3) products have been generated (in OBS4MIPS format).

In this document the satellite-derived atmospheric carbon dioxide (CO₂) and methane (CH₄) Climate Data Record (CDR) data products are described as generated via the C3S2_312a_Lot2 project of the Copernicus Climate Change Service (C3S, <u>https://climate.copernicus.eu/</u>).

These satellite-derived greenhouse gas (GHG) data products are:

- Column-averaged dry-air mixing ratios (mole fractions) of CO₂ and CH₄, denoted XCO₂ (in parts per million, ppm) and XCH₄ (in parts per billion, ppb), respectively.
- Mid-tropospheric mixing ratios of CO₂ (in ppm) and CH₄ (in ppb).

The C3S GHG data products are generated from the satellite instruments SCIAMACHY/ENVISAT, TANSO-FTS/GOSAT, TANSO-FTS-2/GOSAT-2 (XCO₂ and XCH₄ products) and AIRS and IASI (midtropospheric products). Products from SCIAMACHY and AIRS have been generated in pre-cursor projects and no updates are generated within this project; the corresponding GHG products are available via the Copernicus Climate Data Store (CDS, <u>https://cds.climate.copernicus.eu/</u>). However, SCIAMACHY products are used as input for the generation of the four merged products, which are based on combining individual sensor products. These products are: XCO2_EMMA, XCO2_OBS4MIPS, XCH4_EMMA, and XCH4_OBS4MIPS. For the products XCO2_EMMA and XCO2_OBS4MIPS also Level 2 products from NASA's OCO-2 mission have been used as input products (see also Reuter et al., 2020). All data products are available as Level 2 (individual ground pixels) products in NetCDF format (NetCDF-4 classic format in-line with Climate and Forecasting (CF) convention 3).

The XCO₂ and XCH₄ Level 2 products are available for individual sensors (GOSAT and GOSAT-2) but also as merged multi-sensor Level 2 (so called EMMA) products (including products from SCIAMACHY/ENVISAT as generated in pre-cursor projects). In addition, also merged Level 3 (i.e., gridded) products in OBS4MIPS format are available for XCO₂ and XCH₄.

This C3S project is essentially the operational continuation of the research and development (R&D) pre-cursor project GHG-CCI of ESA's Climate Change Initiative (CCI).

The first C3S GHG data set - Climate Data Record 1 (CDR1) - covered the period 2003-2016 and had been delivered to ECMWF in 2017. The second data set - Climate Data Record 2 (CDR2) - covered the period 2003-2017 and has been made available for the C3S CDS in 2018. This document is an update of document PUGS for the latest CDR data set CDR7 covering the period 2002-2022.

This document is the MAIN PUGS document. It provides an overview of the products by describing the data format and content which is relevant for all users. However, each product may also contain additional – typically algorithm specific – information, which may be useful for certain applications. Details on each product are provided in separate ANNEXes:

- **ANNEX A:** PUGS for products CO2_GOS_OCFP, CH4_GOS_OCFP, CH4_OCPR (University of Bremens's GOSAT products; previously University of Leicester)
- ANNEX B: PUGS for products CO2_GO2_SRFP, CH4_GO2_SRFP (SRON's "full physics" GOSAT-2 products)
- **ANNEX C:** PUGS for product CH4_GO2_SRPR (SRON's "proxy" GOSAT-2 XCH₄ product)
- **ANNEX D:** PUGS for products XCO2_EMMA, XCH4_EMMA, XCO2_OBS4MIPS, XCH4_OBS4MIPS (University of Bremen's merged Level 2 and Level 3 products)
- **ANNEX E:** PUGS for IASI CO₂ and CH₄ products (LMD/CNRS's IASI products)

1. Overview of data products

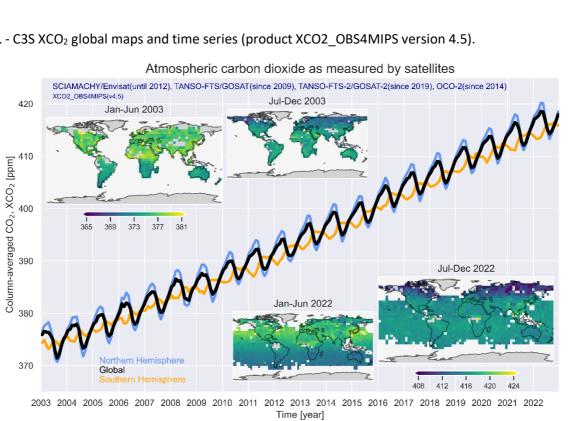
In this section an overview of the data products - specified in terms of variable, its property, processing level(s) and instrument(s) - is given.

The data products are (see also Buchwitz et al., 2013b, 2016, 2017; Reuter et al., 2020):

- Column-averaged dry-air mixing ratios (mole fractions) of CO₂ and CH₄, denoted XCO₂ (in parts per million, ppm, see Figure 1) and XCH₄ (in parts per billion, ppb, see Figure 2).
- Mid-tropospheric mixing ratios of CO₂ and CH₄.

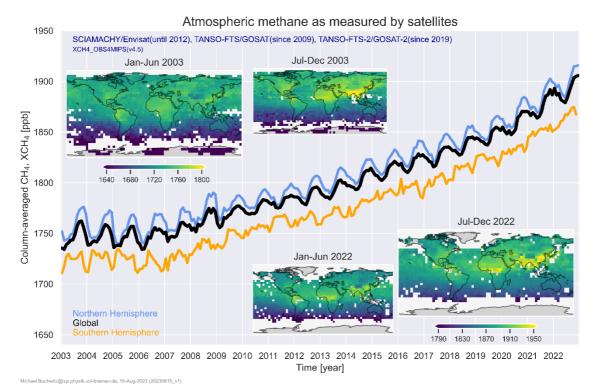
Carbon dioxide and methane are important atmospheric greenhouse gases (e.g., IPCC 2013) but despite their importance our knowledge on their various and variable natural and anthropogenic sources and sinks has significant gaps (e.g., IPCC 2013; Ciais et al., 2014; 2015; Kirschke et al., 2013; Nisbet et al., 2014, and references given therein). A purpose of the satellite data products described in this document is to contribute to enhancing our knowledge on the CO₂ and CH₄ sources and sinks (via appropriate (inverse) modelling).

Carbon dioxide and methane are so-called Essential Climate Variables (ECVs) and the need to monitor them has been clearly identified including the definition of key requirements (e.g., GCOS-154, GCOS-200). In recent years several satellite-derived ECV data products, including CO₂ and CH₄ (e.g., Buchwitz et al., 2013a, 2016, 2017), have been generated in particular in the framework of the Climate Change Initiative (CCI) of ESA (e.g., Hollmann et al., 2013).


Previous versions of these satellite-derived CO_2 and CH_4 data products have been used for several (primarily scientific) applications, e.g.,

- to improve our knowledge on the various natural and anthropogenic (surface) sources and sinks of these important greenhouse gases (GHG) (see, e.g., Alexe et al., 2015; Bergamaschi et al., 2015; Chevallier et al., 2014, 2016a, 2016b; Cressot et al, 2014; Detmers et al., 2015; Guerlet et al., 2013; Houweling et al., 2015; McNorton et al., 2016; Pandey et al., 2016; Reuter et al., 2014b, 2017; Schneising et al., 2014b; Turner et al., 2015, 2016, and references given therein)
- to monitor the global distribution of CO₂ and CH₄ (e.g., Buchwitz et al., 2007, 2016b; Schneising et al., 2011; Frankenberg et al., 2011; Massart et al., 2016)
- to improve our knowledge on emission ratios, e.g., for biomass burning (e.g., Ross et al., 2013; Parker et al., 2016)
- for comparisons with (chemistry) climate models (e.g., Shindell et al., 2013; Hayman et al., 2014; Lauer et al., 2017; Gier et al., 2020) and other models (e.g., Schneising et al., 2014a; Parker et al., 2016)

In the following sub-sections, an overview of the satellite-derived CO_2 and CH_4 data products is given.


el.Buchwitz@iup.physik.uni-br

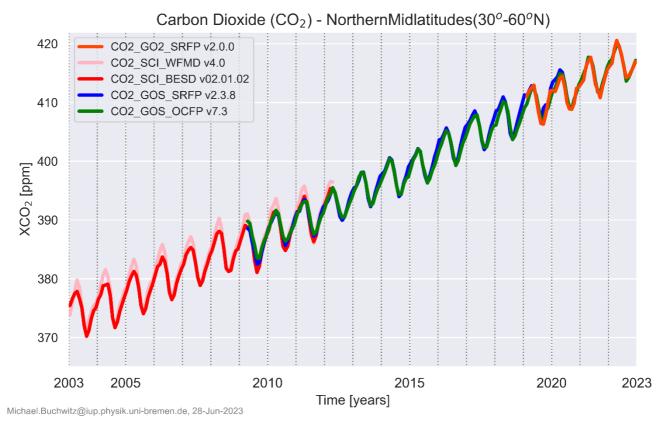
n.de, 15-Aug-2023 (20230815_v1)

Figure 1 - C3S XCO₂ global maps and time series (product XCO2_OBS4MIPS version 4.5).

1.1 Column-average mixing ratios of CO₂ and CH₄ (XCO₂ and XCH₄)

1.1.1 Overview

Satellite radiance observations in the Near Infrared / Short Wave Infrared (NIR/SWIR) spectral region in nadir (down looking) observation viewing mode are sensitive to atmospheric CO₂ and CH₄ concentration changes with good sensitivity down to the Earth's surface (because solar radiation reflected at the Earth's surface is observed). These measurements permit to retrieve "total column information" but do not permit to retrieve (detailed) information on the vertical profiles of CO₂ and CH₄. The CO₂ and CH₄ products derived from these satellites are column-averaged dry-air mixing ratios (more precisely: mole fractions) of CO₂ and CH₄ denoted XCO₂ (e.g., in ppm) and XCH₄ (e.g., in ppb).

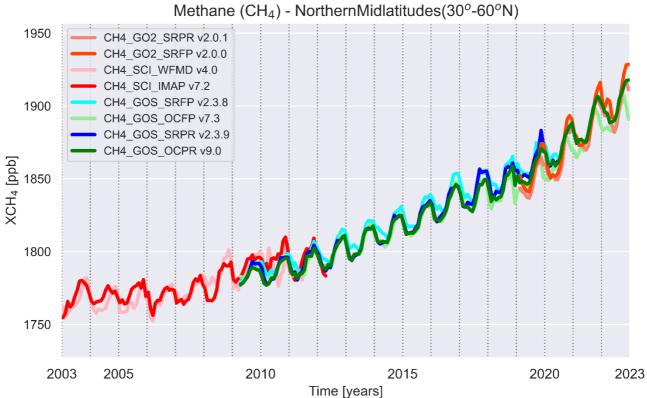

$1.1.2 \ XCO_2$

XCO₂ is the column-averaged dry-air mixing ratio (mole fraction) of atmospheric CO₂. A XCO₂ value of, for example, 400 ppm at a given location means that 400 CO₂ molecules are present in the atmosphere above that location per one million air molecules excluding water molecules.

XCO₂ can be retrieved from instruments such as SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT using Optimal Estimation (Rodgers, 2000) or DOAS (Buchwitz et al., 2000) retrieval algorithms as shown in various publications (e.g., Buchwitz et al., 2005; Butz et al., 2011; Cogan et al., 2011; Noël et al., 2021, 2022; Reuter et al., 2011; 2013; Schneising et al., 2011; Yoshida et al., 2013). These products have been validated using Total Carbon Column Observing Network (TCCON) (Wunch et al., 2010, 2011, 2015) XCO₂ ground based observations (e.g., Dils et al., 2014). In this document, the latest versions of these data products are described.

Figure 3 shows time series of satellite-derived XCO_2 . As can be seen, XCO_2 is increasing by about 2-3 ppm/year - primarily due to burning of fossil fuels - and shows a pronounced seasonal cycle, primarily due to uptake and release of CO_2 by the terrestrial biosphere.

Figure 3 – Satellite-derived northern mid-latitudes XCO₂ time series. Shown are four time series, each corresponding to one of the four individual satellite sensor Level 2 XCO₂ products, which are described in this document.


1.1.3 XCH₄

XCH₄ is the column-averaged dry-air mixing ratio (mole fraction) of atmospheric CH₄. A XCH₄ value of, for example, 1800 ppb at a given location means that 1800 CH₄ molecules are present in the atmosphere above that location per one billion air molecules excluding water molecules.

XCH₄ can be retrieved from instruments such as SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT using Optimal Estimation (Rodgers, 2000) or DOAS (Buchwitz et al., 2000) retrieval algorithms as shown in various publications (e.g., Buchwitz et al., 2005; Butz et al., 2011; Frankenberg et al., 2011; Schneising et al., 2011; Noël et al., 2022; Parker et al., 2011; Scheper et al., 2012; Yoshida et al., 2013). These products have been validated using Total Carbon Column Observing Network (TCCON) (Wunch et al., 2010, 2011, 2015) XCH₄ ground based observations (e.g., Dils et al., 2014). In this document, the latest versions of these data products are described.

As an example, Figure 4 shows time series of satellite-derived XCH₄. As can be seen, XCH₄ is increasing since 2007 by several ppb/year. The reason for this is not entirely clear (several potential reasons are discussed in the scientific literature).

Figure 4 – Satellite-derived northern mid-latitudes XCH₄ time series. Shown are six time series, each corresponding to one of the six individual satellite sensor Level 2 XCH₄ products, which are described in this document.


```
Michael.Buchwitz@iup.physik.uni-bremen.de, 28-Jun-2023
```

$$\bigcirc$$

1.1.4 List of XCO₂ and XCH₄ data products

Table 3 and Table 4 list the XCO₂ and XCH₄ data products, respectively.

As can be seen, products are generated using «Full Physics» (FP) and «Proxy» (PR) retrieval algorithms. For a discussion of FP versus PR algorithms see, for example, Schepers et al., 2012. Each type of algorithm has different advantages and disadvantages. Typically, the PR products contain much more data as quality filtering can be less strict but the PR algorithms use a CO₂ model to correct for XCO₂ variations. FP products contain less data points but the advantage of this product is that it is independent of a CO₂ model.

Table 3 - Overview XCO₂ data products. In column "(Planned) Availability" the first data is the (planned) delivery date and the period with the start and end time is the period covered by the data product. Also listed are dates and period of previous deliveries. The latest entry corresponds to the latest data product version and covers the longest data product period. CDR 5 and 6 refer to the previously generated "Climate Data Record" data sets and CDR 7 refer to the new data set described in this document. Column "Availability" lists the (planned) date of availability of the data products in the Copernicus Climate Data Store¹ followed by the period covered by the corresponding product.

Product ID	Level	Sensor(s)	CDR: (Planned) Availability:	Comments
			Temporal coverage	
CO2_GOS_OCFP	2	GOSAT	CDR 5: Jul. 2021: 2009-mid 2020	Univ. Bremen /
			CDR 6: Dec. 2022: 2009-2021	Leicester "Full
			CDR 7: Dec. 2023: 2009-2022	Physics" (FP)
				algorithm
CO2_GO2_SRFP	2	GOSAT-2	CDR 6: Dec. 2022: 2019-2021	SRON's "Full
			CDR 7: Dec. 2023: 2019-2022	Physics" (FP)
				algorithm
XCO2_EMMA	2	Merged	CDR 5: Jul. 2021: 2003-mid 2020	Univ. Bremen's
		SCIAMACHY,	CDR 6: Dec. 2022: 2003-2021	Level 2 merging
		GOSAT,	CDR 7: Dec. 2023: 2003-2022	algorithm
		OCO-2		
XCO2_OBS4MIPS	3	Merged	CDR 5: Jul. 2021: 2003-mid 2020	Gridded EMMA
		SCIAMACHY,	CDR 6: Dec. 2022: 2003-2021	product in
		GOSAT,	CDR 7: Dec. 2023: 2003-2022	Obs4MIPs format
		OCO-2		

¹<u>https://cds.climate.copernicus.eu</u> (last access: 3-Apr-2023)

Table 4 - Overview XCH₄ data products. In column "(Planned) Availability" the first data is the (planned) delivery date and the period with the start and end time is the period covered by the data product . Also listed are dates and period of previous deliveries. The latest entry corresponds to the latest data product version and covers the longest data product period. CDR 5 and 6 refer to the previously generated "Climate Data Record" data sets and CDR 7 refer to the new data set described in this document. Column "Availability" lists the (planned) date of availability of the data products in the Copernicus Climate Data Store followed by the period covered by the corresponding product.

Product ID	Level	Sensor(s)	CDR: (Planned) Availability:	Comments
			Temporal coverage	
CH4_GOS_OCPR	2	GOSAT	CDR 5: Jul. 2021: 2009-mid 2020	Univ. Bremen /
			CDR 6: Dec. 2022: 2009-2021	Leicester "Proxy"
			CDR 7: Dec. 2023: 2009-2022	(PR) algorithm
CH4_GOS_OCFP	2	GOSAT	CDR 5: Jul. 2021: 2009-mid 2020	Univ. Bremen /
			CDR 6: Dec. 2022: 2009-2021	Leicester "Full
			CDR 7: Dec. 2023: 2009-2022	Physics" (FP)
				algorithm
CH4_GO2_SRPR	2	GOSAT-2	CDR 6: Dec. 2022: 2019-2021	SRON's "Proxy"
			CDR 7: Dec. 2023: 2019-2022	(PR) algorithm
CH4_GO2_SRFP	2	GOSAT-2	CDR 6: Dec. 2022: 2019-2021	SRON's "Full
			CDR 7: Dec. 2023: 2019-2022	Physics" (FP)
				algorithm
XCH4_EMMA	2	Merged	CDR 5: Jul. 2021: 2003-mid 2020	Univ. Bremen's
		SCIAMACHY	CDR 6: Dec. 2022: 2003-2021	Level 2 merging
		& GOSAT	CDR 7: Dec. 2023: 2003-2022	algorithm
XCH4_OBS4MIPS	3	Merged	CDR 5: Jul. 2021: 2003-mid 2020	Gridded EMMA
		SCIAMACHY	CDR 6: Dec. 2022: 2003-2021	product in
		& GOSAT	CDR 7: Dec. 2023: 2003-2022	Obs4MIPs format

On the following pages maps of these products are shown so that users can see what a product «looks like».

Figure 5 shows product CO2_GOS_OCFP for January to June 2022 (top) and July to December 2022 (bottom) gridded at $1^{\circ}x1^{\circ}$. These maps have been computed from the Level 2 product files simply by averaging all individual footprint (ground pixel) XCO₂ data within the specified period with quality flag "good" (i.e., with xco2_quality_flag = 0) as contained within the $1^{\circ}x1^{\circ}$ grid cells (using only the ground pixel centre coordinates).

Figure 6 shows the corresponding maps for product CO2_GO2_SRFP.

Figure 7 shows the corresponding maps for product CH4_GOS_OCFP. This « full physics » (FP) GOSAT product is sparser compared to the corresponding « proxy » (PR) product CH4_GOS_OCPR shown in Figure 8.

The reason why PR products typically contain more data points and better coverage compared to FP products is that PR products suffer less from potential biases and therefore require less strict quality filtering resulting in more data points with quality flag "good" in the final product files. PR products benefit from cancelling of systematic errors as they are based on computing the ratio of two retrieved quantities with similar systematic errors; here the retrieved vertical column of CH₄ is divided by the retrieved CO₂ vertical column. Therefore, the number of "good" retrievals is typically higher in PR products compared to FP products. However, PR products also have a disadvantage as a CO₂ model is needed and used to correct for the CO₂ dependence as introduced by computing the ratio with the retried CO₂ column. For more information on this topic please see Schepers et al., 2012, and references given therein.

Figure 9 shows the corresponding GOSAT-2 maps for product CH4_GO2_SRFP. This FP GOSAT-2 product is sparser compared to the corresponding PR product CH4_GO2_SRPR shown in Figure 10.

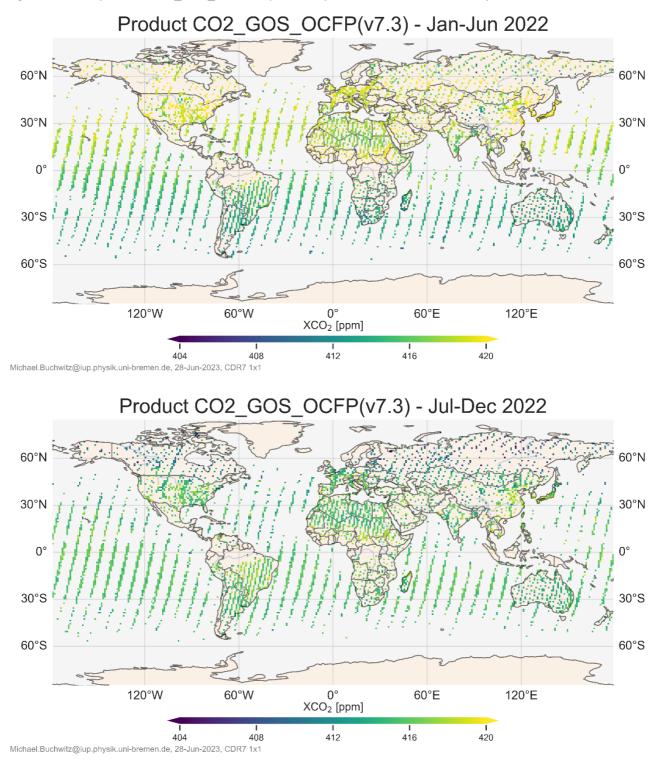


Figure 5 - XCO₂ product CO2_GOS_OCFP. Top: January to June 2022. Bottom: July – December 2022.

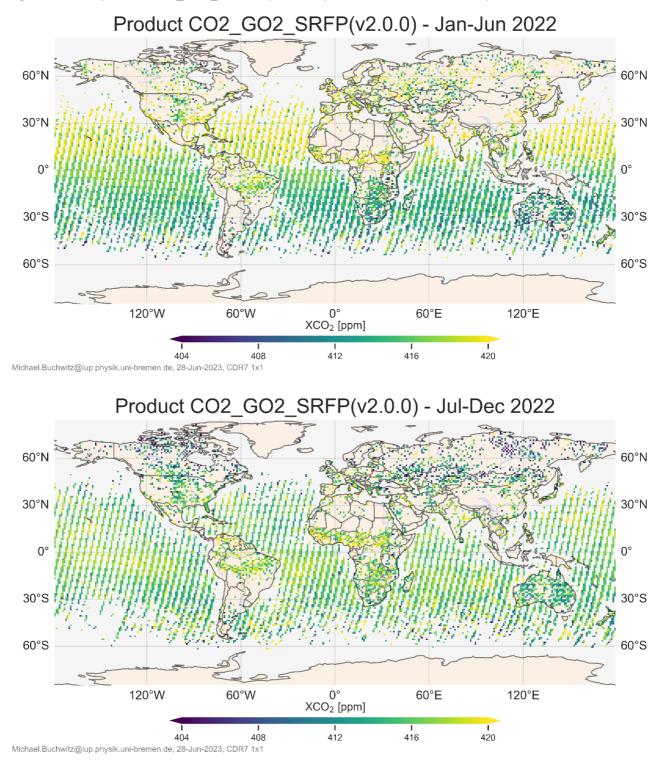


Figure 6 - XCO₂ product CO2_GO2_SRFP. Top: January to June 2022. Bottom: July – December 2022.

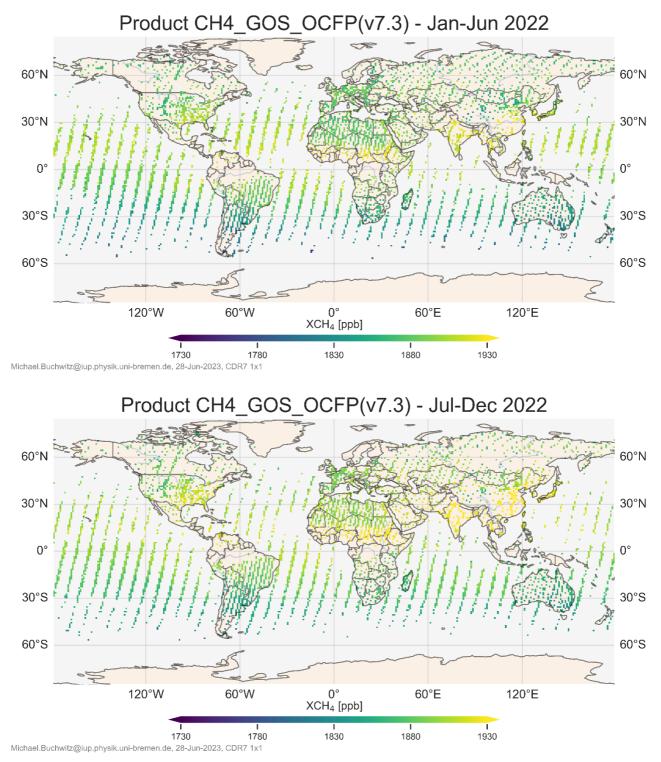


Figure 7 - XCH₄ product CH4_GOS_OCFP. Top: January to June 2022. Bottom: July – December 2022.

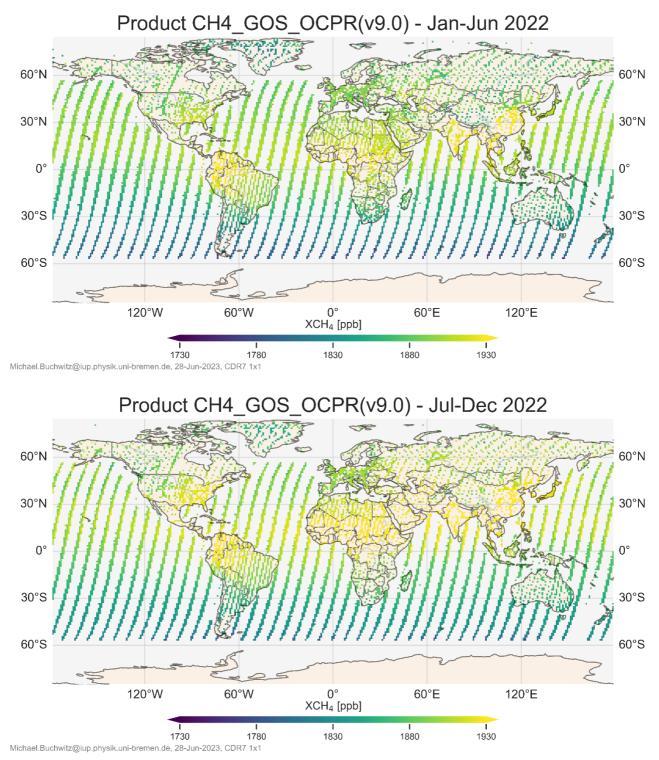


Figure 8 - XCH₄ product CH4_GOS_OCPR. Top: January to June 2022. Bottom: July – December 2022.

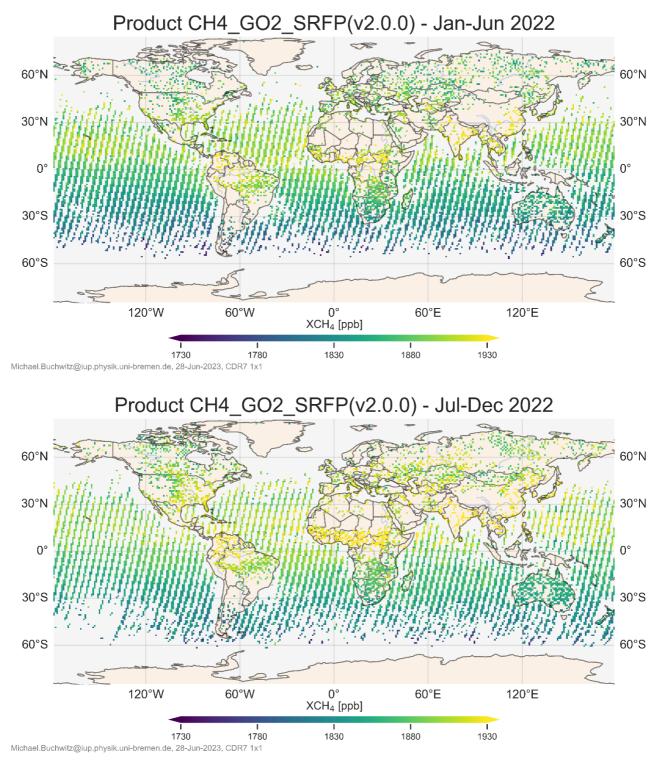


Figure 9 - XCH₄ product CH4_GO2_SRFP. Top: January to June 2022. Bottom: July – December 2022.

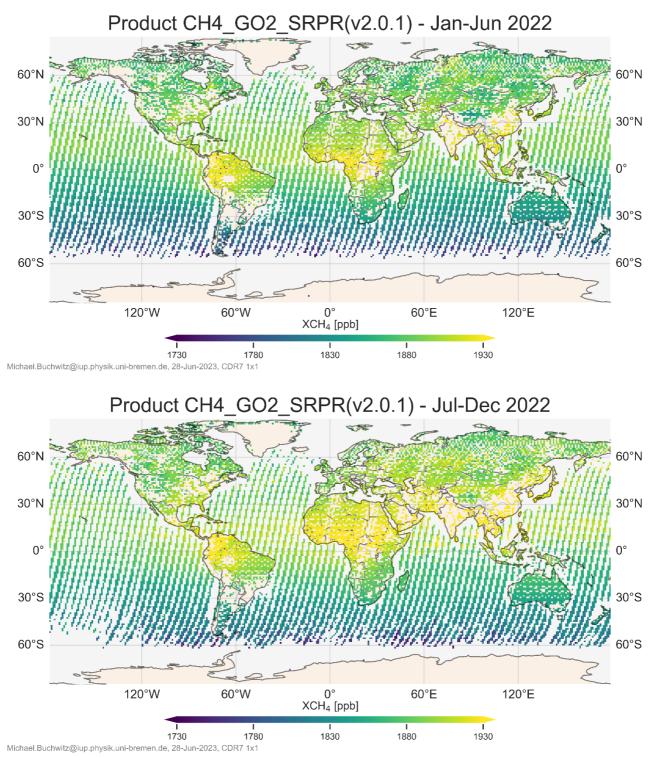


Figure 10 - XCH₄ product CH4_GO2_SRPR. Top: January to June 2022. Bottom: July – December 2022.

Latitude-time plots of products XCO2_EMMA and XCH4_EMMA are shown in Figure 11 and Figure 12, respectively. Discontinuities for «Uncertainty» and number of observations («Nobs») are due to the use of different satellites, which have - for example - different noise characteristics. Note that the product files contain all relevant information so that users can reproduce these figures.

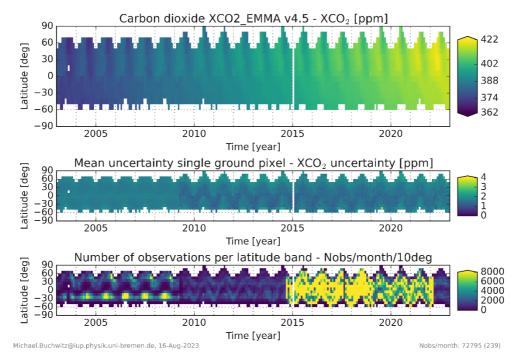
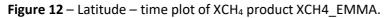
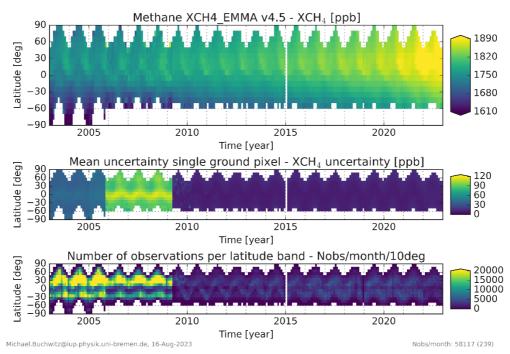
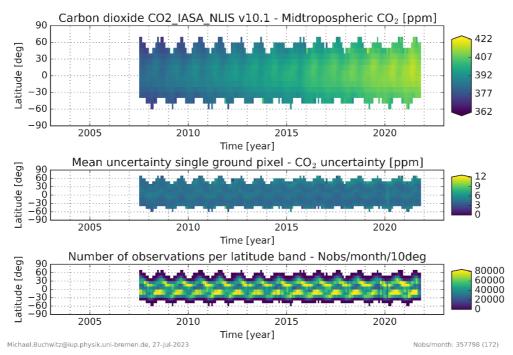




Figure 11 – Latitude – time plot of XCO₂ product XCO2_EMMA.

1.2 Mid-tropospheric mixing ratios of CO₂ and CH₄

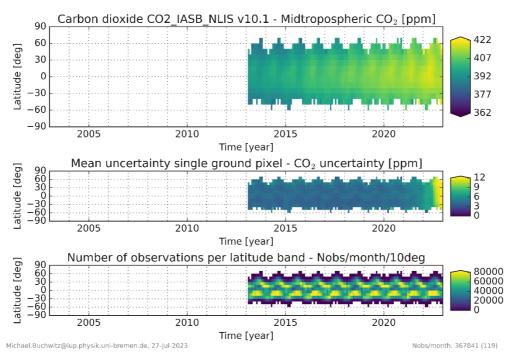
1.2.1 Overview

Satellite radiance observations in the thermal infrared (TIR) spectral region in nadir (down looking) observation viewing mode are sensitive to atmospheric CO₂ and CH₄ mixing ratio changes in the mid-tropospheric region. They can thus be interpreted in terms of integrated mid-tropospheric columns, with typical sensitivity between 5 and 12 km.


1.2.2 CO₂

Mid-tropospheric columns of CO₂ can be retrieved from hyperspectral infrared sounders such as AIRS and IASI (Chédin et al., 2003; Crevoisier et al., 2003) using a non-linear inference scheme (Crevoisier et al., 2009a).

Products have been validated using aircraft measurements, mostly from the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) program (Machida et al., 2008; Matsueda et al. 2008).


As an example, Figure 13 shows time series of IASI/Metop-A derived mid-tropospheric CO₂ column as a function of time and latitude. The trend, seasonality and latitudinal gradient of CO₂ are clear in the figure. Figure 14 shows the same but for IASI/Metop-B and Figure 15 for IASI/Metop-C.

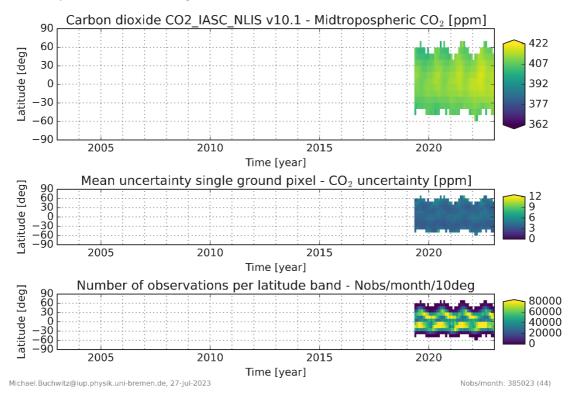
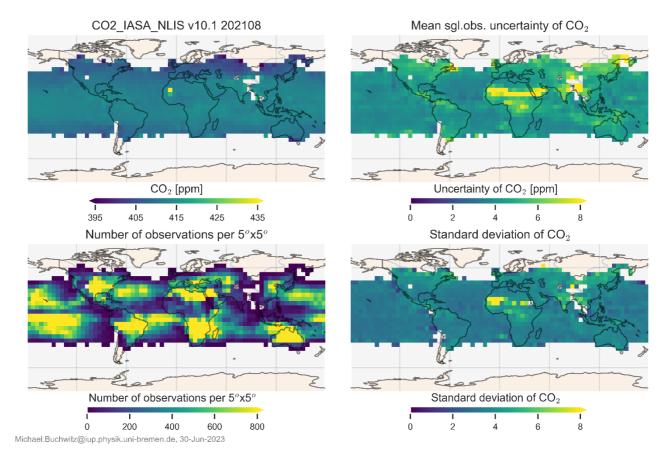

Figure 16, Figure 17 and Figure 18 show spatial maps for the IASI/Metop-A, IASI/Metop-B and IASI/Metop-C products, respectively, to also illustrate the spatial coverage of the data for a typical month including number of observations and standard deviation.

Figure 13 – Mid-tropospheric CO₂ (top) as seen by IASI/Metop-A, reported uncertainty (middle) and number of observations per month and 10 deg latitude band (bottom).


Figure 14 - Mid-tropospheric CO_2 (top) as seen by IASI/Metop-B, reported uncertainty (middle) and number of observations per month and 10 deg latitude band (bottom). The increasing uncertainty in 2022 indicates instrument degradation (see also Figure 17).

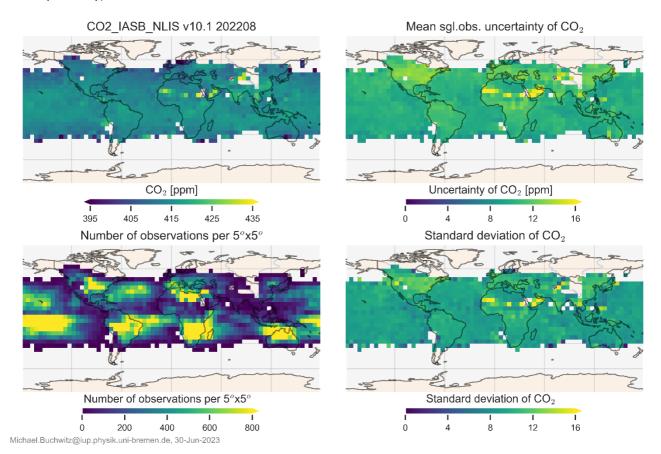


Figure 15 - Mid-tropospheric CO₂ (top) as seen by IASI/Metop-C, reported uncertainty (middle) and number of observations per month and 10 deg latitude band (bottom).

Figure 16 - Map of mid-tropospheric CO₂ from IASI/Metop-A for August 2022 (top left). Mean value of the reported uncertainty (top right), number of observations per 5°x5° grid size (bottom left) and standard deviation (bottom right).

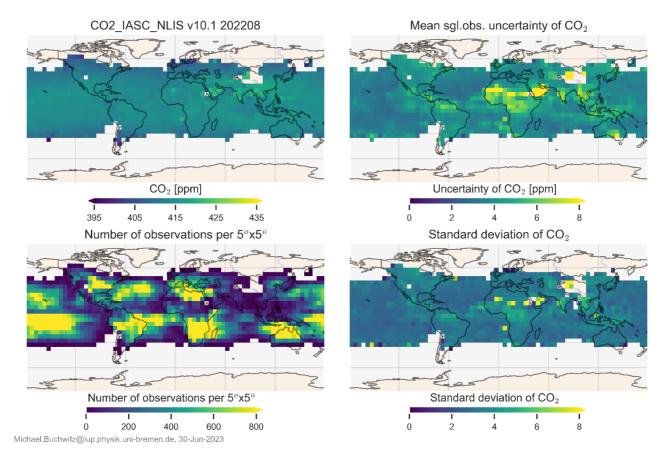
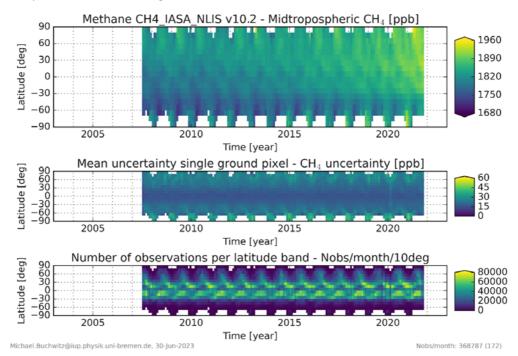


Figure 17 - Map of mid-tropospheric CO₂ from IASI/Metop-B for August 2022 (top left). Mean value of the reported uncertainty (top right), number of observations per 5°x5° grid size (bottom left) and standard deviation (bottom right). Note that the scale for uncertainty and standard deviation (i.e., scatter) has been increased by a factor of 2 compared to the corresponding IASI-A and IASI-C figures (i.e., Figure 16 and Figure 18, respectively).

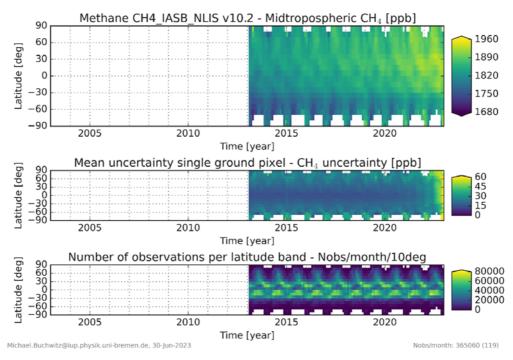
C3S2_312a_Lot2_DLR_2021SC1 - Product User Guide and Specification GHG MAIN v7.3 38 of 104

Figure 18 - Map of mid-tropospheric CO₂ from IASI/Metop-C for August 2022 (top left). Mean value of the reported uncertainty (top right), number of observations per 5°x5° grid size (bottom left) and standard deviation (bottom right).


1.2.3 CH₄

Mid-tropospheric columns of CH₄ can be retrieved from the hyperspectral infrared sounder IASI (Crevoisier et al., 2003, 2013) using non-linear inference scheme (Crevoisier et al., 2009b).

Products have been validated using aircraft measurements, from the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) program (Machida et al., 2008; Matsueda et al. 2008) and the HIAPER Pole-to-Pole Observations (HIPPO) project (Wofsy et al., 2012), as well as from balloon measurements from AirCores (Membrive et al., 2016).


As an example, Figure 19 shows time series of IASI/Metop-A derived mid-tropospheric CO_2 column as a function of time and latitude. The trend, seasonality and latitudinal gradient of CO_2 are clear in the figure. Figure 20 shows the same but for IASI/Metop-B and Figure 21 for IASI/Metop-C.

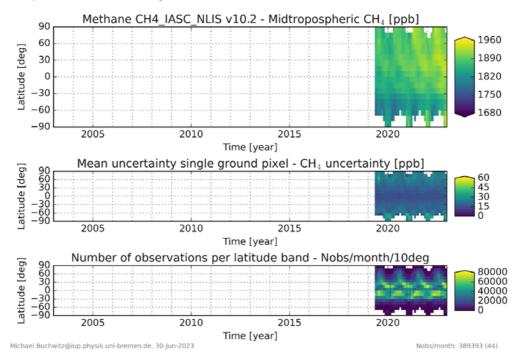
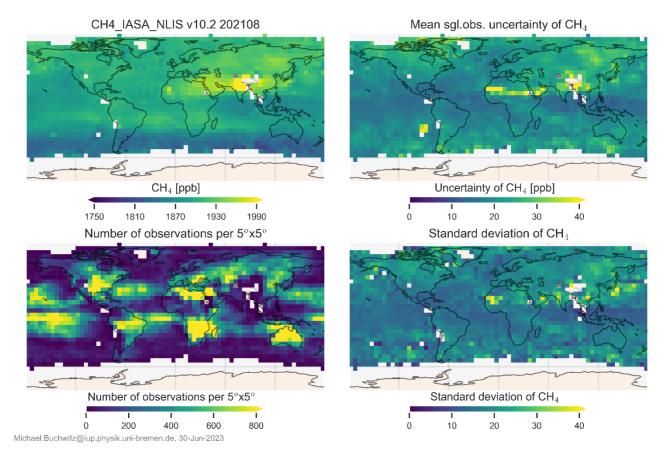

Figure 22, Figure 23 and Figure 24 show spatial maps for the IASI/Metop-A, IASI/Metop-B products and IASI/Metop-C, respectively, to also illustrate the spatial coverage of the data for a typical month including number of observations and standard deviation.

Figure 19 – Mid-tropospheric CH₄ (top) as seen by IASI/Metop-A, reported uncertainty (middle) and number of observations per month and 10 deg latitude band (bottom).


Figure 20 - Mid-tropospheric CH_4 (top) as seen by IASI/Metop-B, reported uncertainty (middle) and number of observations per month and 10 deg latitude band (bottom). The increasing uncertainty in 2022 indicates instrument degradation (as also identified for IASI-B CO_2).

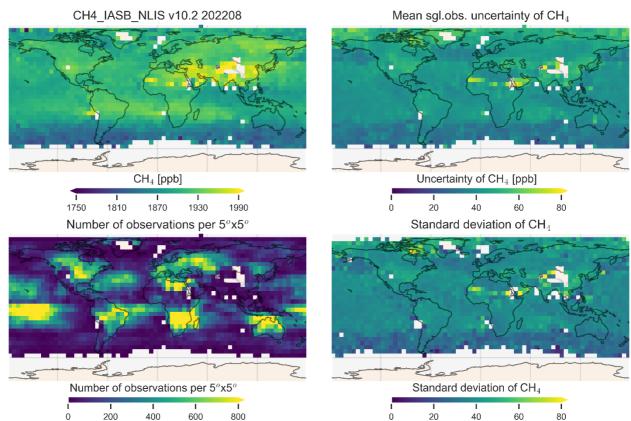
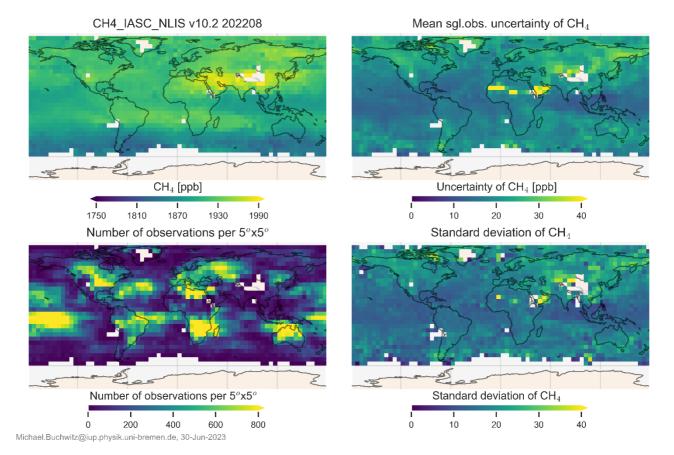


Figure 21 - Mid-tropospheric CH₄ (top) as seen by IASI/Metop-C, reported uncertainty (middle) and number of observations per month and 10 deg latitude band (bottom).

Figure 22 - Map of mid-tropospheric CH₄ from IASI/Metop-A for August 2022 (top left). Mean value of the reported uncertainty (top right), number of observations per 5°x5° grid size (bottom left) and standard deviation (bottom right).


C3S2_312a_Lot2_DLR_2021SC1 - Product User Guide and Specification GHG MAIN v7.3 43 of 104 **Figure 23** - Map of mid-tropospheric CH₄ from IASI/Metop-B for August 2022 (top left). Mean value of the reported uncertainty (top right), number of observations per 5°x5° grid size (bottom left) and standard deviation (bottom right). Note that the scale for uncertainty and standard deviation (i.e., scatter) has been increased by a factor of 2 compared to the corresponding IASI-A and IASI-C figures (i.e., Figure 22 and Figure 24, respectively).

Michael.Buchwitz@iup.physik.uni-bremen.de, 30-Jun-2023

C3S2_312a_Lot2_DLR_2021SC1 - Product User Guide and Specification GHG MAIN v7.3 44 of 104

Figure 24 - Map of mid-tropospheric CH₄ from IASI/Metop-C for August 2022 (top left). Mean value of the reported uncertainty (top right), number of observations per 5°x5° grid size (bottom left) and standard deviation (bottom right).

C3S2_312a_Lot2_DLR_2021SC1 - Product User Guide and Specification GHG MAIN v7.3 45 of 104

1.2.4 List of mid-tropospheric CO₂ and CH₄ data products

Table 5 lists the CO₂ and CH₄ mid-tropospheric data products.

Table 5 - Overview mid-tropospheric CO₂ and CH₄ data products. CDR 5 and 6 refer to previously generated "Climate Data Record" data sets and CDR 7 refers to the new data set described in this document. Column "Availability" lists the (planned) date of availability of the data products in the Copernicus Climate Data Store² followed by the period covered by the corresponding product.

Product ID	Level	Sensor(s)	CDR: (Planned) Availability:	Comments
			Temporal coverage	
CO2_IASA_NLIS	2	IASI / Metop-A	CDR 5: Jul. 2021: 2007 - 11.2020	IASI-A: Nominal
			CDR 6: Dec. 2022: 2007-07.2021	operation ended
			CDR 7: Dec. 2023: 2007-10.2021	in 2021.
CH4_IASA_NLIS	2	IASI / Metop-A	CDR 5: Jul. 2021: 2007 – 11.2020	IASI-A: Nominal
			CDR 6: Dec. 2022: 2007-07.2021	operation ended
			CDR 7: Dec. 2023: 2007-10.2021	in 2021.
CO2_IASB_NLIS	2	IASI / Metop-B	CDR 5: Jul. 2021: 2013 – 11.2020	
			CDR 6: Dec. 2022: 2013-2021	
			CDR 7: Dec. 2023: 2013-2022	
CH4_IASB_NLIS	2	IASI / Metop-B	CDR 5: Jul. 2021: 2013 – 11.2020	
			CDR 6: Dec. 2022: 2013-2021	
			CDR 7: Dec. 2023: 2013-2021	
CO2_IASC_NLIS	2	IASI / Metop-C	CDR 7: Dec. 2023: 05.2019-2022	
CH4_IASC_NLIS	2	IASI / Metop-C	CDR 7: Dec. 2023: 05.2019-2022	

² <u>https://cds.climate.copernicus.eu</u> (last access: 3-Apr-2023)

2. Level 2 XCO₂ and XCH₄ data products

2.1 Product description

The format of these data products is described in and compliant with the specification of the corresponding pre-cursor products as given in the GHG-CCI project Product Specification Document (PSD), version 3 (Buchwitz et al., 2014)³:

• Buchwitz, M., et al., ESA Climate Change Initiative (CCI) Product Specification Document (PSD) for the Essential Climate Variable (ECV) Greenhouse Gases (GHG), 6-June-2014, Version 3, 2014.

These products are in NetCDF-4 (classic) format and are in-line with CF (Climate and Forecasting) convention 3⁴. The products are essentially self-explaining in particular due to the metadata contained in each data product.

The file names start with the following string f ESACCI-GHG (to be consistent with the pre-cursor products), processing level (L2), product type (CO₂ or CH₄), sensor (e.g., SCIAMACHY, GOSAT), algorithm (e.g., BESD or SRFP), date (YYYYMMDD), file version (fv#) and file name extension (.nc), separated by hyphens ("-"). Examples: ESACCI-GHG-L2-CO2-SCIAMACHY-BESD-20021216-fv1.nc

ESACCI-GHG-L2-CH4-GOSAT-SRFP-20120909-fv1.nc

Each *.nc product file corresponds to one day of satellite observations.

In *Buchwitz et al., 2014* the so-called Common Parameters of these products are described. These parameters are relevant for all users. In addition, each product may contain additional (algorithm specific) parameters, which are described in separate Product User Guides (PUGs).

For the C3S products a similar approach is used. In the following paragraphs the common parameters are described, and the additional (algorithm specific) parameters are described in specific ANNEXes (see Sect. 7).

The description given in the following is applicable to the following C3S data products:

- CO2_GOS_OCFP
- CO2_GOS_SRFP
- CO2 GO2 SRFP
- CH4 GOS OCFP
- CH4_GOS_SRFP

³ <u>https://www.iup.uni-bremen.de/carbon_ghg/docs/GHG-CCIplus/PSD/PSDv3_GHG-CCI_final.pdf</u> (last access: 4-Apr-2023)

⁴ <u>https://cfconventions.org/cf-conventions/cf-conventions.html</u> (last access: 3-Apr-2023)

- CH4_GOS_OCPR
- CH4_GOS_SRPR
- CH4 GO2 SRFP
- CH4_GO2_SRPR
- XCO2_EMMA
- XCH4_EMMA

2.1.1 Common parameters

In this section the common parameters of the XCO₂ and XCH₄ Level data products are described.

In order that these products can be used as easily as possible the aim has been to harmonize them. The goal was to make sure that users can easily switch from one product to another. This has been achieved for all products and parameters except for the averaging kernels (describing the altitude sensitivity of the retrieved products) and related parameters. These parameters are closely related to retrieval algorithm specific characteristics and require special consideration by the users of these products as is explained in detail in Sect. 2.1.2.

Table 6 presents an overview of relevant XCO₂ and XCH₄ specific parameters (followed by a description of each) and their associated dimensions and details of shared parameters (i.e., parameters valid for both gases). The dimensions detailed in the table are defined as follows:

- *n*: number of satellite observations (ground pixels) (per file, i.e., for the given day of observations)
- *m*: number of atmospheric layers or levels
- k: number of atmospheric levels

Dimensions m and k are used (only) for Averaging Kernels (AKs) and related parameters such as the CO₂ or CH₄ vertical profiles and corresponding profiles of "pressure weights" (see Sect. 2.1.2). As explained in Sect. 2.1.2, depending on product the provided AKs are either "layer-based AKs" or "level-based AKs":

- For layer-based AKs, *m* is the number of layers, which are defined by *k* = *m*+1 pressure levels (each layer is defined by an upper and lower pressure level).
- For level-based AK only levels are used, not layers. Here all vertical profiles have the same number of elements, namely *m* levels. Here the number of pressure levels is also *m* (i.e., *k* = *m*).
- For more information on layer-based- and level-based AKs and their usage, please refer to Sect. 2.1.2 of this document.

Name	Туре	Dimensions	Units	Short Description		
Common parameters for XCO ₂ products:						
xco2	Float	n	micromol per mol, abbreviated ppm, i.e., 10 ⁻⁶	Retrieved column- averaged dry-air mole fraction of atmospheric carbon dioxide (XCO ₂) in ppm.		
xco2_uncertainty	Float	n	micromol per mol, abbreviated ppm, i.e., 10 ⁻⁶	Statistical uncertainty of XCO ₂ in ppm (1- sigma).		
xco2_averaging_kernel	Float	n x m	[-]	XCO ₂ averaging kernel (a profile = vector for each single observation). Quantifies the altitude sensitivity of the XCO ₂ retrieval.		
co2_profile_apriori	Float	n x m	micromol per mol, abbreviated ppm, i.e., 10 ⁻⁶	A priori mole fraction profile of atmospheric CO ₂ in ppm.		
xco2_quality_flag	Byte	n	[-]	Quality flag for XCO ₂ retrieval. 0=good.		
	Commo	on parameters for	XCH ₄ products:	1		
xch4	Float	n	nanomol per mol, abbreviated ppb, i.e., 10 ⁻⁹	Retrieved column- averaged dry-air mole fraction of atmospheric methane (XCH ₄) in ppb.		
xch4_uncertainty	Float	n	nanomol per mol, abbreviated ppb, i.e., 10 ⁻⁹	Statistical uncertainty of XCH₄ in ppb (1- sigma)		
xch4_averaging_kernel	Float	n x m	[-]	XCH ₄ averaging kernel (a profile = vector for each single observation). Quantifies the altitude sensitivity of the XCH ₄ retrieval.		
ch4_profile_apriori	Float	n x m	nanomol per mol, abbreviated ppb, i.e., 10 ⁻⁹	A priori mole fraction profile of atmospheric CH ₄ in ppb.		
xch4_quality_flag	Byte	n	[-]	Quality flag for XCH ₄ retrieval, 0 = good.		
Continued on next page						

Table 6: Description of Common Parameters of the XCO_2 and XCH_4 Level 2 data products.

... continuation of table.

Name	Туре	Dimensions	Units	Short Description		
Common parameters for XCO ₂ and XCH ₄ products:						
solar_zenith_angle	Float	n	Degrees	Solar zenith angle		
sensor_zenith_angle	Float	n	Degrees	Sensor zenith angle		
time	Double	n	Seconds	Measurement time		
longitude	Float	n	Degrees	Center longitude of the measurement		
latitude	Float	n	Degrees	Center latitude of the measurement		
pressure_levels	Float	n x k (note: k = m or k = m+1)	hPa	Vertical altitude coordinate in pressure units as used for averaging kernels		
pressure_weight	Float	n x m	[-]	Pressure weights as used for averaging kernels		

Description of each parameter:

хсо2

Main XCO_2 parameter. Retrieved column-average dry-air mole fraction of atmospheric carbon dioxide (XCO_2) in ppm.

xco2_uncertainty

Statistical uncertainty of main XCO₂ parameter: 1-sigma uncertainty of the retrieved XCO₂ in ppm.

xco2_averaging_kernel

 XCO_2 averaging kernel (for each observation: vertical profile = vector of dimension m).

Represents the sensitivity of the retrieved XCO₂ to atmospheric carbon dioxide mole fraction perturbations depending on pressure (height).

For details see Sect. 2.1.2.

co2_profile_apriori

A priori mole fraction profile of atmospheric carbon dioxide in ppm needed to apply the XCO₂ averaging kernels.

For details see Sect. 2.1.2.

xco2_quality_flag

Quality flag for XCO_2 retrieval. 0 = good. 1 = bad.

xch4

Main XCH₄ parameter. Retrieved column-average dry-air mole fraction of atmospheric methane (XCH_4) in ppb

xch4_uncertainty

Statistical uncertainty of main XCH₄ parameter: 1-sigma uncertainty of the retrieved XCH₄ in ppb.

xch4_averaging_kernel

XCH₄ averaging kernel (for each observation: vertical profile = vector of dimension m).

Represents the sensitivity of the retrieved XCH₄ to atmospheric methane mole fraction perturbations depending on pressure (height).

For details see Sect. 2.1.2.

ch4_profile_apriori

A priori mole fraction profile of atmospheric methane in ppb needed to apply the XCH₄ averaging kernels.

For details see Sect. 2.1.2.

xch4_quality_flag

Quality flag for XCH_4 retrieval. 0 = good. 1 = bad.

solar_zenith_angle

Solar zenith angle (SZA). Angle between the line of sight to the sun and the local vertical. SZA is a positive number (i.e., larger or equal to 0 deg).

sensor_zenith_angle

Sensor zenith angle is the angle between the line of sight from the observed ground pixel to the sensor and the local vertical. The sensor zenith angle is a positive number (i.e., larger or equal to 0 deg; 0 deg for exact nadir (downlooking) observation).

time

Measurement time in seconds since 01.01.1970 00:00:00.

longitude

Center longitude of the measurement. A number in the range -180 deg to +180 deg. 0 deg passes through Greenwich.

latitude

Center latitude of the measurement. A number in the range -90 deg (south pole) to +90 deg (north pole). 0 deg = equator.

pressure_levels

Pressure levels as used for the averaging kernels. Ordered from the bottom of the atmosphere to the top of the atmosphere (i.e., by decreasing pressure).

For details see Sect. 2.1.2.

pressure_weight

Layer / level dependent weights needed to apply the averaging kernels.

For details see Sect. 2.1.2.

Other parameters

Each product may contain additional parameters, see the product specific ANNEXes listed in Sect. 7.

2.1.2 How to use the averaging kernels (AK)?

2.1.2.1 Introduction

The averaging kernel describes the altitude sensitivity of the retrieval. It is defined as the ratio of the change of the retrieved quantity for a given change of the corresponding true quantity (note: averaging kernels are computed using a model atmosphere with known (=true) parameters).

For XCO₂ the averaging kernel is a vector (a one-dimensional array) which shows how the retrieved XCO₂ changes for a given change of the true XCO₂ due to a change of the true CO₂ profile at a given altitude (note: XCO₂ is computed from the CO₂ mixing ratio vertical profile taking into account the structure (e.g., finite number of layers / levels) of the underlying model atmosphere). In the ideal case the averaging kernel is 1.0 for all altitude, then this means that only 50% of a given enhancement at that altitude is retrieved (e.g., 0.5 ppm instead of 1 ppm). For XCH₄, the explanation is analogous.

In order to compare the satellite-retrieved XCO₂ and XCH₄ data products with model simulations and for inverse modelling of surface fluxes (see, e.g., *Bergamaschi el al., 2007*) the altitude sensitivity of the satellite retrievals has to be taken into account. Information on the altitude sensitivity is provided by the satellite XCO₂ and XCH₄ averaging kernels and corresponding CO₂ and CH₄ *a priori* vertical profiles.

For validation purposes the averaging kernels have to be considered in order to take the altitude sensitivity of the different instruments into account, see, e.g., *Wunch et al., 2010, 2011, Dils et al., 2013*.

All common variables described in Sect. 2.1.1 (e.g., xco2, xco2_uncertainty, time, longitude, etc.) can be used identically for all Level 2 products with the <u>exception</u> of the averaging kernels and related parameters, as these parameters are closely related to the underlying retrieval algorithm.

In this section how the averaging kernels and related parameters can be used is explained.

How these parameters have been defined depends on the retrieval algorithm used to generate a certain product and it was not possible to fully harmonize their use, i.e., their use depends on the product.

There are two different averaging kernel (AK) categories: Depending on the product (and its underlying retrieval algorithm), the AKs are

• "layer-based" (IUP, Univ. Bremen, and SRON products) (see Sect. 2.1.2.3)

or

"level-based" (Univ. Leicester products) (see Sect. 2.1.2.4).

In the following, more information on this is given including the information for which product which category is valid.

Note that the user can also determine "automatically" (or via inspection of the product files) which category a given product belongs to. For this purpose, the dimensions of the two variables pressure_levels and pressure_weight must be compared:

- For "layer-based" products the vertical dimension of parameter **pressure_levels** is *m*+1, i.e., there is one entry more than for parameter **pressure_weight** (or any of the other parameters with a vertical dimension), which has *m* vertical entries, i.e., one entry less than parameter **pressure_levels**.
- For "level-based" products all parameters have *m* entries.

Important note:

The AK related parameters and how they can be used as described in this document is most interesting for users who want to use different products and prefer to easily switch from one product to another. The main purpose of the common parameters and methods described in this document is to provide the users with the parameters and formulas to do this. However, all products also contain additional parameters, not described in this document, but in the PUGS of the individual products (please see also the Algorithm Theoretical Basis Documents (ATBDs) of the individual algorithms used to generate the individual products). Using these additional parameters (and corresponding formulas) users may be able to obtain somewhat more accurate results (although the differences are expected to be very small).

2.1.2.2 Averaging kernel related parameters

For each single observation (ground pixel) six averaging kernel related parameters are contained in the satellite product files (see Table 7). How to use these parameters is described in the following two sub-sections Sect. 2.1.2.3 and Sect. 2.1.2.4.

Table 7: Overview of averaging kernel (AK) and related parameters. (*) The ground pixel dimension (*n*, see Table 6) is not listed here. Here each array is 1-dimensional (a vector of dimension *k* or *m*). Each element corresponds to one atmospheric level or layer as explained in Sect. 2.1.2.3 and Sect. 2.1.2.4.

Parameter Name	Mathematical	Dimension	Unit	Explanation
pressure_levels	symbol p	() k	[hPa]	Pressure levels;
pressure_levels	γ	~		note:
				k = m + 1 (for layer-
				based approach)
				or
				k = m (for level-based approach)
pressure_weight	pw	m	[-]	Pressure weights for all layers / levels
xco2_averaging_kernel	AK	т	[-]	XCO ₂ averaging kernel
co2_profile_apriori	VMR	т	µmol/mol, abbreviated ppm (10 ⁻⁶)	CO₂ <i>a priori</i> profile
xch4_averaging_kernel	AK	т	[-]	XCH₄ averaging kernel
ch4_profile_apriori	VMR	т	nanomol/mol, abbreviated ppb (10 ⁻⁹)	CH ₄ a priori profile

2.1.2.3 How to use layer-based AKs?

This section describes how the common parameters related to averaging kernels (AKs) can be used to apply the satellite's AKs to model profiles to take the altitude sensitivity of the satellite's XCO₂ and XCH₄ retrievals into account.

Each product may (or may not) contain additional parameters and corresponding formulas, not described in this document (but in the corresponding PUG), which can be used to obtain somewhat more accurate results for a specific product (although the differences compared to the method described in this section are expected to be small).

For the layer-based approach the AKs and corresponding *a priori* CO_2 and CH_4 profiles are defined for layers and they correspond to layer averages. There are *m* layers, which are defined by *k* = *m*+1 pressure levels.

The AK layer-based approach needs to be applied for the following products, i.e., to the University Bremen and SRON products):

- CO2_SCI_BESD
- CO2_GOS_SRFP
- CO2_GO2_SRFP
- XCO2_EMMA
- CH4_SCI_WFMD
- CH4_SCI_IMAP
- CH4 GOS SRFP
- CH4 GOS SRPR
- CH4 GO2 SRFP
- CH4 GO2 SRPR
- XCH4_EMMA

The layer-based approach is also described and used in *Bergamaschi et al., 2007*. Here a slightly modified version of their Eq. 2 is shown (here $GHG = CO_2$ or CH_4):

$$XGHG^{mod} = \sum_{i=1}^{m} \left[VMR_i^{apri} + AK_i (VMR_i^{mod} - VMR_i^{apri}) \right] pw_i$$
 Eq. (1)

- Here *XGHG^{mod}* is the desired modelled XCO₂ or XCH₄ value, which corresponds to the satellite XCO₂ or XCH₄ retrievals.
- The sum is over the *m* atmospheric layers (located between pressure levels *p_i* and *p_{i+1}* with *i* = 1...*m*). Here pressure is the "normal" or "total" or "wet" pressure (not the "dry pressure", see below). Here *i* = 1 corresponds to the bottom of the atmosphere and *i* = *k* = *m*+1 corresponds to the top of the atmosphere.
- pw_i is a layer-dependent weight (depending on algorithm/product, this corresponds to $\Delta p_i/p_{surf}$ of *Bergamaschi et al., 2007*, times a conversion factor for the conversion of wet to dry pressure).
- VMR_i^{apri} is the satellite *a priori* layer-averaged CO₂ or CH₄ volume mixing ratio (VMR) or, more precisely, Dry Mole Fraction (DMF), between pressure levels p_i and p_{i+1} (note: $p_i > p_{i+1}$).
- VMR_i^{mod} is the corresponding value of the model (CO₂ of CH₄) VMR (DMF) between pressure levels p_i and p_{i+1} .
- AK_i is the satellite XCO₂ or XCH₄ averaging kernel for layer *i*.

Note that in this equation all parameters are coming from the satellite product with the exception of VMR_i^{mod} .

Note that the described approach permits to use all satellite data as they are without the need to manipulate them, e.g., by interpolation. Only the model quantity VMR_i^{mod} needs to be computed.

Should a user wish to calculate $XGHG^{mod}$, the following procedure should be followed:

- For each satellite observation:
 - \circ $\;$ Interpolate the model profiles to the location and time of the satellite observation.
 - Compute for each satellite layer *i*, as defined by pressure levels p_i and p_{i+1} :
 - The layer-averaged model (CO₂ or CH₄) VMR (DMF), i.e., VMR_i^{mod}
 - Apply Eq. (1) to compute the desired quantity $XGHG^{mod}$.

Figure 25 and Figure 26 provide explanations how the parameters as provided via the satellite product files (Table 7) have to be used in order to apply Eq. (1).

Figure 25 - Overview of how to compute XCO₂ or XCH₄ (= XGHG) using the layer-based AK method. See also Figure 26.

How to use "layer-based" Averaging Kernels (AKs):

Parameters provided via the satellite product files are shown in blue. Modelers have to compute the layer-averaged model VMRs (= gas Dry Mole Fractions (DMF)) co2_mod or ch4_mod for all layers and use these formulas:

$$\label{eq:constraint} \begin{split} xco2_mod = & & \sum_{i} \left[\ co2_profile_apriori(i) + (\ co2_mod(i) - co2_profile_apriori(i)) * \ xco2_averaging_kernel(i) \right] \\ & * \ pressure_weight(i) \\ \hline xch4_mod = & & \sum_{i} \left[\ ch4_profile_apriori(i) + (\ ch4_mod(i) - ch4_profile_apriori(i)) * \ xch4_averaging_kernel(i) \right] \\ & & * \ pressure_weight(i) \\ \hline \end{split}$$

Here the underlying mathematical formula (XGHG = XCO_2 or XCH_4):

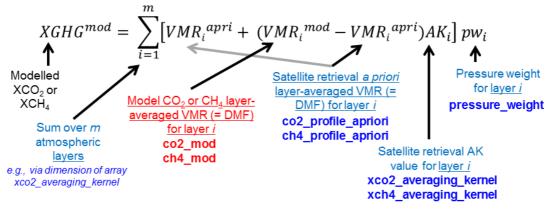
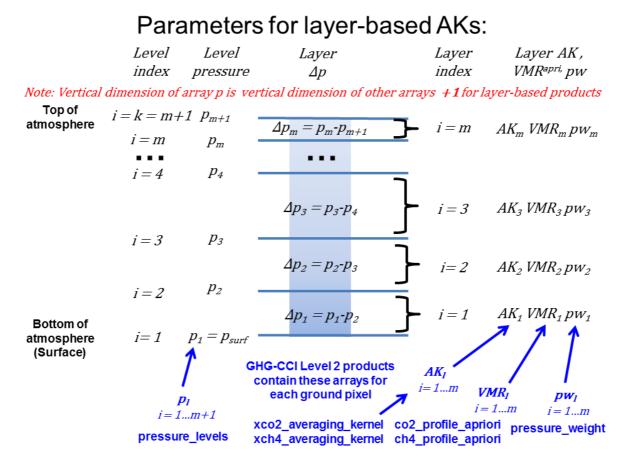



Figure 26 - Additional explanations related to the parameters needed to use the layer-based AK approach.

2.1.2.4 How to use level-based AKs?

For the level-based approach the AKs and corresponding a priori VMR (= DMF) profiles are defined on levels (not on layers).

The same parameters (variable names etc.) as provided via the satellite products files are used as for the layer-based approach described in the previous Sect. 2.1.2.3 but with a slightly different implementation to apply these parameters to compute the modelled XCO₂ or XCH₄.

For the level-based approach all AK related arrays are given for *m* levels.

The "AK level-based approach", which is explained in this section, needs to be applied for the following GHG-CCI ECA products (all "OC" products):

- CO2_GOS_OCFP
- CH4_GOS_OCPR
- CH4_GOS_OCFP

For model comparisons and inverse modelling, the following method is recommended to compute the modelled XCO₂ or XCH₄.

The equation to apply the level-based averaging kernels to the model data is the same as for the layer-based approach (Eq. 1) but with the variables now all on levels, rather than layers. The key point is that the model data (co2_mod or ch4_mod in Figure 27) must be interpolated onto the retrieval pressure levels (p_i). This interpolation should be done with care to conserve the total column amounts of *XGHG*.

Figure 27 and Figure 28 provide explanations how the parameters as provided via the satellite product files (Table 7) have to be used in order to apply Eq. (1).

Figure 27 - Overview how to compute XCO₂ or XCH₄ (= XGHG) using the level-based AK method. Additional explanations are given in Figure 28.

How to use "level-based" Averaging Kernels (AKs):

Parameters provided via the satellite product files are shown in blue. Modelers have to <u>interpolate model-level VMRs (</u>= gas Dry Mole Fractions (DMF)) **co2_mod** or **ch4_mod** for all <u>levels</u> and use these formulas:

$$\label{eq:constraint} \begin{split} xco2_mod = & & \sum_i \left[\ co2_profile_apriori(i) + (\ co2_mod(i) - co2_profile_apriori(i)) * xco2_averaging_kernel(i) \right] \\ & * \ pressure_weight(i) \\ \hline xch4_mod = & & \sum_i \left[\ ch4_profile_apriori(i) + (\ ch4_mod(i) - ch4_profile_apriori(i)) * xch4_averaging_kernel(i) \right] \\ & & * \ pressure_weight(i) \\ \end{split}$$

Here the underlying mathematical formula (XGHG = XCO_2 or XCH_4):

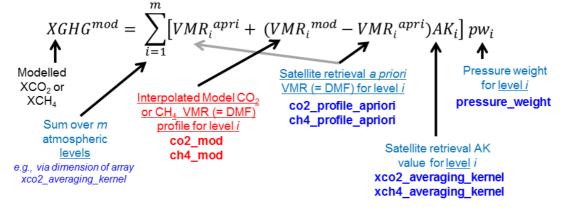
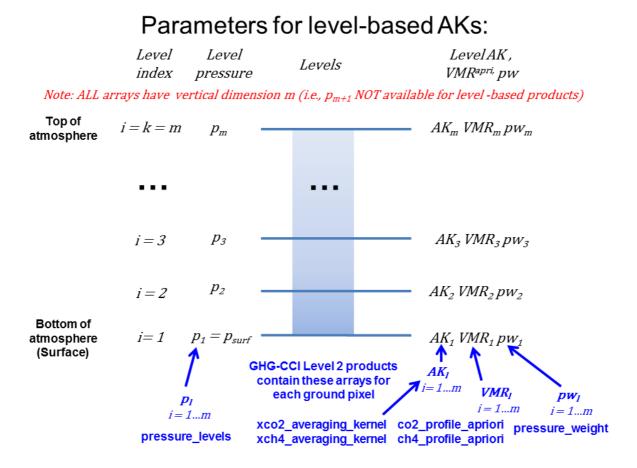



Figure 28 - Additional explanations related to the parameters needed to use the level-based AK approach.

2.2 Target requirements

2.2.1 Overview

Essential Climate Variables (ECVs) are defined by the Global Climate Observing System (GCOS) along with corresponding requirements (*D1, D2, D3, D6*). The ECV Greenhouse Gases (GHG) is defined by GCOS as follows: "Retrievals of greenhouse gases, such as CO₂ and CH₄, of sufficient quality to estimate regional sources and sinks" (*D1,* see their Table 2, product A.8.1).

Detailed Target Requirements (TR) for the ECV GHG products described in this document are provided in the Target Requirements and Gap Analysis Document (TRDGAD) (*D7*) and the corresponding quality assessment results are described in the corresponding Product Quality Assessment Report (PQAR) (*D9*). Here we provide a short summary referring for details to documents *D7* and *D9*.

The GCOS ECV GHG definition as given above essentially implies that the corresponding data products need to be useful for inverse modelling (or equivalent approaches) to derive information on regional scale sources and sinks, i.e., emissions and uptake or "surface fluxes" of CO₂ and CH₄. This implies that the satellite-derived CO₂ and CH₄ data products are sensitive to near-surface CO₂ and CH₄ concentration changes. This application implies high precision (low noise) and very good accuracy (low biases) of the satellite-derived data products as explained in *D7*. This application essentially also requires the generation of Level 2 products with latitude, longitude, and time information for each single satellite retrieval (although some emission information can also be derived from averaged data (e.g., Buchwitz et al., 2017b)). These requirements therefore imply the generation of XCO₂ and XCH₄ Level 2 data products from satellite instruments with near-surface sensitivity such as SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT as they measure reflected solar radiation in the near-infrared spectral region (permitting to extract appropriate XCO₂ and XCH₄ information). This is in contrast to instruments such as IASI measuring in the thermal infrared part of the electromagnetic spectrum with peak sensitivity in the middle or upper troposphere and typically only little near-surface sensitivity.

The focus of project C3S2_312a_Lot2 is therefore to generate Level 2 XCO₂ and XCH₄ products. However, in addition and as also described in this document, also other products are generated such as gridded (Level 3) XCO₂ and XCH₄ products and mid-tropospheric CO₂ and CH₄ products from IASI.

The focus of the following section is on the Level 2 XCO₂ and XCH₄ data products. Requirement related aspects for the Level 3 products are addressed in Sect. 3.2 and for the mid-tropospheric products in Sect. 4.2.

2.2.2 Required versus achieved performance of the Level 2 XCO₂ and XCH₄ products

The target requirements for the satellite-derived ECV XCO₂ and XCH₄ Level 2 products are provided in the Target Requirement and Gap Analysis Document (TRDGAD) (*D7*).

The TRDGAD (*D7*) requirements are based on GCOS requirements (*D1, D2, D3*), requirements as formulated by the Climate Modelling User Group (CMUG) of ESA's Climate Change Initiative (CCI) (*D5*) and requirements as formulated by the Climate Research Group (CRG) of the ESA GHG-CCI project (*D4*). The ESA GHG-CCI CRG requirements are highly relevant for the products as generated in this C3S2_312a_Lot2 project as these requirements consider the characteristics of existing satellite instruments, whereas the GCOS and CMUG requirements are less specific and often cannot be met by existing instruments. Examples are the 4-hour frequency requirement for tropospheric CO_2 or CH₄ columns as required by GCOS (see Table 23 from GCOS-200 (*D3*)). Neither can the frequency requirement be met with existing satellites, nor has it been attempted to generate tropospheric column products (as none of the existing instruments has been designed for this). The latest GCOS requirements document GCOS-245 (*D6*) formulates requirements for XCO₂ and XCH₄ products (which is good) but for future satellite instruments and these requirements can also not be met using existing satellites. The TRDGAD (*D7*) requirements are therefore largely based on *D4*.

The spatial resolution of the generated Level 2 products is identical to the satellite footprint, i.e., depends only on the given satellite input data and is independent of the retrieval algorithm. A comparison of the achieved performance with the required performance is therefore not meaningful as spatial resolution is a given instrument characteristic. This is also true for temporal coverage and spatio-temporal sampling, which are also instrument characteristic. However, due to the demanding accuracy requirements (see below) the data need to be carefully filtered (flagged) to make sure that users get only data which are "good enough" or at least "as good as possible". Data filtering and quality flagging is part of the algorithms used to generate the data products. The challenge here is to achieve the highest possible yield meaning the largest amount of individual footprint data with as good as possible data quality. There is no explicit requirement on the fraction of footprints classified as "good". All retrieval teams aim at achieving a good compromise between amount of data and accuracy.

Spatio-temporal characteristics of the satellites instruments we are using are as follows:

- SCIAMACHY/ENVISAT: 60 km cross-track and 30 km along-track in nadir mode; swath width 960 km; but nadir mode only about 50% of the time due to other observations modes (especially limb observations)
- GOSAT and GOSAT-2 products: 10 km (diameter); the single observations are typically on the order of 100 km apart
- OCO-2: 1.29 km cross-track and 2.25 km along-track; swath width 10 km

The most important requirements (which are related to retrieval algorithms and not to given instrument characteristics) for the envisaged applications are the random and systematic error requirements and the stability requirements.

The TRDGAD (*D7*) document contains explicit requirements for random errors, systematic errors and stability of the XCO₂ and XCH₄ data products in terms of goal (G), breakthrough (B) and threshold (T) requirements. The relevant table from *D7* is shown here as Table 8.

In the following, a short overview of the achieved data quality is given. For details users should consult document PQAR (*D9*). That document also contains a detailed description of the methods used to obtain the quality assessment results summarized here.

The achieved performance for the Level 2 XCO₂ and XCH₄ products is shown in Figure 29 and Figure 30, respectively. Assessment results are presented for (i) "Single measurement random error" (often also referred to as "Retrieval precision"), (ii) accuracy and (iii) stability.

As can also be seen from these two figures, more than one comparison method has been used to obtain the assessment results for a given product. This has been done to enhance the robustness of the conclusions. Therefore, more than one vertical bar is shown for the different products in these two figures (for details please see *D9*).

Level 2 products are single observation products and results are reported per ground-pixel (per footprint). The relevant requirements for "Random error" are therefore those listed in column "Single obs." in Table 8. The achieved performance is shown in the top panel of Figure 29 for XCO_2 and in the top panel of Figure 30 for XCH_4 .

The following can be concluded by comparing the requirements listed in Table 8, with the achieved performance for XCO₂ shown in Figure 29 and the achieved performance for XCH₄ shown in Figure 30:

The achieved performance in terms of random errors is typically better than the B requirement (< 3 ppm) for XCO₂ and close to the B requirement (< 17 ppb) for XCH₄, except for the SCIAMACHY XCH₄ products, where random errors are even exceeding the T requirement (34 ppb) (due to detector related issues resulting in quite noisy retrievals especially after 2005).

The most demanding requirement is the systematic error requirement, which is "better than 0.5 ppm" (threshold (T) requirement) for XCO_2 and "better than 10 ppb" (T requirement) for XCH_4 (see Table 8). Especially for XCO_2 this requirement is hardly achievable with current satellite sensors, and one must note that also ground-based reference data as used for validation are not much better than 0.5 ppm (see *D9* for details).

For accuracy and stability, the achieved performance is shown in Figure 29 and Figure 30 but also in addition the probability that the corresponding threshold requirement is met. The probabilities have been computed considering the uncertainty of the reference data and the uncertainty of the comparison method (see document *D9* for details).

The results for the achieved accuracy are shown in the second and third panels of the two figures. The absolute values of the achieved accuracy are shown in the 2nd panel of each figure. The achieved accuracy (or bias) has been estimated by comparisons with ground-based reference data (see *D9*). The lowest value of a vertical bar corresponds to the spatial bias and the upper value corresponds to the spatio-temporal bias (obtained by quadratically adding the temporal bias to the spatial bias). The dotted horizontal line shows the threshold (T) requirement (for XCH₄ in Figure 30 also a second line is shown indicating the breakthrough (B) requirements). The 3rd panel shows the corresponding probabilities.

From the 2nd panel of Figure 29 it can be seen that the spatio-temporal XCO₂ bias nearly always (i.e., for nearly all products and all assessment methods) exceeds the accuracy requirement of 0.5 ppm. As can be seen from the 3rd panel, the probability that this 0.5 ppm requirement is met is 68% for the XCO2_EMMA product but worse for the other products (the probability can be as low as 33% for the new GOSAT-2 product CO2_GO2_SRFP).

From the 2nd panel of Figure 30 it can be seen that the spatio-temporal biases of the various XCH₄ products are (depending on assessment method) typically better than the threshold requirement of 10 ppb except for the SCIAMACHY products. The probability that the threshold requirement is met is in the range 87% - 93% except for the SCIAMACHY products (55%-62%).

The two panels at the bottom of the two figures show the corresponding results for stability. As can be seen, the stability of nearly all products is typically very good (often larger than 90%).

Finally, here a summary of the quality assessment results:

*XCO*₂ *Level 2 products (see D9):*

Figure 29 shows a summary of the achieved performance in terms of single measurement random error (precision), relative accuracy or systematic error in terms of spatial (lower value) and spatio-temporal (higher value) biases (i.e., neglecting a possible constant bias or global offset) and stability in terms of linear bias drift/trend as obtained from comparison with TCCON XCO₂. Note that this figure contains for completeness results from previous assessments for CDR5 for products not updated for CDR7. These products are the SCIAMACHY products and the SRON GOSAT products. See corresponding CDR5 documents (ATBD GHG, 2021; PQAR GHG, 2021; PUGS GHG, 2021).

*XCH*₄ *Level 2 products (see D9):*

Figure 30 shows a summary of the achieved performance in terms of single measurement random error (precision), relative accuracy or systematic error in terms of spatial (lower value) and spatio-temporal (higher value) biases (i.e., neglecting a possible constant bias or global offset) and stability in terms of linear bias drift/trend as obtained from comparison with TCCON XCH₄. Note that this figure contains for completeness results from previous assessments for CDR5 for products not updated for CDR7. These products are the SCIAMACHY products and the SRON GOSAT products. See corresponding CDR5 documents (ATBD GHG, 2021; PQAR GHG, 2021; PUGS GHG, 2021).

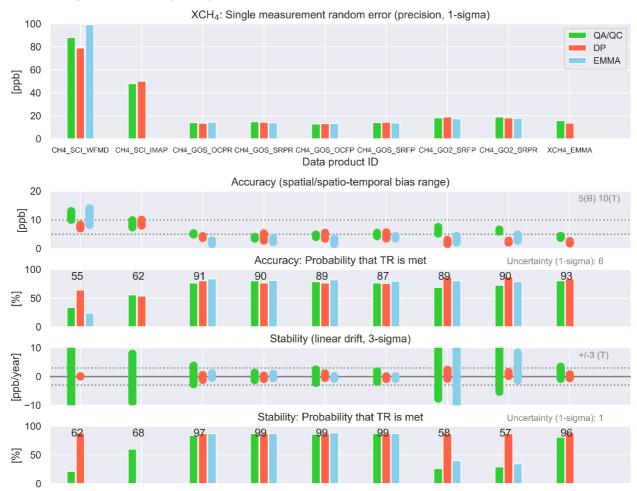
Comparison of required performance with achieved performance:

As an overall summary, Table 9 presents and overview of the required performance for random and systematic error and stability with the achieved performance for the Level 2 XCO₂ and XCH₄ data products as generated in this project.

Table 8: XCO₂ and XCH₄ random ("precision"), systematic error and stability requirements (from *D7*). Abbreviations: G=Goal, B=Breakthrough, T=Threshold requirement. §) Required systematic error after an empirical bias correction, that does not use the verification data. #) Required systematic error and stability after bias correction, where bias correction is not limited to the application of a constant offset / scaling factor.

Random and systematic error requirements for XCO ₂ and XCH ₄						
Parameter	Req. type	Random error ("Precision")		Systematic error	Stability	
	-77	Single obs.	1000 ² km ² monthly			
XCO ₂	G	< 1 ppm	< 0.3 ppm	< 0.2 ppm (absolute)	As systematic error but per year	
	В	< 3 ppm	< 1.0 ppm	< 0.3 ppm (relative ^{§)})	_"_	
	Т	< 8 ppm	< 1.3 ppm	< 0.5 ppm (relative ^{#)})	_"_	
XCH4	G	< 9 ppb	< 3 ppb	< 1 ppb (absolute)	< 1 ppb/year (absolute)	
	В	< 17 ppb	< 5 ppb	< 5 ppb (relative ^{§)})	< 2 ppb/year (relative ^{§)})	
	Т	< 34 ppb	< 11 ppb	< 10 ppb (relative ^{#)})	< 3 ppb/year (relative ^{#)})	

Figure 29 - Overview data quality assessment results for Level 2 XCO₂ data products (from D9). The green bars refer to the "Quality Assessment / Quality control" (QA/QC) results as described in detail in document D9. The red bars refer to results obtained by the data providers (DPs) (see D9). For "Accuracy" and "Stability" also the numerical values for the "Probability that TR is met" are given (computed as mean value if more than one value (bar) exists). Also listed (in grey on the right hand side) is the uncertainty of the reference data as used for the Target Requirement (TR) assessments. The listed values for products generated in previous C3S projects (products CO2_SCI_BESD, CO2_SCI_WFMD and CO2_GOS_SFFP) are listed here for completeness but have not been updated (for details see D9).



C3S Level 2 products: XCO₂ (CDR7)

Michael.Buchwitz@iup.physik.uni-bremen.de, 18-Aug-2023

Figure 30 - Overview data quality assessment results for Level 2 XCH₄ data products (from *D9*). The green bars refer to the "Quality Assessment / Quality control" (QA/QC) results as described in detail in document *D9*. The red bars refer to results obtained by the data providers (DPs) (see *D9*). For "Accuracy" and "Stability" also the numerical values for the "Probability that TR is met" are given (computed as mean value if more than one value (bar) exists). Also listed (in grey on the right hand side) is the uncertainty of the reference data as used for the Target Requirement (TR) assessments. The listed values for products generated in previous C3S projects (products CH4_SCI_WFMD, CH4_SCI_IMAP, CH4_GOS_SRFP and CH4_GOS_SFPR) are listed here for completeness but have not been updated (for details see *D9*).

C3S Level 2 products: XCH₄ (CDR7)

Michael.Buchwitz@iup.physik.uni-bremen.de, 18-Aug-2023

Table 9: Comparison of required performance (see *D7*) with achieved performance in terms of probability that the corresponding requirement is met (see *D9*). Listed are only products as generated in this project. (#) Achieved performance in mixing ratio units in brackets.

	Random error single observation	Systematic error (spatio-temporal bias)	Stability (linear bias drift)	Comment		
		Level 2 XCO ₂ products:				
Required (T)	< 8 ppm (#)	< 0.5 ppm	< 0.5 ppm/year			
Achieved:	Probability	that threshold requirem	ent is met:			
CO2_GOS_OCFP	100% (1.9 ppm)	46%	97%			
CO2_GO2_SRFP	100% (3.0 ppm)	44%	97%			
XCO2_EMMA	100% (1.6 ppm)	68%	97%			
		Level 2 XCH ₄ products:				
Required (T)	< 34 ppb (#)	< 34 ppb (#) < 10 ppb < 3 ppb/year				
Achieved:	Probability					
CH4_GOS_OCPR	100% (18 ppb)	91%	97%			
CH4_GOS_OCFP	100% (13 ppb)	89%	99%			
CH4_GO2_SRPR	100% (19 ppb)	90%	57%			
CH4_GO2_SRFP	100% (18 ppb)	89%	58%			
XCH4_EMMA	100% (16 ppb)	89%	98%			

2.3 Data usage information

The data format is described in detail in Sect. 2.1.

As explained in that section, the main variables are xco2 (in ppm) and xch4 (in ppb). Also reported are the corresponding (1-sigma) uncertainties (variables xco2_uncertainty (in ppm) and xch4_uncertainty (in ppb)). Important is also the quality flag (variables xco2_quality_flag and xch4_quality_flag). For "good" data the numerical value of the quality flag is 0 (zero). All results shown in this document (and in other documents such as *D9* presenting the validation and comparison results) are for "good" data with quality flag = 0. All Level 2 product contain this variable, but some only contain "good" data. It is strongly recommended to use this variable and to use only data with quality flag = 0.

These variables are reported per satellite footprint along with spatial (variables latitude and longitude) and temporal information (variable time). The latitudes and longitudes are the footprint centre coordinates. This information is provided for all Level 2 data products (see common variables in Sect. 2.1.1). The individual satellite data products may contain additional information such as footprint corner coordinates (see the product specific Annexes to this main PUGS document as listed in Sect. 7). Furthermore, for each footprint additional information is provided such as averaging kernels and *a priori* profiles (see Sect. 2.1).

Note that use of the atmospheric CO₂ and CH₄ data products is not trivial and typically the interpretation of these products requires appropriate modelling. The main reason for this is the long lifetime of CO₂ and CH₄ in the atmosphere combined with atmospheric transport (and for CH₄ also atmospheric chemistry needs to be considered). Therefore, atmospheric concentrations may be locally or regionally higher (or lower) compared to background concentration far away from the source (or sink) region. A further complication arises due to the sparseness of the data due to the spatial coverage of the satellite data, because measurements can only be made on parts of the dayside (the solar zenith angle must be smaller than about 75°) but also because of cloud contamination and other reasons (e.g., contamination due to desert dust).

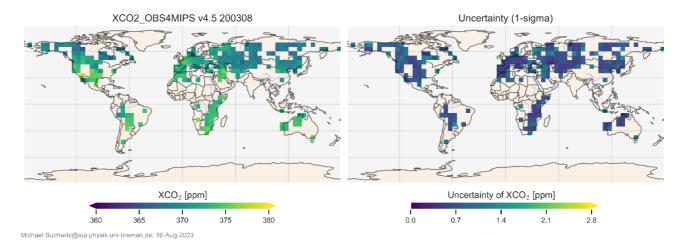
The data products described can be used in combination with appropriate modelling to obtain information on the various natural and anthropogenic surface sources and sinks of CO2 and CH4 as shown in a number of scientific publications such as Alexe et al., 2015; Bergamaschi et al., 2009, 2013; Detmers et al., 2015; Guerlet et al., 2013; Houweling et al., 2004, 2015; Pandey et al., 2016; Reuter et al., 2014a, 2014b, 2017; Ross et al., 2013; Schneising et al., 2014a, 2014b; Turner et al., 2015, 2016. They can also be used for comparisons with models (e.g., carbon models or global chemistry-climate models) as also shown in a several publications (e.g., Buchwitz et al., 2005, 2013; Cogan et al., 2011; Hayman et al., 2014; Parker et al., 2011; Shindell et al., 2013). The products can also be used to study atmospheric trends and variability as shown in Buchwitz et al., 2007; Frankenberg et al., 2011; Schneising et al., 2011. For a comprehensive list of relevant publications including links to these publications please see the publication list on the ESA GHG-CCI project website. Note that all satellite-derived CO₂ and CH₄ products generated now operationally via C3S (as described in this document) have initially been (further) developed as part of the ESA GHG-CCI

project, which focussed on the needed research and development activities to make algorithms fit for operational purposes.

The products do not have any known issues.

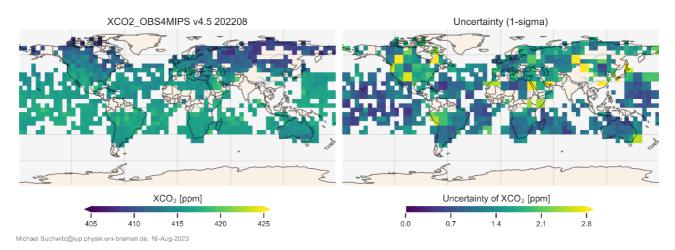
3. Level 3 XCO₂ and XCH₄ data products

3.1 Product description


The Level 3 data products are in Obs3MIPs format and described in Sect. 3.1.1 for XCO_2 and in Sect. 3.1.2 for XCH_4 . Obs4MIPs (Observations for Model Intercomparisons Project)⁵) is an activity to make observational products more accessible especially for climate model intercomparisons.

The XCO₂ and XCH₄ Obs4MIPs products are gridded data products with a spatial resolution of $5^{\circ}x5^{\circ}$ (i.e., using an equirectangular (Cartesian) latitude/longitude grid) and monthly time resolution. These products have been generated using as input the Level 2 EMMA products described in Sect. 2 and in more detail in ANNEX D (see Sect. 7.4).

We also recommend that users of these Level 3 products should read the relevant peer-reviewed publication, i.e., Reuter et al., 2020, describing how (a previous version of) this data product has been generated and how it can be used to address scientific applications.


Figure 31 to Figure 34 show examples of these products in terms of XCO_2 and its uncertainty and XCH_4 and its uncertainty for selected months as directly contained in the product files.

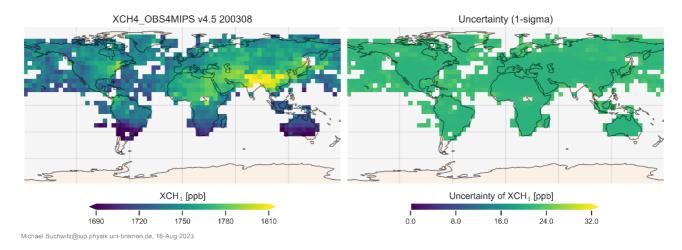

⁵ <u>https://www.earthsystemcog.org/projects/obs4mips/</u> (last access: 3-Apr-2023)

Figure 31 –OBS4MIPS XCO₂ (left) and corresponding uncertainty (right) for August 2003.

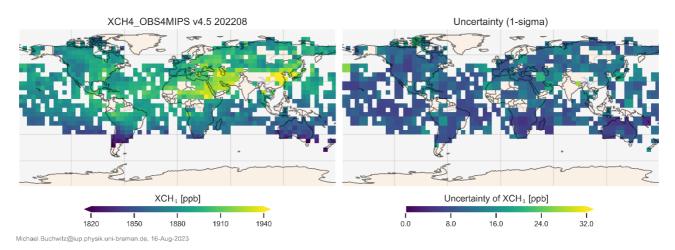

Figure 32 – OBS4MIPS XCO₂ (left) and corresponding uncertainty (right) for August 2022.

Figure 33 – OBS4MIPS XCH₄ (left) and corresponding uncertainty (right) for August 2003.

Figure 34 – OBS4MIPS XCH₄ (left) and corresponding uncertainty (right) for August 2022.

3.1.1 Obs4MIPS XCO₂ product format

The main quantity / data field is the column-average dry-air mole fraction of atmospheric carbon dioxide (CO₂), denoted XCO₂, as retrieved from the two satellite instruments SCIAMACHY/ENVISAT (Burrows et al., 1995; Bovensmann et al., 1999), TANSO-FTS/GOSAT (Kuze et al., 2009) and OCO-2 (Crisp et al., 2004; Boesch et al., 2011).

 XCO_2 is a dimensionless quantity (unit: mol/mol) defined as the vertical column of CO_2 divided by the vertical column of dry air (= all air molecules except water vapor) (see, e.g., Buchwitz et al., 2005, for details). For example, if XCO_2 is 0.0004 (i.e., 400 ppm, parts per million) at a given location this means that there are 400 CO_2 molecules above that location per 1 million air molecules (excluding water vapour molecules).

Table 10 lists the main characteristics of this data product. See also Reuter et al., 2020, for an overview of why and how these products have been generated and for additional details.

The entire product is contained in a single file using this file name convention: xco2_c3s_l3_v45_200301_202212.nc

Explanation:

- *xco2*: Variable name
- *c3s*: Copernicus Climate Change Service
- 13: Level 3 product
- *v44*: Version 4.5
- 200301_202212: First month and last month of data set

 Table 10: Main characteristics of the XCO₂ Obs4MIPs v4.5 product.

CF variable name, units	Long name: column-average dry-air mole fraction of atmospheric carbon dioxide Standard name: dry_atmosphere_mole_fraction_of_carbon_dioxide Units: dimensionless (mol/mol) See also: CF Standard Name Table, Version 31, 08 March 2016 (http://cfconventions.org/Data/cf-standard-names/31/build/cf-standard-name- table.html)		
Spatial resolution	5° equal angle		
Temporal resolution	Monthly average, from January 2003 – December 2022		
Coverage	Global (2003 – mid 2009: land only; afterwards land and ocean)		

Note that a resolution of 5°x5° has been selected (instead of, e.g., 1°x1°) to ensure better noise suppression (note that the underlying individual satellite retrievals are noisy and sparse due to very strict quality filtering) (see ATBD *D8*).

The variables as contained in the XCO₂ Obs4MIPs product file are listed in Table 11.

Variable name	Short Description			
хсо2	Satellite retrieved column-average dry-air mole fraction of atmospheric			
	carbon dioxide (CO ₂)			
	(Note: typical values are << 1.0 (typically close to 0.0004) and 1.0E20 = no			
	data)			
xco2_nobs	Number of individual XCO_2 Level 2 observation (per 5°x5° grid cell) used to			
	compute the reported Level 3 XCO ₂ monthly average value (0 = no data)			
xco2_stderr	Reported uncertainty defined as standard error of the average including			
	single sounding noise and potential seasonal and regional biases			
xco2_stddev	Average standard deviation of the underlying XCO ₂ Level 2 observations			
time	Time in days since 1-Jan-1990			
time_bnds	Time boundaries. Start and end time of each month in days since 1-Jan-			
	1990			
lat	Center latitude in degrees north (-90.0 to +90.0)			
lat_bnds	Latitude boundaries (upper and lower boundaries of 5 deg latitude bands)			
lon	Center longitude in degrees east (-180.0 to +180.0)			
lon_bnds	Longitude boundaries (upper and lower boundaries of 5 deg longitude			
	bands)			
land_fraction	Fraction of 5 deg x 5 deg cells covered by land (numerical values are			
	between 0.0 and 1.0)			
pre	Pressure levels (dimensionsless as normalized to surface pressure)			
pre_bnds	Pressure layer boundaries (dimensionsless as normalized to surface			
	pressure)			
column_averaging_kernel	XCO ₂ averaging kernel (dimensionless); a vertical profile (1.0E20 = no data)			
vmr_profile_co2_apriori	CO ₂ volume mixing ratio profile (dimensionless fraction between 0.0 and			
	1.0; 1.0E20 = no data)			

3.1.2 Obs4MIPS XCH₄ product format

The main quantity / data field is the column-average dry-air mole fraction of atmospheric methane (CH₄), denoted XCH₄, as retrieved from the two satellite instruments SCIAMACHY/ENVISAT (Burrows et al., 1995; Bovensmann et al., 1999) and TANSO-FTS/GOSAT (Kuze et al., 2009).

XCH₄ is a dimensionless quantity (unit: mol/mol) defined as the vertical column of CH₄ divided by the vertical column of dry air (= all air molecules except water vapor) (see, e.g., *Buchwitz et al., 2005*, for details). For example, if XCH₄ is 0.0000018 (i.e., 1800 ppb, parts per billion) at a given location this means that there are 1800 CH₄ molecules above that location per 1 billion air molecules (excluding water vapour molecules).

Table 12 lists the main characteristics of this data product. See also Reuter et al., 2020, for an overview and additional details.

The entire product is contained in a single file using this file name convention: *xch4_c3s_l3_v45_200301_202212.nc*

Explanation:

- *xch4*: Variable name
- *c3s*: Copernicus Climate Change Service
- 13: Level 3 product
- *v44*: Version 4.4
- 200301_202112: First month and last month of data set

 Table 12: Main characteristics of the XCH4 Obs4MIPs v4.5 product.

CF variable name, units	Long name: column-average dry-air mole fraction of atmospheric methane Standard name: dry_atmosphere_mole_fraction_of_methane Units: dimensionless (mol/mol) See also: CF Standard Name Table, Version 31, 08 March 2016 (http://cfconventions.org/Data/cf-standard-names/31/build/cf-standard-name- table.html)		
Spatial resolution	5° equal angle		
Temporal resolution	Monthly average, from January 2003 – December 2022		
Coverage	Global (November 2005 – March 2009: land only; before and afterwards land and ocean)		

Note that a resolution of 5°x5° has been selected (instead of, e.g., 1°x1°) to ensure better noise suppression (note that the underlying individual satellite retrievals are noisy and sparse due to very strict quality filtering).

The variables as contained in the XCH₄ Obs4MIPs product file are listed in Table 13.

Variable name	Short Description				
xch4	Satellite retrieved column-average dry-air mole fraction of atmospheric methane (CH ₄)				
	(Note: typical values are << 1.0 (typically close to 0.0000018) and 1.0E20 = no data)				
xch4_nobs	Number of individual XCH ₄ Level 2 observation (per 5°x5° grid cell) used to compute the reported Level 3 XCH ₄ monthly average value (0 = no data)				
xch4_stderr	Reported uncertainty defined as standard error of the average including single sounding noise and potential seasonal and regional biases				
xch4_stddev	Average standard deviation of the underlying XCH ₄ Level 2 observations				
time	Time in days since 1-Jan-1990				
time_bnds	Time boundaries. Start and end time of each month in days since 1-Jan- 1990				
lat	Center latitude in degrees north (-90.0 to +90.0)				
lat_bnds	Latitude boundaries (upper and lower boundaries of 5 deg latitude bands)				
lon	Center longitude in degrees east (-180.0 to +180.0)				
lon_bnds	Longitude boundaries (upper and lower boundaries of 5 deg longitude bands)				
land_fraction	Fraction of 5 deg x 5 deg cells covered by land (numerical values are between 0.0 and 1.0)				
pre	Pressure levels (dimensionsless as normalized to surface pressure)				
pre_bnds	Pressure layer boundaries (dimensionsless as normalized to surface pressure)				
column_averaging_kernel	XCH ₄ averaging kernel (dimensionless); a vertical profile (1.0E20 = no data)				
vmr_profile_ch4_apriori	CH ₄ volume mixing ratio profile (dimensionless fraction between 0.0 and 1.0; 1.0E20 = no data)				

Table 13: XCH₄ Obs4MIPs v4.5 product variables.

3.2 Target requirements

For a general overview on target requirements including Level 2 products please see Sect. 2.2.1. Here we address requirements and achieved performance of the Level 3 products.

The XCO_2 and XCH_4 products in Obs4MIPS format as presented in this section are Level 3 products with monthly time and $5^{\circ}x5^{\circ}$ spatial resolution.

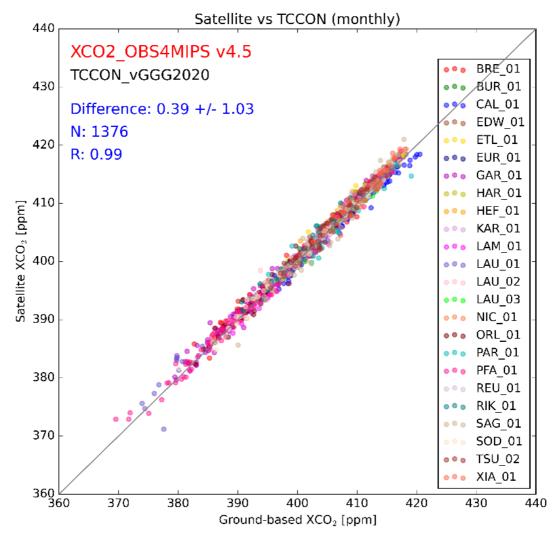
Explicit requirements for Level 3 products are not formulated in *D7*. The development of satellitederived gridded ECV products in Obs4MIPs format started in the framework ESA's Climate Change Initiative (CCI) via the GHG-CCI project⁶ (see also Reuter et al., 2020). The envisaged main application is comparison with climate models. The GHG-CCI project team therefore proposed already several years ago to generate XCO₂ and XCH₄ products in Obs4MIPS format at the described spatio-temporal resolution. That spatio-temporal resolution was assumed to be appropriate for climate model comparisons considering also the characteristics of existing satellites. It was later confirmed by scientific studies (e.g., Lauer et al., 2017, and Gier et al., 2020) that the generated products were in fact very useful for the envisaged application.

As explicit target requirements for these products do not exist, it is assumed for the purpose of this project that the required accuracy (in terms of spatio-temporal biases) and stability (in terms of linear bias drift) is essentially identical with the corresponding requirement as listed in Table 8 for the Level 2 data products. With this assumption the achieved quality can be compared with the required quality and the findings can be summarized as follows (concerning the reported probabilities please see the more detailed discussion as presented in Sect. 2.2):

XCO₂ Level 3 product (see D9):

Figure **35** shows a comparison of Level 3 product XCO2_OBS4MIPS with TCCON XCO₂. Based on these and related assessments (see *D9*) the validation of Level 3 product XCO2_OBS4MIPS can be summarized as follows:

The overall monthly mean uncertainty is 1 ppm and the mean bias is 0.39 ppm. Relative systematic error, i.e., the spatio-temporal bias, is 0.5±0.6 ppm (1-sigma). The computed linear drift of 0.09±0.23 ppm (1-sigma) is small and not significant. The probability that the 0.5 ppm accuracy requirement is met is 66%. The probability that the 0.5 ppm/year stability requirement is met is 97%. Overall, this product has therefore reasonable accuracy and high stability.


⁶ <u>https://climate.esa.int/en/projects/ghgs/</u> (last access: 5-Apr-2023)

*XCH*⁴ *Level 3 product (see D9):*

Figure 36 shows a comparison of Level 3 product XCH4_OBS4MIPS with TCCON XCH₄. Based on these and related assessments (see *D9*) the validation of Level 3 product XCH4_OBS4MIPS can be summarized as follows:

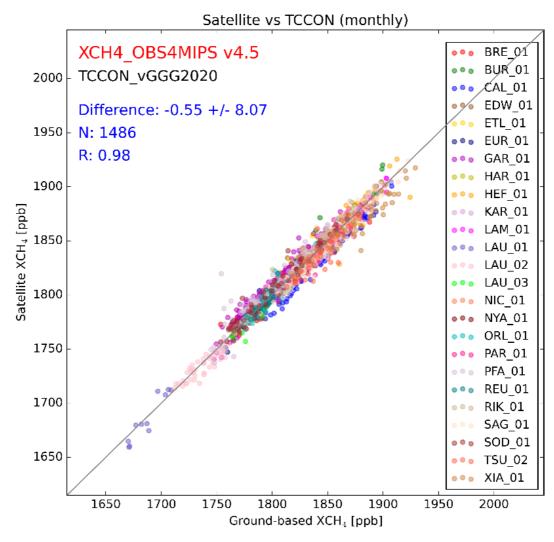

The overall monthly mean uncertainty is 8.1 ppb and the mean bias is -0.55 ppb. Relative systematic error, i.e., the spatio-temporal bias, is 4.7±6 ppb (1-sigma). The computed linear drift of 0.68±1.1 ppb (1-sigma) is small and not significant. The probability that the 10 ppb accuracy requirement is met is 89%. The probability that the 3 ppb/year stability requirement is met is 98%. Overall, this product has therefore very good accuracy and high stability.

Figure 35 - Overview data quality assessment results for Level 3 XCO₂ Obs4MIPs format data product. Note that each dot corresponds to a given TCCON site and month.

TR accuracy: p(ACC<0.50; 0.52+/-0.60): 66% TR stability (drift): p(STA:+/-0.50; 0.05+/-0.21): 97% Michael.Buchwitz@iup.physik.uni-bremen.de, 16-Aug-2023 coloc:5/5 corr:NN

Figure 36 - Overview data quality assessment results for Level 3 XCH₄ Obs4MIPs format data product. Note that each dot corresponds to a given TCCON site and month.

TR accuracy: p(ACC<10.00; 4.68+/-6.00): 89% TR stability (drift): p(STA:+/-3.00; 0.68+/-1.11): 98% Michael.Buchwitz@iup.physik.uni-bremen.de, 16-Aug-2023 coloc:5/5 corr:NN

3.3 Data usage information

The data format is described in detail in Sect. 3.1.1 for XCO_2 and in Sect. 3.1.2 for XCH_4 . As shown in these sections, the main variables of these Level 3 products are xco2 and xch4, the column-averaged dry-air mole fractions of XCO_2 and XCH_4 , respectively. In contrast to the corresponding Level 2 products, the units used here are not ppm (10⁻⁶) or ppb (10⁻⁹) but are dimensionless quantities in mol/mol, i.e., they are reported as numerical fractional values in the range 0.0 - 1.0.

Also reported (in the same units) are the corresponding (1-sigma) uncertainties (variables xco2_stderr and xch4_stderr). These variables are reported per month and per 5°x5° (latitude times longitude) grid cell. Also provided are variables related to spatial (variables lat, lat_bnds, lon, lon_bnds) and temporal information (time, time_bnds) as described in detail in Sects. 3.1.1 and 3.1.2. How these products "look like" is shown in several figures in this document (Figure 31 - Figure 34).

Similar to the Level 2 products (see Sect. 2.1) information on altitude sensitivity (variable column_averaging_kernel) and *a priori* profiles (variables vmr_profile_co2_apriori and vmr_profile_ch4_apriori) is also provided.

The Level 3 Obs4MIPs XCO₂ and XCH₄ products have been primarily generated for comparison with climate models, see, for example Lauer et al., 2017, and Gier et al., 2020, but have also been used for other applications such as computations of annual mean atmospheric growth rates (e.g., Buchwitz et al., 2018; Reuter et al., 2020).

The Level 3 XCO₂ and XCH₄ v4.4 Obs4MIPS format data products described in this document (in combination with more recent satellite XCO₂ and XCH₄ retrievals from the CAMS project⁷) have been used for the Copernicus Press Release from January 2023: "Copernicus: 2022 was a year of climate extremes, with record high temperatures and rising concentrations of greenhouse gases"⁸.

The products do not have any known issues.

⁷ <u>https://atmosphere.copernicus.eu</u> (last access: 5-Apr-2023)

⁸ <u>https://climate.copernicus.eu/copernicus-2022-was-year-climate-extremes-record-high-temperatures-and-rising-concentrations</u> (last access: 5-Apr-2023)

4. Level 2 mid-tropospheric CO₂ and CH₄ data products

4.1 Product description

These products contain the IASI mid-tropospheric CO₂ and CH₄ mixing ratios and the AIRS midtropospheric CO₂ mixing ratio, i.e., the description given in this section is valid for these products:

- CO2_IASA_NLIS (product from IASI on Metop-A)
- CO2_IASB_NLIS (product from IASI on Metop-B)
- CO2_IASC_NLIS (product from IASI on Metop-C)
- CH4_IASA_NLIS (product from IASI on Metop-A)
- CH4_IASB_NLIS (product from IASI on Metop-B)
- CH4_IASC_NLIS (product from IASI on Metop-C)
- CO2_AIRS_NLIS (product from AIRS; as generated in a pre-cursor project; not updated in this project)

The format of these products is essentially identical as the Level 2 XCO₂ and XCH₄ data product format described in Sect. 2.

They only exceptions are:

- xco2 needs to be replaced by co2 (e.g., co2_quality_flag instead of xco2_quality_flag)
- xch4 needs to be replaced by ch4 (e.g., ch4_quality_flag instead of xch4_quality_flag)
- All other variable names are the same but note that some contain -999.0 for "no valid data" (e.g., some angles and uncertainty).

For additional details see the corresponding PUGS ANNEX E (see Sect. 7.5).

4.2 Target requirements

For a general overview on target requirements including Level 2 XCO₂ and XCH₄ products please see Sect. 2.2.1. Here we address requirements and achieved performance of the Level 2 mid-tropospheric products.

As explained in Sect. 2.2, we use existing instruments to generate Level 2 products and, therefore, spatio-temporal resolution and sampling are determined by satellite instrument and satellite characteristics and a comparison of achieved performance with required performance does not make sense. Instead, we report here the relevant spatio-temporal characteristics:

- IASI instruments on Metop satellites:
 - o Spatial resolution 12 km at nadir
 - o Swath width 2200 km
 - Global coverage twice a day

The TRDGAD (*D7*) document contains requirements for the CO_2 and CH_4 mid-tropospheric data products for random errors, systematic errors and stability in terms of goal (G), breakthrough (B) and threshold (T) requirements. The numerical values of these requirements are identical with the numerical values as listed in Table 8, i.e., the requirements as listed in Table 8 are also applicable for the CO_2 and CH_4 mid-tropospheric data products.

Detailed assessment results related to the quality of these data products are provided in document *D9* and can be summarized as follows:

Summary quality IASI CO₂ products (see D9):

The single measurement precision of product CO2_IASA_NLIS (from IASI on Metop-A) is 1 ppm. The mean bias (global offset) is 1.21 ppm. The estimated relative accuracy is around 1 ppm. The probability that the < 0.5 ppm user requirement is met has been estimated to 50% taking into account the uncertainty of the reference data and assessment method. The product is also very stable (0.03 +/- 0.06 ppm/year (1-sigma)) meeting the requirement for long-term drift stability. The performance of products CO2_IASB_NLIS (from IASI on Metop-B) and CO2_IASC_NLIS (from IASI on Metop-C) is similar. Note that this statement is based on analysis of time series and spatial maps etc. but not on a detailed quantitative analysis as carried out for CO2_IASA_NLIS due to lack of appropriate reference data (e.g., time series too short).

Summary quality IASI CH₄ products (see D9):

The single measurement precision of product CH4_IASA_NLIS (from IASI on Metop-A) is 12 ppb. The mean bias (global offset) is approximately 3 ppb. The product appears to meet the "relative systematic error" requirement of better than 10 ppb: the estimated relative accuracy is 3 ppb. The product appears to be very stable, but a quantitative analysis could not be carried out due to lack of reference data. The performance of products CH4_IASB_NLIS (from IASI on Metop-B) and CH4_IASC_NLIS (from IASI on Metop-C) is similar. Note that this statement is based on a detailed

analysis of time series and spatial maps etc. but not on a quantitative analysis as carried out for CH4_IASA_NLIS due to lack of appropriate reference data (e.g., time series too short).

Comparison of required performance with achieved performance:

As an overall summary, Table 14 presents and overview of the required performance for random and systematic error and stability with the achieved performance for the Level 2 CO₂ and CH₄ mid-tropospheric data products as generated in this project.

Table 14: Comparison of required performance (see *D7*) with achieved performance in terms of probability that the corresponding requirement is met (see *D6*). Listed are only products as generated in this project. (*) Quantitative assessment not possible, e.g., due to lack of reference data. (#) Achieved performance in mixing ratio units in brackets.

	Random error single observation	Systematic error (spatio-temporal bias)	Stability (linear bias drift)	Comment		
	Level 2					
Required (T)	< 8 ppm (#)	< 0.5 ppm	< 0.5 ppm/year			
Achieved:	Probability					
CO2_IASA_NLIS	100% (1 ppm)	50%	100%			
CO2_IASB_NLIS	100% (1 ppm)	(*)	(*)			
CO2_IASC_NLIS	100% (1 ppm)	(*)	(*)			
	Level 2	Level 2 mid-tropospheric CH ₄ products:				
Required (T)	< 34 ppb (#)	< 10 ppb	< 3 ppb/year			
Achieved:	Probability					
CH4_IASA_NLIS	100% (12 ppb)	90%	(*)			
CH4_IASB_NLIS	100% (12 ppb)	(*)	(*)			
CH4_IASC_NLIS	100% (12 ppb)	(*)	(*)			

4.3 Data usage information

The data format is described in detail in Sect. 2.1.

As explained in that section, the main variables are co2 (in ppm) and ch4 (in ppb). Also reported are the corresponding (1-sigma) uncertainties (variables co2_uncertainty (in ppm) and ch4_uncertainty (in ppb)). Important is also the quality flag (variables co2_quality_flag and ch4_quality_flag). For "good" data the numerical value of the quality flag is 0 (zero). All results shown in this document (and in other documents such as *D9* presenting the validation and comparison results) are for "good" data with quality flag = 0. All Level 2 product contain this variable but some only contain "good" data. It is strongly recommended to use this variable and to use only data with quality flag = 0.

These variables are reported per satellite footprint along with spatial (variables latitude and longitude) and temporal information (variable time). The latitudes and longitudes are the footprint centre coordinates. This information is provided for all Level 2 data products (see common variables in Sect. 2.1.1). The individual satellite data products may contain additional information such as footprint corner coordinates (see the product specific Annexes to this main PUGS document as listed in Sect. 7). Furthermore, for each footprint additional information is provided such as averaging kernels (variables co2_averaging_kernel and ch4_averaging_kernel) and corresponding pressure levels (variable pressure_levels) (see Sect. 2.1).

The data products have been used to study atmospheric trends and variability, for comparison with models and to obtain information on sources and sinks as shown in several publications (e.g., Chevallier et al., 2005, 2009a; Crevoisier et al., 2004, 2009, 2009b, 2013; Cressot et al., 2014.

The products do not have any known issues.

5. Data access information

The data products and corresponding documentation are / will be made available via the Copernicus Climate Data Store (CDS):

https://cds.climate.copernicus.eu/#!/home

Direct link to CO₂ products:

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-carbon-dioxide?tab=overview

Direct link to CH₄ products:

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-methane?tab=overview

Tabs / riders lead to the following items:

- Overview
 - o Short overview of all products
- Download data
 - Data access information
- Quality assessment
 - The CDS datasets are assessed by the Evaluation and Quality Control (EQC) function of C3S independently of the data supplier and the EQC information are available on this site.
- Documentation
 - Links to the following documents:
 - Algorithm Theoretical Basis Document (ATBD)
 - Product User Guide (PUG)
 - Product Quality Assurance Document (PQAD)
 - Product Quality Assessment Report (PQAR)
 - System Quality Assurance Document (SQAD)
 - Target Requirements and Gap Analysis (TRDGAD)
 - Note that pdf versions of all documents (including previous versions) are (also) available from here: <u>https://www.iup.uni-bremen.de/carbon_ghg/cg_data.html#C3S_GHG</u>
- View
 - o Visualization of selected data products in terms of global maps

6. Acknowledgement

We acknowledge previous funding by the European Space Agency (ESA) via Climate Change Initiative (CCI) project GHG-CCI. This funding significantly enhanced the quality of the retrieval algorithms and related documentation. This resulted in more mature data products as needed for an operational project such as the Copernicus Climate Change Service (C3S). We also acknowledge the availability of GOSAT and GOSAT-2 data products via the ESA GOSAT Third Party Mission (TPM) archive.

We are also very grateful to the GOSAT/GOSAT-2 teams in Japan comprising the Japan Aerospace Exploration Agency (JAXA), the National Institute for Environmental Studies (NIES), and the Ministry of the Environment (MOE) for providing access to the GOSAT and GOSAT-2 Level 1 and Level 2 data products.

We also acknowledge the availability of OCO-2 Level 1 and Level 2 (XCO₂) data products from NASA, which have been used for the generation on the XCO2_EMMA and XCO2_OBS4MIPS products. These products also include OCO-2 XCO₂ retrieved at Univ. Bremen with the FOCAL algorithm. The FOCAL activities would not have been possible without funding from University of Bremen, from the EU H2020 projects CHE (grant agreement ID: 776186) and VERIFY (Grant agreement ID: 776810), from ESA via project GHG-CCI+ and from EUMETSAT project FOCAL-CO2M.

Finally, we acknowledge the availability of TCCON data via the TCCON data archive (<u>https://tccondata.org/</u>).

7. List of ANNEXes

The ANNEXes to this main document are the following ANNEXes A – E:

7.1 ANNEX A: PUGS for products CO2_GOS_OCFP, CH4_GOS_OCFP and CH4_OCPR

Describes the GOSAT XCO₂ and XCH₄ Level 2 products generated by Univ. Bremen (previously University of Leicester, UK).

7.2 ANNEX B: PUGS for products CO2_GO2_SRFP and CH4_GO2_SRFP

Describes the GOSAT-2 XCO₂ and XCH₄ Full Physics (FP) Level 2 products generated by SRON, The Netherlands.

7.3 ANNEX C: PUGS for product CH4_GO2_SRPR

Describes the GOSAT-2 XCH₄ Proxy (PR) Level 2 product generated by SRON, The Netherlands.

7.4 ANNEX D: PUGS for XCO2_EMMA, XCH4_EMMA, XCO2_OBS4MPIS, XCH4_OBS4MIPS

Describes the multi-sensor multi-algorithms merged XCO₂ and XCH₄ Level 2 and 3 products generated by University of Bremen, Germany.

7.5 ANNEX E: PUGS for IASI CO₂ and CH₄ and AIRS CO₂ mid-tropospheric products

Describes the mid-tropospheric CO_2 and CH_4 products from the IASI instrument series generated by LMD/CNRS, France. Also describes the AIRS mid-tropospheric CO_2 product as generated in a precursor project.

These ANNEXes and the corresponding data products are / will be available via the Copernicus Climate Data Store (CDS): <u>https://cds.climate.copernicus.eu/#!/home</u>

See also Copernicus Climate Change Service (C3S): <u>https://climate.copernicus.eu/</u>

pdf versions of all documents (including previous versions) are (also) available from <u>https://www.iup.uni-bremen.de/carbon_ghg/cg_data.html#C3S_GHG</u>

References

Alexe et al., 2015: Alexe, M., P. Bergamaschi, A. Segers, R. Detmers, A. Butz, O. Hasekamp, S. Guerlet, R. Parker, H. Boesch, C. Frankenberg, R. A. Scheepmaker, E. Dlugokencky, C. Sweeney, S. C. Wofsy, and E. A. Kort, <u>Inverse modeling of CH4 emissions for 2010–2011 using different satellite</u> retrieval products from GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15, 113–133, doi:10.5194/acp-15-113-2015, 2015.

ATBD GHG, 2021: Buchwitz, M., Aben, I., J., Armante, R., Boesch, H., Crevoisier, C., Di Noia, A., Hasekamp, O. P., Reuter, M., Schneising-Weigel, O., Wu, L., Algorithm Theoretical Basis Document (ATBD) – Main document for Greenhouse Gas (GHG: CO₂ & CH₄) data set CDR 5 (01.2003-06.2020), C3S project C3S_312b_Lot2_DLR, v5.0, 2021. Access: All documents: <u>https://www.iup.unibremen.de/carbon_ghg/cg_data.html#C3S_GHG</u>; this document: <u>https://www.iup.unibremen.de/carbon_ghg/docs/C3S/CDR5_2003-mid2020/C3S_D312b_Lot2.1.3.2-v3.0_ATBD-GHG_MAIN_v5.0.pdf</u>

ATBD GHG, 2023: Buchwitz, M., Barr, A., Boesch, H., Borsdorff, T., Crevoisier, C., Di Noia, A., Hasekamp, O. P., Landgraf, J., Meilhac, N., Parker, R., Reuter, M., Schneising-Weigel, O.: Algorithm Theoretical Basis Document (ATBD) – Main document for Greenhouse Gas (GHG: CO₂ & CH₄) data set CDR6 (01.2003-12.2021), C3S project C3S2_312a_Lot2_DLR, v6.2, 31/01/2023, pp. 44, 2023. Link: <u>https://www.iup.uni-bremen.de/carbon_ghg/docs/C3S/CDR6_2003-2021/C3S2_312a_Lot2_D-</u> WP1_ATBD-2022-GHG_MAIN_v6.2.pdf

Bergamaschi et al., 2009: Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling, S., Dentener, F., Dlugokencky, E. J., Miller, J. B., Gatti, L. V., Engel, A., and Levin, I.: Inverse modeling of global and regional CH₄ emissions using SCIAMACHY satellite retrievals, J. Geophys. Res., 114, D22301, doi:10.1029/2009JD012287, 2009.

Bergamaschi et al., 2013: Bergamaschi, P., Houweling, H., Segers, A., et al., <u>Atmospheric CH4 in the</u> <u>first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and</u> <u>NOAA surface measurements</u>, J. Geophys. Res., 118, 7350-7369, doi:10.1002/jrgd.50480, 2013.

Boesch et al., 2011: Boesch, H., D. Baker, B. Connor, D. Crisp, and C. Miller, Global characterization of CO₂ column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission, Remote Sensing, 3 (2), 270-304, 2011.

Bovensmann et al., 1999: Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., Goede, A. H. P. (1999), SCIAMACHY - Mission objectives and measurement modes, J. Atmos. Sci., 56 (2), 127-150, 1999.

Bovensmann et al., 2010: Bovensmann, H., Buchwitz, M., Burrows, J. P., Reuter, M., Krings, T., Gerilowski, K., Schneising, O., Heymann, J., Tretner, A., and Erzinger, J.: A remote sensing technique for global monitoring of power plant CO₂ emissions from space and related applications, Atmos. Meas. Tech., 3, 781-811, 2010.

Buchwitz et al., 2000: Buchwitz, M., Rozanov, V. V., and Burrows, J. P.: A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH₄, CO, CO₂, H₂O, and N₂O total column amounts from SCIAMACHY Envisat-1 nadir radiances, J. Geophys. Res. 105, 15,231-15,245, 2000.

Buchwitz et al., 2005: Buchwitz, M., R. de Beek, J. P. Burrows, H. Bovensmann, T. Warneke, J. Notholt, J. F. Meirink, A. P. H. Goede, P. Bergamaschi, S. Körner, M. Heimann, and A. Schulz, Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models, Atmos. Chem. Phys., 5, 941-962, 2005.

Buchwitz et al., 2007: Buchwitz, M., O. Schneising, J. P. Burrows, H. Bovensmann, M. Reuter, J. Notholt: First direct observation of the atmospheric CO₂ year-to-year increase from space, Atmos. Chem. Phys., 7, 4249-4256, 2007.

Buchwitz et al., 2013a: Buchwitz, M., M. Reuter, O. Schneising, H. Boesch, S. Guerlet, B. Dils, I. Aben, R. Armante, P. Bergamaschi, T. Blumenstock, H. Bovensmann, D. Brunner, B. Buchmann, J. P. Burrows, A. Butz, A. Chédin, F. Chevallier, C. D. Crevoisier, N. M. Deutscher, C. Frankenberg, F. Hase, O. P. Hasekamp, J. Heymann, T. Kaminski, A. Laeng, G. Lichtenberg, M. De Mazière, S. Noël, J. Notholt, J. Orphal, C. Popp, R. Parker, M. Scholze, R. Sussmann, G. P. Stiller, T. Warneke, C. Zehner, A. Bril, D. Crisp, D. W. T. Griffith, A. Kuze, C. O'Dell, S. Oshchepkov, V. Sherlock, H. Suto, P. Wennberg, D. Wunch, T. Yokota, Y. Yoshida, The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparison and quality assessment of near-surface-sensitive satellite-derived CO₂ and CH₄ global data sets, *Remote Sensing of Environment*, doi:10.1016/j.rse.2013.04.024, 2013.

Buchwitz et al., 2013b: Buchwitz, M., Reuter, M., Bovensmann, H., Pillai, D., Heymann, J., Schneising, O., Rozanov, V., Krings, T., Burrows, J. P., Boesch, H., Gerbig, C., Meijer, Y., and Loescher, A.: Carbon Monitoring Satellite (CarbonSat): assessment of atmospheric CO₂ and CH₄ retrieval errors by error parameterization, Atmos. Meas. Tech., 6, 3477-3500, 2013.

Buchwitz et al., 2014: Buchwitz, M., et al.: ESA Climate Change Initiative (CCI) Product Specification Document (PSD) for the Essential Climate Variable (ECV) Greenhouse Gases (GHG), 6-June-2014, Version 3, 2014. Link: <u>https://www.iup.uni-bremen.de/carbon_ghg/docs/GHG-</u> <u>CCIplus/PSD/PSDv3_GHG-CCI_final.pdf</u>

Buchwitz et al., 2015: Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Guerlet, S., Dils, B., Aben, I., Armante, R., Bergamaschi, P., Blumenstock, T., Bovensmann, H., Brunner, D., Buchmann, B., Burrows, J.P., Butz, A., Chédin, A., Chevallier, F., Crevoisier, C.D., Deutscher, N.M., Frankenberg, C., Hase, F., Hasekamp, O.P., Heymann, J., Kaminski, T., Laeng, A., Lichtenberg, G., De Mazière, M., Noël, S., Notholt, J., Orphal, J., Popp, C., Parker, R., Scholze, M., Sussmann, R., Stiller, G.P., Warneke, T., Zehner, C., Bril, A., Crisp, D., Griffith, D.W.T., Kuze, A., O'Dell, C., Oshchepkov, S., Sherlock, V., Suto, H., Wennberg, P., Wunch, D., Yokota, T., Yoshida, Y., The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sens. Environ. 162:344–362, http://dx.doi.org/10.1016/j.rse.2013.04.024, 2015.

Buchwitz et al., 2016: Buchwitz, M., Reuter, M., Schneising, O., Hewson, W., Detmers, R. G., Boesch, H., Hasekamp, O. P., Aben, I., Bovensmann, H., Burrows, J. P., Butz, A., Chevallier, F., Dils, B., Frankenberg, C., Heymann, J., Lichtenberg, G., De Mazière, M., Notholt, J., Parker, R., Warneke, T., Zehner, C., Griffith, D. W. T., Deutscher, N. M., Kuze, A., Suto, H., and Wunch, D.:, Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO₂ and XCH₄ CRDP3 data, Remote Sensing of Environment (in press), Special Issue on Essential Climate Variables, DOI: 10.1016/j.rse.2016.12.027, (link: http://dx.doi.org/10.1016/j.rse.2016.12.027), 2016.

Buchwitz et al., 2016a: Buchwitz, M.; Reuter, M.; Aben, I.; Boesch, H.; Butz, A.; Detmers, R.G.; Frankenberg, C.; Hasekamp, O.P.; Parker, R.; Schneising, O.; Somkuti, P., ESA Greenhouse Gases Climate Change Initiative (GHG-CCI): Merged SCIAMACHY and GOSAT Level 3 gridded atmospheric column-average methane (XCH₄) product in Obs4MIPs format, Centre for Environmental Data Analysis, 10 October 2016, pp. 11, 2016.

Buchwitz et al., 2017: ESA Climate Change Initiative (CCI) Product Validation and Intercomparison Report (PVIR) for the Essential Climate Variable (ECV) Greenhouse Gases (GHG) for data set Climate Research Data Package No. 4 (CRDP#4), Version 5.0, 9. Feb. 2017, 2017.

Buchwitz et al., 2017a: Buchwitz, M.; Reuter, M.; Aben, I.; Boesch, H.; Butz, A.; Detmers, R.G.; Frankenberg, C.; Hasekamp, O.P.; Parker, R.; Schneising, O.; Somkuti, P., ESA Greenhouse Gases Climate Change Initiative (GHG-CCI): Merged SCIAMACHY and GOSAT Level 3 gridded atmospheric column-average methane (XCH₄) product in Obs4MIPs format version 2 (CRDP#4), Technical Note, pp. 11, 1 February 2017, 2017.

Buchwitz et al., 2017b: Buchwitz, M., Schneising, O., Reuter, M., Heymann, J., Krautwurst, S., Bovensmann, H., Burrows, J. P., Boesch, H., Parker, R. J., Somkuti, P., Detmers, R. G., Hasekamp, O. P., Aben, I., Butz, A., Frankenberg, C., Turner, A. J., Satellite-derived methane hotspot emission estimates using a fast data-driven method, Amos. Chem. Phys., 17, 5751-5774, doi:10.5194/acp-17-5751-2017, 2017.

Buchwitz et al., 2018: Buchwitz, M., Reuter, M., Schneising, O., Noel, S., Gier, B., Bovensmann, H., Burrows, J. P., Boesch, H., Anand, J., Parker, R. J., Somkuti, P., Detmers, R. G., Hasekamp, O. P., Aben, I., Butz, A., Kuze, A., Suto, H., Yoshida, Y., Crisp, D., and O'Dell, C., Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003-2016, Atmos. Chem. Phys., 18, 17355-17370, https://doi.org/10.5194/acp-18-17355-2018, 2018.

Burrows et al., 1995: Burrows, J. P., Hölzle, E., Goede, A. P. H., Visser, H., and Fricke, W., SCIAMACHY—Scanning Imaging Absorption Spectrometer for Atmospheric Chartography, Acta Astronaut., 35(7), 445–451, doi:10.1016/0094-5765(94)00278-t, 1995.

Butz et al., 2011: Butz, A., Guerlet, S., Hasekamp, O., et al., Toward accurate CO₂ and CH₄ observations from GOSAT, *Geophys. Res. Lett.*, doi:10.1029/2011GL047888, 2011.

Butz et al., 2012: Butz, A., Galli, A., Hasekamp, O., Landgraf, J., Tol, P., and Aben, I.: Remote Sensing of Environment, TROPOMI aboard Sentinel-5 Precursor: Prospective performance of CH₄ retrievals for aerosol and cirrus loaded atmospheres, 120, 267-276, doi:10.1016/j.rse.2011.05.030, 2012.

Chédin et al. 2003: Chédin, A., Saunders, R., Hollingsworth, A., Scott, N. A., Matricardi, M., Etcheto, J., Clerbaux, C., Armante, R. and Crevoisier, C.: The feasibility of monitoring CO₂ from high resolution infrared sounders. J. Geophys. Res., 108, ACH 6-1–6-19, doi: 10.1029/2001JD001443, 2003.

Chevallier et al., 2005: Chevallier, F., R. J. Engelen, and P. Peylin, The contribution of AIRS data to the estimation of CO₂ sources and sinks. Geophys. Res. Lett., 32, L23801, doi:10.1029/2005GL024229, 2005.

Chevallier et al., 2007: Chevallier, F., F.-M. Bréon, and P. J. Rayner, Contribution of the Orbiting Carbon Observatory to the estimation of CO₂ sources and sinks: Theoretical study in a variational data assimilation framework. J. Geophys. Res., 112, D09307, doi:10.1029/2006JD007375, 2007.

Chevallier et al., 2009a: Chevallier, F., R. J. Engelen, C. Carouge, T. J. Conway, P. Peylin, C. Pickett-Heaps, M. Ramonet, P. J. Rayner and I. Xueref-Remy, AIRS-based vs. surface-based estimation of carbon surface fluxes. J. Geophys. Res., 114, D20303, doi:10.1029/2009JD012311, 2009.

Chevallier et al., 2009b: Chevallier, F., S. Maksyutov, P. Bousquet, F.-M. Bréon, R. Saito, Y. Yoshida, and T. Yokota, On the accuracy of the CO₂ surface fluxes to be estimated from the GOSAT observations. Geophys. Res. Lett., 36, L19807, doi:10.1029/2009GL040108, 2009.

Chevallier et al., 2010: Chevallier, F., Feng, L., Boesch, H. Palmer, P., and Rayner, P., On the impact of transport model errors for the estimation of CO₂ surface fluxes from GOSAT observations, Geophys. Res. Let., 37, L21803, 2010.

Chevallier et al., 2014: Chevallier, F., Palmer, P.I., Feng, L., Boesch, H., O'Dell, C.W., Bousquet, P., <u>Towards robust and consistent regional CO₂ flux estimates from in situ and space-borne</u> <u>measurements of atmospheric CO₂</u>, Geophys. Res. Lett., 41, 1065-1070, DOI: 10.1002/2013GL058772, 2014.

Chevallier et al., 2016b: Chevallier, F., et al., Climate Assessment Report (CAR), ESA Climate Change Initiative (CCI) GHG-CCI project, Version 3, 3 May 2016, 2016.

Ciais et al., 2014: Ciais, P., Dolman, A. J., Bombelli, A., et al.: Current systematic carbon cycle observations and needs for implementing a policy-relevant carbon observing system, Biogeosciences, 11, 3547-3602, www.biogeosciences.net/11/3547/2014/, doi:10.5194/bg-11-3547-2014, 2014.

Ciais et al., 2015: Ciais, P., et al.: Towards a European Operational Observing System to Monitor Fossil CO₂ emissions - Final Report from the expert group,

http://www.copernicus.eu/main/towards-european-operational-observing-system-monitor-fossil-co2-emissions, pp. 68, October 2015, 2015.

CMUG-RBD, 2010: Climate Modelling User Group Requirements Baseline Document, Deliverable 1.2, Number D1.2, Version 1.3, 2 Nov 2010.

Cogan et al., 2011: Cogan, A. J., Boesch, H., Parker, R. J., et al., Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations, *J. Geophys. Res.*, 117, D21301, doi:10.1029/2012JD018087, 2012.

Corbin et al., 2008: Corbin, K. D., A. S. Denning, L. Lu, J.-W. Wang, and I. T. Baker, Possible representation errors in inversions of satellite CO₂ retrievals, J. Geophys. Res., 113, D02301, doi:10.1029/2007JD008716, 2008.

Cressot et al., 2014: Cressot, C., F. Chevallier, P. Bousquet, et al., On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements, Atmos. Chem. Phys., 14, 577-592, 2014.

Crevoisier et al., 2004: Crevoisier, C., S. Heilliette, A. Chédin, S. Serrar, R. Armante, and N. A. Scott, Midtropospheric CO₂ concentration retrieval from AIRS observations in the tropics, Geophys. Res. Lett., 31, L17106, doi:10.1029/2004GL020141, 2004.

Chevallier et al., 2005: Chevallier, F., R. J. Engelen, and P. Peylin, The contribution of AIRS data to the estimation of CO₂ sources and sinks. Geophys. Res. Lett., 32, L23801, doi:10.1029/2005GL024229, 2005.

Crevoisier et al., 2004: Crevoisier, C., S. Heilliette, A. Chédin, S. Serrar, R. Armante, and N. A. Scott, Midtropospheric CO₂ concentration retrieval from AIRS observations in the tropics, Geophys. Res. Lett., 31, L17106, doi:10.1029/2004GL020141, 2004.

Crevoisier et al., 2009: Crevoisier, C., Chédin, A., Matsueda, H., et al., First year of upper tropospheric integrated content of CO₂ from IASI hyperspectral infrared observations, *Atmos. Chem. Phys.*, 9, 4797-4810, 2009.

Crevoisier et al. 2009b: Crevoisier, C., Nobileau, D., Fiore, A., Armante, R., Chédin, A., and Scott, N. A.: Tropospheric methane in the tropics – first year from IASI hyperspectral infrared observations, Atmos. Chem. Phys., 9, 6337–6350, doi:10.5194/acp-9-6337-2009, 2009b.

Crevoisier et al., 2013: Crevoisier, C., Nobileau, D., Armante, R., et al., The 2007–2011 evolution of tropical methane in the mid-troposphere as seen from space by MetOp-A/IASI, *Atmos. Chem. Phys.*, 13, 4279-4289, 2013.

Crisp et al., 2004: Crisp, D., Atlas, R. M., Breon, F.-M., Brown, L. R., Burrows, J. P., Ciais, P., Connor, B. J., Doney, S. C., Fung, I. Y., Jacob, D. J., Miller, C. E., O'Brien, D., Pawson, S., Randerson, J. T., Rayner, P., Salawitch, R. S., Sander, S. P., Sen, B., Stephens, G. L., Tans, P. P., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Yung, Y. L., Kuang, Z., Chudasama, B., Sprague, G., Weiss, P., Pollock, R., Kenyon, D., and Schroll, S.: The Orbiting Carbon Observatory (OCO) mission, Adv. Space Res., 34, 700-709, 2004.

Detmers et al., 2015: Detmers, R. G., O. Hasekamp, I. Aben, S. Houweling, T. T. van Leeuwen, A. Butz, J. Landgraf, P. Koehler, L. Guanter, and B. Poulter, <u>Anomalous carbon uptake in Australia as seen by GOSAT</u>, Geophys. Res. Lett., 42, doi:10.1002/2015GL065161, 2015.

Dils et al., 2014: B. Dils, M. Buchwitz, M. Reuter, O. Schneising, H. Boesch, R. Parker, S. Guerlet, I. Aben, T. Blumenstock, J. P. Burrows, A. Butz, N. M. Deutscher, C. Frankenberg, F. Hase, O. P. Hasekamp, J. Heymann, M. De Mazière, J. Notholt, R. Sussmann, T. Warneke, D. Griffith, V. Sherlock, D. Wunch :The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO₂ and CH₄ retrieval algorithm products with measurements from the TCCON network, Atmos. Meas. Tech., 7, 1723-1744, 2014.

ESA-CCI-GHG-URDv2.1: Chevallier, F., et al., User Requirements Document (URD), ESA Climate Change Initiative (CCI) GHG-CCI project, Version 2.1, 19 Oct 2016, 2016.

Frankenberg et al., 2011: Frankenberg, C., Aben, I., Bergamaschi, P., et al., Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability, *J. Geophys. Res.*, doi:10.1029/2010JD014849, 2011.

GCOS-154: Global Climate Observing System (GCOS): SYSTEMATIC OBSERVATION REQUIREMENTS FOR SATELLITE-BASED DATA PRODUCTS FOR CLIMATE - 2011 Update - Supplemental details to the satellite-based component of the "Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update)", December 2011, prepared by World Meteorological Organization (WMO), Intergovernmental Oceanographic Commission, United Nations Environment Programme (UNEP), International Council for Science, Doc.: GCOS 154, link: http://cci.esa.int/sites/default/files/gcos-154.pdf, 2011.

GCOS-200: The Global Observing System for Climate: Implementation Needs, World Meteorological Organization (WMO), GCOS-200 (GOOS-214), pp. 325, link:

http://unfccc.int/files/science/workstreams/systematic_observation/application/pdf/gcos_ip_10oct 2016.pdf, 2016.

Gier et al., 2020: Gier, B. K., Buchwitz, M., Reuter, M., Cox, P. M., Friedlingstein, P., and Eyring, V.: Spatially resolved evaluation of Earth system models with satellite column-averaged CO₂, Biogeosciences, 17, 6115-6144, https://doi.org/10.5194/bg-17-6115-2020, 2020.

Guerlet et al., 2013: Guerlet, S., S. Basu, A. Butz, M. Krol, P. Hahne, S. Houweling, O. P. Hasekamp and I. Aben, <u>Reduced carbon uptake during the 2010 Northern Hemisphere summer from GOSAT</u>, Geophys. Res. Lett., doi: 10.1002/grl.50402, 2013.

Hachmeister et al., 2022: Hachmeister, J., Schneising, O., Buchwitz, M., Lorente, A., Borsdorff, T., Burrows, J. P., Notholt, J., and Buschmann, M.: On the influence of underlying elevation data on Sentinel-5 Precursor satellite methane retrievals over Greenland, Atmos. Meas. Tech. Discuss. [preprint; final version in Press], <u>https://doi.org/10.5194/amt-2022-102</u>, 2022.

Hayman et al., 2014: Hayman, G. D., O'Connor, F. M., Dalvi, M., Clark, D. B., Gedney, N., Huntingford, C., Prigent, C., Buchwitz, M., Schneising, O., Burrows, J. P., Wilson, C., Richards, N., Chipperfield, M., Comparison of the HadGEM2 climate-chemistry model against in-situ and SCIAMACHY atmospheric methane data, Atmos. Chem. Phys., 14, 13257-13280, doi:10.5194/acp-14-13257-2014, 2014.

Hollmann et al., 2013: Hollmann, C.J. Merchant, R. Saunders, C. Downy, M. Buchwitz, A. Cazenave, E. Chuvieco, P. Defourny, G. de Leeuw, R. Forsberg, T. Holzer-Popp, F. Paul, S. Sandven, S. Sathyendranath, M. van Roozendael, W. Wagner, <u>The ESA Climate Change Initiative: satellite data</u> <u>records for essential climate variables</u>, Bulletin of the American Meteorological Society (BAMS), 0.1175/BAMS-D-11-00254.1, pp. 12, 2013.

Houweling et al., 2004: Houweling, S., Breon, F.-M., Aben, I., Rödenbeck, C., Gloor, M., Heimann, M. and Ciais, P.: Inverse modeling of CO₂ sources and sinks using satellite data: A synthetic intercomparison of measurement techniques and their performance as a function of space and time, Atmos. Chem. Phys., 4, 523-538, 2004.

Houweling et al., 2005: Houweling, S., Hartmann, W., Aben, I., Schrijver, H., Skidmore, J., Roelofs, G.-J., and Breon, F.-M.: Evidence of systematic errors in SCIAMACHY-observed CO₂ due to aerosols, Atmos. Chem. Phys., 5, 3003–3013, 2005.

Houweling et al., 2015: Houweling, S., D. Baker, S. Basu, H. Boesch, A. Butz, F. Chevallier, F. Deng, E. J. Dlugokencky, L. Feng, A. Ganshin, O. Hasekamp, D. Jones, S. Maksyutov, J. Marshall, T. Oda, C.W. O'Dell1, S. Oshchepkov, P. I. Palmer, P. Peylin, Z. Poussi, F. Reum, H. Takagi, Y. Yoshida, and R. Zhuravlev, <u>An intercomparison of inverse models for estimating sources and sinks of CO₂ using GOSAT measurements</u>, J. Geophys. Res. Atmos., 120, 5253–5266, doi:10.1002/2014JD022962, 2015.

Hu et al., 2018: Hu, H., J. Landgraf, R. Detmers, T. Borsdorff, J. Aan de Brugh, I. Aben, A. Butz, O. Hasekamp, Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite

Comparison to GOSAT, Geophys. Res. Lett, Vol. 45, Issue 8, 3682-3689, https://doi.org/10.1002/2018GL077259, 2018.

Hungershoefer et al., 2010: Hungershoefer, K., Breon, F.-M., Peylin, P., Chevallier, F., Rayner, P., Klonecki, A., Houweling, S., and Marshall, J., Evaluation of various observing systems for the global monitoring of CO₂ surface fluxes, Atmos. Chem. Phys., 10, 10503-10520, 2010.

IPCC, 2013: Climate Change 2013: The Physical Science Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Report on Climate Change, http://www.ipcc.ch/report/ar5/wg1/, 2013.

JCGM, 2008: JCGM/WG 1, Working Group 1 of the Joint Committee for Guides in Metrology, Evalutation of measurement data – Guide to the expression of uncertainty in measurement, <u>http://www.bipm.org/utils/common/documents/jcgm/JCGM 100 2008 E.pdf</u>, 2008.

Kirschke et al., 2013: Kirschke, S., Bousquet, P., Ciais, P., et al.: Three decades of global methane sources and sinks, Nat. Geosci., 6, 813–823, doi:10.1038/ngeo1955, 2013.

Kuze et al., 2009: Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T. (2009), Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring, Appl. Opt., 48, 6716–6733, 2009.

Kuze et al., 2014: Kuze, A., Taylor, T., Kataoka, F., Bruegge, C., Crisp, D., Harada, M., Helmlinger, M., Inoue, M., Kawakami, S., Kikuchi, N., Mitomi, Y., Murooka, J., Naitoh, M., O'Brien, D., O'Dell, C., Ohyama, H., Pollock, H., Schwandner, F., Shiomi, K., Suto, H., Takeda, T., Tanaka, T., Urabe, T., Yokota, T., and Yoshida, Y. (2014), Long-term vicarious calibration of GOSAT short-wave sensors: techniques for error reduction and new estimates of radiometric degradation factors, IEEE T. Geosci. Remote, 52, 3991–4004, doi:10.1109/TGRS.2013.2278696, 2014.

Kuze et al., 2016: Kuze, A., Suto, H., Shiomi, K., Kawakami, S., Tanaka, M., Ueda, Y., Deguchi, A., Yoshida, J., Yamamoto, Y., Kataoka, F., Taylor, T. E., and Buijs, H. L.: Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space, Atmos. Meas. Tech., 9, 2445-2461, doi:10.5194/amt-9-2445-2016, 2016.

Lauer et al., 2017: Lauer, A., Eyring, V., Righi, M., Buchwitz, M., Defourny, P., Evaldsson, M., Friedlingstein, P., de Jeu, R., de Leeuw, G., Loew, A., Merchant, C. J., Mueller, B., Popp, T., Reuter, M., Sandven, S., Senftleben, D., Stengel, M., Van Roozendael, M., Wenzel, S., and Willen, U.: Benchmarking CMIP5modelswith a subset of ESA CCI Phase 2 data using the ESMValTool, Remote Sensing of Environment 203, 9-39, http://dx.doi.org/10.1016/j.rse.2017.01.007, 2017.

Laughner et al., 2021: Laughner, Joshua L., Toon, G., Wunch, D., Roelhl, C., Roche, S., Wennberg, P. O.: Summary of advancements in the GGG2020 TCCON retrieval, oral presentation given at 17th International Workshop on Greenhouse Gas Measurements from Space (IWGGMS-17), 14–17 Jun 2021, access: <u>https://cce-</u>

datasharing.gsfc.nasa.gov/files/conference presentations/Talk Laughner 49 25.pdf, 2021.

Machida et al. 2008: Machida, T., Matsueda, H., Sawa, Y., Nakagawa, Y., Hirotani, K., Kondo, N., Goto, K., Nakazawa, T., Ishikawa, K., and Ogawa, T.: Worldwide measurements of atmospheric CO₂ and other trace gas species using commercial airlines, J. Atmos. Ocean. Tech., 25(10), 1744–1754, doi:10.1175/2008JTECHA1082.1, 2008.

Massart et al., 2016: Massart, S., A. Agustí-Panareda, J. Heymann, M. Buchwitz, F. Chevallier, M. Reuter, M. Hilker, J. P. Burrows, N. M. Deutscher, D. G. Feist, F. Hase, R. Sussmann, F. Desmet, M. K. Dubey, D. W. T. Griffith, R. Kivi, C. Petri, M. Schneider, V. A. Velazco, <u>Ability of the 4-D-Var analysis</u> of the GOSAT BESD XCO₂ retrievals to characterize atmospheric CO₂ at large and synoptic scales, Atmos. Chem. Phys., 16, 1653-1671, doi:10.5194/acp-16-1653-2016, 2016.

Matsueda et al. 2008: Matsueda, H., Machida, T., Sawa, Y., Nakagawa, Y., Hirotani, K., Ikeda, H., Kondo, N., and Goto, K.: Evaluation of atmospheric CO₂ measurements from new flask air sampling of JAL airliner observation, Pap. Meteorol. Geophys., 59, 1–17, 2008.

McNorton et al., 2016: McNorton, J., E. Gloor, C. Wilson, G. D. Hayman, N. Gedney, E. Comyn-Platt, T. Marthews, R. J. Parker, H. Boesch, and M. P. Chipperfield, <u>Role of regional wetland emissions in</u> atmospheric methane variability, Geophys. Res. Lett., 43, doi:10.1002/2016GL070649, 2016.

Meirink et al., 2006: Meirink, J.-F., Eskes, H. J., and Goede, A. P. H., Sensitivity analysis of methane emissions derived from SCIAMACHY observations through inverse modelling, Atmos. Chem. Phys., 6, 1275-1292, 2006.

Membrive et al. 2016: Membrive, O., Crevoisier, C., Sweeney, C., Danis, F., Hertzog, A., Engel, A., Bönisch, H., and Picon, L.: AirCore-HR: A high resolution column sampling to enhance the vertical description of CH₄ and CO₂, Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-236, 2016.

Noël et al., 2021: Noël, S., Reuter, M., Buchwitz, M., Borchardt, J., Hilker, M., Bovensmann, H., Burrows, J. P., Di Noia, A., Suto, H., Yoshida, Y., Buschmann, M., Deutscher, N. M., Feist, D. G., Griffith, D. W. T., Hase, F., Kivi, R., Morino, I., Notholt, J., Ohyama, H., Petri, C., Podolske, J. R., Pollard, D. F., Sha, M. K., Shiomi, K., Sussmann, R., Te, Y., Velazco, V. A., and Warneke, T.: XCO₂ retrieval for GOSAT and GOSAT-2 based on the FOCAL algorithm, Atmos. Meas. Tech., 14, 3837-3869, https://doi.org/10.5194/amt-14-3837-2021, 2021.

Noël et al., 2022: Noël, S., Reuter, M., Buchwitz, M., Borchardt, J., Hilker, M., Schneising, O., Bovensmann, H., Burrows, J. P., Di Noia, A., Parker, R. J., Suto, H., Yoshida, Y., Buschmann, M., Deutscher, N. M., Feist, D. G., Griffith, D. W. T., Hase, F., Kivi, R., Liu, C., Morino, I., Notholt, J., Oh, Y.-S., Ohyama, H., Petri, C., Pollard, D. F., Rettinger, M., Roehl, C. M., Rousogenous, C., Sha, M. K., Shiomi, K., Strong, K., Sussmann, R., Té, Y., Velazco, V. A., Vrekoussis, M., and Warneke, T.: Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm, Atmos. Meas. Tech., 15, 3401–3437, https://doi.org/10.5194/amt-15-3401-2022, 2022.

Nisbet et al., 2014: Nisbet, E., Dlugokencky, E., and Bousquet, P.: Methane on the rise – again, Science, 343, 493–495, doi:10.1126/science.1247828, 2014.

Pandey et al., 2016: Pandey, S., S. Houweling, M. Krol, I. Aben, F. Chevallier, E. J. Dlugokencky, L. V. Gatti, E. Gloor, J. B. Miller, R. Detmers, T. Machida, T. Roeckmann, <u>Inverse modeling of GOSAT-</u> retrieved ratios of total column CH₄ and CO₂ for 2009 and 2010, Atmos. Chem. Phys., 16, 5043– 5062, doi:10.5194/acp-16-5043-2016, 2016.

Parker et al., 2011: Parker, R., Boesch, H., Cogan, A., et al., Methane Observations from the Greenhouse gases Observing SATellite: Comparison to ground-based TCCON data and Model Calculations, *Geophys. Res. Lett.*, doi:10.1029/2011GL047871, 2011.

Parker et al., 2016: Parker, R. J., H. Boesch, M. J. Wooster, D. P. Moore, A. J. Webb, D. Gaveau, and D. Murdiyarso, <u>Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios</u>

derived from satellite observations of the 2015 Indonesian fire plumes, Atmos. Chem. Phys., Atmos. Chem. Phys., 16, 10111-10131, doi:10.5194/acp-16-10111-2016, 2016.

PQAR GHG, 2021: Buchwitz, M., Aben, I., J., Armante, R., Boesch, H., Crevoisier, C., Di Noia, A., Hasekamp, O. P., Reuter, M., Schneising-Weigel, O., Wu, L., Product Quality Assessment Report (PQAR) – Main document for Greenhouse Gas (GHG: CO₂ & CH₄) data set CDR 5 (01.2003-06.2020), C3S project C3S_312b_Lot2_DLR, v5.0, 2021. Access: All documents: <u>https://www.iup.unibremen.de/carbon_ghg/cg_data.html#C3S_GHG</u>; this document: <u>https://www.iup.unibremen.de/carbon_ghg/docs/C3S/CDR5_2003-mid2020/C3S_D312b_Lot2.2.3.2-v3.0_PQAR-GHG_MAIN_v5.0.pdf</u>

PQAR GHG, 2023: Buchwitz, M., Barr, A., Boesch, H., Borsdorff, T., Crevoisier, C., Di Noia, A., Hasekamp, O. P., Landgraf, J., Meilhac, N., Parker, R., Reuter, M., Schneising-Weigel, O.: Product Quality Assessment Report (PQAR) – Main document for Greenhouse Gas (GHG: CO₂ & CH₄) data set CDR6 (01.2003-12.2021), C3S project C3S2_312a_Lot2_DLR, v6.3, 02/03/2023, pp. 88, 2023. Link: https://www.iup.uni-bremen.de/carbon_ghg/docs/C3S/CDR6_2003-2021/C3S2_312a_Lot2_D-WP2_PQAR-2022-GHG_MAIN_v6.3.pdf

PUGS GHG, 2021: Buchwitz, M., Aben, I., J., Armante, R., Boesch, H., Crevoisier, C., Di Noia, A., Hasekamp, O. P., Reuter, M., Schneising-Weigel, O., Wu, L., Product User Guide and Specification (PUGS) – Main document for Greenhouse Gas (GHG: CO₂ & CH₄) data set CDR 5 (01.2003-06.2020), C3S project C3S_312b_Lot2_DLR, v5.0, 2021. Access: All documents: <u>https://www.iup.unibremen.de/carbon_ghg/cg_data.html#C3S_GHG</u>; this document: <u>https://www.iup.unibremen.de/carbon_ghg/docs/C3S/CDR5_2003-mid2020/C3S_D312b_Lot2.3.2.3-v3.0_PUGS-GHG_MAIN_v5.0.pdf</u>

Rayner and O'Brien, 2001: Rayner, P. J., and O'Brien, D.M.: The utility of remotely sensed CO₂ concentration data in surface inversions, Geophys. Res. Lett., 28, 175-178, 2001.

Reuter et al. 2011: Reuter, M., Bovensmann, H., Buchwitz, M., Burrows, J. P., Connor, B. J., Deutscher, N. M., Griffith, D.W. T., Heymann, J., Keppel-Aleks, G., Messerschmidt, J., and et al.: Retrieval of atmospheric CO₂ with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results., Journal of Geophysical Research, 116, doi:10.1029/2010JD015047, URL http://dx.doi.org/10.1029/2010JD015047, 2011.

Reuter et al., 2013: Reuter, M. H. Bösch, H. Bovensmann, A. Bril, M. Buchwitz, A. Butz, J. P. Burrows, C. W. O'Dell, S. Guerlet, O. Hasekamp, J. Heymann, N. Kikuchi, S. Oshchepkov, R. Parker, S. Pfeifer, O. Schneising, T. Yokota, and Y. Yoshida, A joint effort to deliver satellite retrieved atmospheric CO₂ concentrations for surface flux inversions: The ensemble median algorithm EMMA, Atmos. Chem. Phys., 13, 1771-1780, 2013.

Reuter et al., 2014a: Reuter, M., M. Buchwitz, A. Hilboll, A. Richter, O. Schneising, M. Hilker, J. Heymann, H. Bovensmann and J. P. Burrows: Decreasing emissions of NOx relative to CO₂ in East Asia inferred from satellite observations, Nature Geoscience, 28 Sept. 2014, doi:10.1038/ngeo2257, pp.4, 2014.

Reuter et al., 2014b: Reuter, M., M. Buchwitz, M. Hilker, J. Heymann, O. Schneising, D. Pillai, H. Bovensmann, J. P. Burrows, H. Bösch, R. Parker, A. Butz, O. Hasekamp, C. W. O'Dell, Y. Yoshida, C. Gerbig, T. Nehrkorn, N. M. Deutscher, T. Warneke, J. Notholt, F. Hase, R. Kivi, R. Sussmann, T.

Machida, H. Matsueda, and Y. Sawa, Satellite-inferred European carbon sink larger than expected, Atmos. Chem. Phys., 14, 13739-13753, doi:10.5194/acp-14-13739-2014, 2014.

Reuter et al., 2016: Reuter, M.; Buchwitz, M.; Aben, I.; Boesch, H.; Butz, A.; Detmers, R.G.; Hasekamp, O.P.; Heymann, J.; Parker, R.; Schneising, O.; Somkuti, P., ESA Greenhouse Gases Climate Change Initiative (GHG_cci): Merged SCIAMACHY and GOSAT Level 3 gridded atmospheric columnaverage carbon dioxide (XCO₂) product in Obs4MIPs format. Centre for Environmental Data Analysis, 10 October 2016, doi:10.5285/3FAE8371-0CBB-4B21-9EA6-7A1FC293C4A2pp. 11, 2016.

Reuter et al., 2017: Reuter, M., M. Buchwitz, M. Hilker, J. Heymann, H. Bovensmann, J. Burrows, S. Houweling, Y. Liu, R. Nassar, F. Chevallier, P. Ciais, J. Marshall, and M. Reichstein, 2016: How much CO₂ is taken up by the European terrestrial biosphere?, Bull. Amer. Meteor. Soc. doi:10.1175/BAMS-D-15-00310.1, 24 April 2017, 665-671, 2017.

Reuter et al., 2017a: Reuter, M.; Buchwitz, M.; Aben, I.; Boesch, H.; Butz, A.; Detmers, R.G.; Hasekamp, O.P.; Heymann, J.; Parker, R.; Schneising, O.; Somkuti, P., ESA Greenhouse Gases Climate Change Initiative (GHG-CCI): Merged SCIAMACHY and GOSAT Level 3 gridded atmospheric columnaverage carbon dioxide (XCO₂) product in Obs4MIPs format version 2 (CRDP#4), Technical Note, pp. 11, 1 February 2017, 2017.

Reuter et al., 2020: Reuter, M., Buchwitz, M., Schneising, O., Noel, S., Bovensmann, H., Burrows, J. P., Boesch, H., Di Noia, A., Anand, J., Parker, R. J., Somkuti, P., Wu, L., Hasekamp, O. P., Aben, I., Kuze, A., Suto, H., Shiomi, K., Yoshida, Y., Morino, I., Crisp, D., O'Dell, C. W., Notholt, J., Petri, C., Warneke, T., Velazco, V. A., Deutscher, N. M., Griffith, D. W. T., Kivi, R., Pollard, D. F., Hase, F., Sussmann, R., Te, Y. V., Strong, K., Roche, S., Sha, M. K., De Maziere, M., Feist, D. G., Iraci, L. T., Roehl, C. M., Retscher, C., and Schepers, D.: Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003-2018) for carbon and climate applications, Atmos. Meas. Tech., 13, 789-819, https://doi.org/10.5194/amt-13-789-2020, 2020.

Reuter et al., 2021: M. Reuter, M. Hilker, S. Noël, M. Buchwitz, O. Schneising, H. Bovensmann, and J. P. Burrows: ESA Climate Change Initiative "Plus" (CCI+) Algorithm Theoretical Basis Document Version 3 (ATBDv3) - Retrieval of XCO2 from the OCO-2 satellite using the Fast Atmospheric Trace Gas Retrieval (FOCAL) for the Essential Climate Variable (ECV) Greenhouse Gases (GHG), http://www.iup.uni-bremen.de/carbon_ghg/docs/GHG-CCIplus/CRDP7/ATBDv3_GHG-CCI_CO2_OC2_FOCA_v10.pdf, 2021.

Rodgers, 2000: Rodgers C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publishing, 2000.

Ross et al., 2013: Ross, A. N., Wooster, M. J., Boesch, H., Parker, R., First satellite measurements of carbon dioxide and methane emission ratios in wildfire plumes, Geophys. Res. Lett., 40, 1-5, doi:10.1002/grl.50733, 2013.

Schaefer et al., 2016: Schaefer, H., Mikaloff Fletcher, S. E., Veidt, C., Lassey, K. R., Brailsford, G. W., Bromley, T. M., Dlugokencky, E. J., Michel, S. E., Miller, J. B., Levin, I., Lowe, D. C., Martin, R. J., Vaughn, B. H., and White, J. W. C.: A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by ¹³CH₄, Science, Vol. 352, Issue 6281, pp. 80-84, doi 10.1126/science.aad2705, 2016.

Shindell et al., 2013: Shindell, D. T., Pechony, O., Voulgarakis, A., et al. (2013), Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations, Atmos. Chem. Phys., 13, 2653–2689, doi:10.5194/acp-13-2653-2013, 2013.

Schepers et al., 2012: Schepers, D., Guerlet, S., Butz, A., Landgraf, J., Frankenberg, C., Hasekamp, O., Blavier, J.-F., Deutscher, N. M., Griffith, D. W. T., Hase, F., Kyro, E., Morino, I., Sherlock, V., Sussmann, R., Aben, I. (2012), Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms, J. Geophys. Res., 117, D10307, doi:10.1029/2012JD017549, 2012.

Schneising et al., 2011: Schneising, O., Buchwitz, M., Reuter, M., et al., Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY, *Atmos. Chem. Phys.*, 11, 2881-2892, 2011.

Schneising et al., 2014a: Schneising, O., Reuter, M., Buchwitz, M., Heymann, J., Bovensmann, H., and Burrows, J. P., Terrestrial carbon sink observed from space: variation of growth rates and seasonal cycle amplitudes in response to interannual surface temperature variability, Atmos. Chem. Phys., 14, 133-141, 2014.

Schneising et al., 2014b: Schneising, O., Burrows, J. P., Dickerson, R. R., Buchwitz, M., Reuter, M., Bovensmann, H., Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations, Earth's Future, 2, DOI: 10.1002/2014EF000265, pp. 11, 2014.

Schneising et al., 2019: Schneising, O., Buchwitz, M., Reuter, M., Bovensmann, H., Burrows, J. P., Borsdorff, T., Deutscher, N. M., Feist, D. G., Griffith, D. W. T., Hase, F., Hermans, C., Iraci, L. T., Kivi, R., Landgraf, J., Morino, I., Notholt, J., Petri, C., Pollard, D. F., Roche, S., Shiomi, K., Strong, K., Sussmann, R., Velazco, V. A., Warneke, T., and Wunch, D.: A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor, Atmos. Meas. Tech., 12, 6771-6802, https://doi.org/10.5194/amt-12-6771-2019, https://doi.org/10.5194/amt-12-6771-2019, 2019.

Schneising et al., 2020: Schneising, O., Buchwitz, M., Reuter, M., Vanselow, S., Bovensmann, H., and Burrows, J. P.: Remote sensing of methane leakage from natural gas and petroleum systems revisited, Atmos. Chem. Phys., 20, 9169-9182, <u>https://doi.org/10.5194/acp-20-9169-2020</u>, 2020.

Suto et al., 2021: Suto, H., Kataoka, F., Kikuchi, N., Knuteson, R. O., Butz, A., Haun, M., Buijs, H., Shiomi, K., Imai, H., and Kuze, A.: Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit, Atmos. Meas. Tech., 14, 2013–2039, <u>https://doi.org/10.5194/amt-14-2013-2021</u>, 2021.

TRD GHG, 2017: Buchwitz, M., Aben, I., Anand, J., Armante, R., Boesch, H., Crevoisier, C., Detmers, R. G., Hasekamp, O. P., Reuter, M., Schneising-Weigel, O., Target Requirement Document, Copernicus Climate Change Service (C3S) project on satellite-derived Essential Climate Variable (ECV) Greenhouse Gases (CO₂ and CH₄) data products (project C3S_312a_Lot6), Version 1.3, 20-October-2017, pp. 53, 2017.

TRD GAD GHG, 2020: Buchwitz, M., Aben, I., Armante, R., Boesch, H., Crevoisier, C., Hasekamp, O. P., Wu, L., Reuter, M., Schneising-Weigel, O., Target Requirement and Gap Analysis Document,

Copernicus Climate Change Service (C3S) project on satellite-derived Essential Climate Variable (ECV) Greenhouse Gases (CO₂ and CH₄) data products (project C3S_312b_Lot2), Version 2.11, 9-April-2020, pp. 80, 2020.

TRD GAD GHG, 2021: Buchwitz, M., Reuter, M., Schneising-Weigel, O., Aben, I., Wu, L., Hasekamp, O. P., Boesch, H., Di Noia, A., Crevoisier, C., Armante, R.: Target Requirement and Gap Analysis Document, Copernicus Climate Change Service (C3S) project on satellite-derived Essential Climate Variable (ECV) Greenhouse Gases (CO₂ and CH₄) data products, Version 3.1, 19-February-2021, pp. 81, 2021.

Turner et al., 2015: Turner, A. J., D. J. Jacob, K. J. Wecht, J. D. Maasakkers, S. C. Biraud, H. Boesch, K. W. Bowman, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, A. Kuze, J. Notholt, H. Ohyama, R. Parker, V. H. Payne, R. Sussmann, V. A. Velazco, T. Warneke, P. O. Wennberg, and D. Wunch: Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data, Atmos. Chem. Phys., 15, 7049-7069, doi:10.5194/acp-15-7049-2015, 2015.

Turner et al., 2016: Turner, A. J., D. J. Jacob, J. Benmergui, S. C. Wofsy, J. D. Maasakkers, A. Butz, O. Hasekamp, and S. C. Biraud, A large increase in U.S. methane emissions over the past decade inferred from satellite data and surface observations, Geophys. Res. Lett., 43, 2218–2224, doi:10.1002/2016GL067987, 2016.

Veefkind et al. 2012: Veefkind, J. P., Aben, I., McMullan, K., Förster, H., De Vries, J., Otter, G., Claas, J., Eskes, H. J., De Haan, J. F., Kleipool, Q., Van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P.,Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Rem. Sens. Environment, 120:70–83, 2012.

Wofsy et al. 2012: Wofsy, S. C., Daube, B. C., Jimenez, R., et al.: HIPPO Merged 10-second Meteorology, Atmospheric Chemistry, Aerosol Data (R 20121129), Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, release 29 November 2012), 2012.

Wunch et al. 2010: Wunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens, B. B., Fischer, M. L., Uchino, O., Abshire, J. B., Bernath, P., Biraud, S. C., Blavier, J.-F. L., Boone, C., Bowman, K. P., Browell, E. V., Campos, T., Connor, B. J., Daube, B. C., Deutscher, N. M., Diao, M., Elkins, J. W., Gerbig, C., Gottlieb, E., Griffith, D. W. T., Hurst, D. F., Jiménez, R., Keppel-Aleks, G., Kort, E. A., Macatangay, R., Machida, T., Matsueda, H., Moore, F., Morino, I., Park, S., Robinson, J., Roehl, C. M., Sawa, Y., Sherlock, V., Sweeney, C., Tanaka, T., and Zondlo, M. A.: Calibration of the Total Carbon Column Observing Network using aircraft profile data, Atmospheric Measurement Techniques, 3, 1351–1362, doi:10.5194/amt-3-1351-2010, URL http://www.atmos-meas-tech.net/3/1351/2010/, 2010.

Wunch et al. 2011: Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The Total Carbon Column Observing Network (TCCON), Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 369, 2087–2112, doi:10.1098/rsta.2010.0240, 2011.

Wunch et al. 2015: Wunch, D., Toon, G.C., Sherlock, V., Deutscher, N.M., Liu, X., Feist, D.G., Wennberg, P.O., The Total Carbon Column Observing Network's GGG2014 Data Version. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA (available at: doi:10.14291/tccon.ggg2014.documentation.R0/1221662), 2015.

Yoshida et al. 2013: Yoshida, Y., Kikuchi, N., Morino, I., Uchino, O., Oshchepkov, S., Bril, A., Saeki, T., Schutgens, N., Toon, G. C., Wunch, D., Roehl, C. M., Wennberg, P. O., Griffith, D. W. T, Deutscher, N. M., Warneke, T., Notholt, J., Robinson, J., Sherlock, V., Connor, B., Rettinger, M., Sussmann, R., Ahonen, P., Heikkinen, P., Kyrö, E., Mendonca, J., Strong, K., Hase, F., Dohe, S., and Yokota, T.: Improvement of the retrieval algorithm for GOSAT SWIR XCO₂ and XCH₄ and their validation using TCCON data, Atmos. Meas. Tech., 6, 1533–1547, doi:10.5194/amt-6-1533-2013, 2013.

Copernicus Climate Change Service

ECMWF - Shinfield Park, Reading RG2 9AX, UK

Contact: https://support.ecmwf.int/

climate.copernicus.eu copernicus.eu

ecmwf.int