

for the Essential Climate Variable ((ECV)
Greenhouse Gases (GHG)	

Page 1
Version 3.0
27. January 2022

ESA Climate Change Initiative "Plus" (CCI+)

Product User Guide (PUG) Version 3.0

for the RemoTeC XCH₄ GOSAT-2 PROXY Product (CH4_GO2_SRPR) version 2.0.0

for the Essential Climate Variable (ECV)

Greenhouse Gases (GHG)

Written by:

GHG-CCI+ project team

Lead author:

Trismono Candra Krisna

(SRON Netherlands Institute for Space Research, Utrecht, The Netherlands)

Co-authors:

Ilse Aben, Lianghai Wu, Otto Hasekamp, Jochen Landgraf

(SRON Netherlands Institute for Space Research, Utrecht, The Netherlands)

for the	Essential Climate Variable	(ECV)
	Greenhouse Gases (GHG)	

Page 2
Version 3.0
27. January 2022

Change log:

Version Nr.	Date	Status	Reason for change
Version 1	27. Oct. 2020	Draft	New document
Version 1.1	04. Jan. 2021	As submitted	Update format Update purpose of document
Version 1.1	04. Feb. 2021	As submitted	Update after ESA reviews Remove typos
Version 2.0	04. Nov. 2021	As submitted	L2 data reprocessing: update filter criteria, selection of TCCON station, and bias correction
Version 3.0	27. Jan. 2022	As submitted	- Updated doc to version 3.0

for the Essential Climate Variable (ECV) Greenhouse Gases (GHG)

Page 3
1 age 3
Version 3.0
27. January 2022

Table of Contents

1.	•	Purpose of document	4
2		Greenhouse gases Observing SATellite-2 (GOSAT-2)	5
3		RemoTeC retrieval algorithm	6
4		XCH ₄ RemoTeC-PROXY data product (Feb. 2019 - May 2020)	7
	4.1	Global maps	7
	4.2	Validation with TCCON	9
	4.3	Bias correction1	3
5		Description of data format1	5
	5.1	Product Content and Format1	5
	5.2	Quality Flags and Metadata1	9
	5.3	Recommended data usage1	9
	5.4	Tools for Reading the Data	20
6		References	1

for	the	Essential Climate Variable (ECV))
		Greenhouse Gases (GHG)	

Page 4
Version 3.0
27. January 2022

1. Purpose of document

This document describes the Product User Guide (PUG) of the RemoTeC XCH₄ GOSAT-2 SRON PROXY Product (CH4_GO2_SRPR), which is a deliverable for the ESA GHG-CCI+ project led by University of Bremen, Germany.

Within the project, satellite-derived atmospheric Carbon Dioxide (CO₂) and Methane (CH₄) Essential Climate Variable (ECV) data products are generated and delivered to ESA for inclusion into the ESA-GHG-CCI+ database from which users can access these data products and the corresponding documentations.

The satellite-derived data products are:

 Column-averaged dry-air mixing ratios (mole fractions) of CO₂ and CH₄, denoted XCO₂ (in parts per million, ppm) and XCH₄ (in parts per billion, ppb), respectively.

This document will be focused on the XCH₄ Level-2 product retrieved using the GOSAT-2 PROXY algorithm developed by SRON Netherlands Institute for Space Research, The Netherlands.

ESA Climate	Change	Initiative	"Plus"	(CCI+)	۱
-------------	--------	------------	--------	--------	---

for the Essential Climate Va	riable (ECV)
Greenhouse Gases (GHG)

Page 5
Version 3.0
27. January 2022

2. Greenhouse gases Observing SATellite-2 (GOSAT-2)

The Japanese Greenhouse gases Observing SATellite-2 (GOSAT2) was launched on 29th October 2018 and started operational observations form February 2019. GOSAT2 provides dedicated global measurements of total column CO₂ and CH₄ from its SWIR bands. It is equipped with two instruments, the Thermal And Near Infrared Sensor for carbon Observations - Fourier Transform Spectrometer-2 (TANSO-FTS2) as well as a dedicated Cloud and Aerosol Imager-2 (TANSO-CAI-2).

The TANSO-FTS2 instrument (Nakajima et al., 2017) has five spectral bands with a high spectral resolution $0.2~\text{cm}^{-1}$. Three operate in the SWIR at 0.75-0.77, 1.56-1.69 and at the extended $1.92\text{-}2.33~\mu\text{m}$ range, providing sensitivity to the near-surface absorbers. The fourth and fifth channels operating in the thermal infrared between 5.5-8.4 and $8.4\text{-}14.3~\mu\text{m}$ providing mid-tropospheric sensitivity.

The measurement strategy of TANSO-FTS2 is optimized for the characterization of continental-scale sources and sinks. TANSO-FTS2 utilizes a pointing mirror to perform off-nadir measurements at the same location on each 6-day repeat cycle. The pointing mirror allows TANSO-FTS2 to observe up to ±35° across track and ±40° along-track. These measurements nominally consist of 5 across track points spaced ~160km apart with a ground footprint diameter of approximately 9.7 km and a 4 second exposure duration. The satellite has an intelligent pointing monitor camera which makes it possible to adjust the line of sight of the FTS to steer away from cloud contaminated areas. Whilst the majority of data is limited to measurements over land where the surface reflectance is high, TANSO-FTS2 also observes in sun-glint mode over the ocean.

for t	he	Essential Climate Variable	(ECV)
		Greenhouse Gases (GHG)	

Page 6
Version 3.0
27. January 2022

3. RemoTeC retrieval algorithm

The CH4_GO2_SRPR product is retrieved from GOSAT-2 TANSO-FTS spectra using the RemoTeC algorithm that has been developed jointly by SRON and Karlsruhe Institute of Technology (KIT). The algorithm retrieves simultaneously XCH₄ and XCO₂. For the retrieval, we analyze four spectral regions: the 0.77 μm oxygen band, two CO₂ bands at 1.61 and 2.06 μm, as well as a CH₄ band at 1.64 μm. Within the retrieval procedure the sub-columns of CO₂ and CH₄ in different altitude layers are being retrieved. To obtain the column averaged dry air mixing ratios XCO₂ and XCH₄ the sub-columns are summed up to get the total column which is divided by the dry-air columns obtained from ECMWF model data in combination with a surface elevation data base. As the PROXY retrievals perform a non-scattering retrieval, the retrieved XCH₄ column cannot be used directly, as effects of aerosol scattering modify the light path. To correct the scattering effects, in the PROXY approach, the retrieved XCH₄ column is divided by the retrieved XCO₂ column at the 1.61 μm band and then multiplied by the XCO₂ total column obtained from the Copernicus Atmosphere Monitoring Service (CAMS) v18r2 product (Chevallier et al., 2019).

The retrieved XCH₄ has been validated against ground based TCCON measurements. To further improve accuracy of XCH₄ product, a bias correction has been developed based on TCCON comparisons. We use the GGG2014 release of the TCCON data (Wunch et al., 2015). More details on the technical aspects of the retrievals can be found in the ATBD GO2-SRPR document (ATBD, 2020).

ghg cci
GHG-CCI+ project

ESA Climate C	Change Initiative	"Plus"	(CCI+)
---------------	-------------------	--------	--------

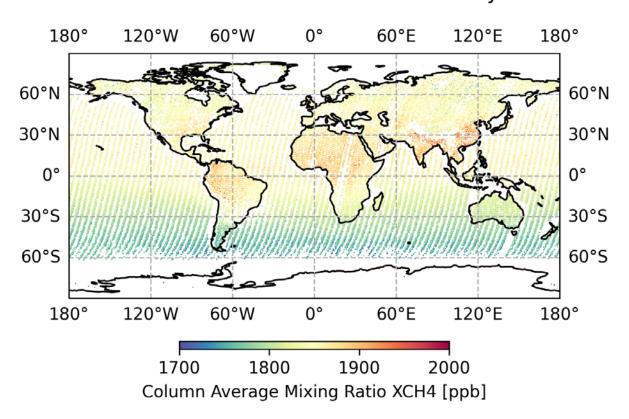
for the	Essential Climate Variable	(ECV)
	Greenhouse Gases (GHG)	

Page 7
Version 3.0
27. January 2022

4. XCH₄ RemoTeC-PROXY data product (Feb. 2019 - May 2020)

In this section, we show examples of the GOSAT-2 XCH₄ PROXY data product by showing global averaged maps (Sec. 4.1) and by giving a summary of the validation results relative to TCCON (Sec. 4.2).

4.1 Global maps


Figure 1 and Figure 2 show global average maps of the RemoTeC GOSAT-2 PROXY XCH₄ data product. Figure 1 shows the bias-corrected XCH₄ data and Figure 2 is the scaled random error, which is described in detail in (E3UB, 2021). The GOSAT-2 PROXY XCH₄ product provides a good global spatial coverage, particularly when it is compared to the corresponding GOSAT-1 product. As can be seen, in some regions the coverage is limited by cloud cover (the observations correspond to cloud free scenes), sun illumination conditions, etc.

ghg cci	
GHG-CCI+ project	

for	the	Essential Climate Variable (ECV))
		Greenhouse Gases (GHG)	

Page 8
Version 3.0
27. January 2022

GOSAT-2 PROXY corrected Feb. 2019 - May 2020

Figure 1: Global averaged XCH₄ between February 2019 and May 2020 for the CH4_GO2_SRPR product on a 0.5 by 0.5 degree resolution.

ghg cci
GHG-CCI+ project

ESA Climate	Change	Initiative	"Plus"	(CCI+)	ì
-------------	--------	------------	--------	--------	---

for the Essential Climate Va	ariable (ECV)
Greenhouse Gases (GHG)

Page 9
Version 3.0
27. January 2022

GOSAT-2 PROXY corrected Feb. 2019 - May 2020

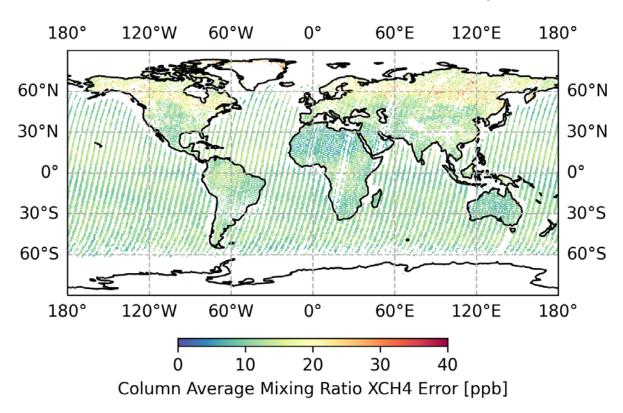


Figure 2: Same as Figure 1 but for the corresponding error.

4.2 Validation with TCCON

This section summarizes the main validation results presented in the RemoTeC GOSAT-2 ESA GHG CCI+ End-to-End ECV Uncertainty Budget Version 2.0 (E3UB, 2021) document. We used ground based TCCON GGG2014 (Wunch et al., 2015) data obtained from https://tccondata.org/ as reference data set. We co-located GOSAT-2 and TCCON measurements with a maximum time difference of 2.5h, a maximum distance of 300 km in both longitudinal and latitudinal directions.

In cases of multiple TCCON measurements of the same site collocating with a GOSAT-2 sounding, we averaged the TCCON measurements. For 13 TCCON sites used for the validation, in total we found about 4466 collocations during Feb. 2019 -

ESA Climate Change Initiative "Plus" (CCI+)

for	the	Essential Climate Variable (ECV))
		Greenhouse Gases (GHG)	

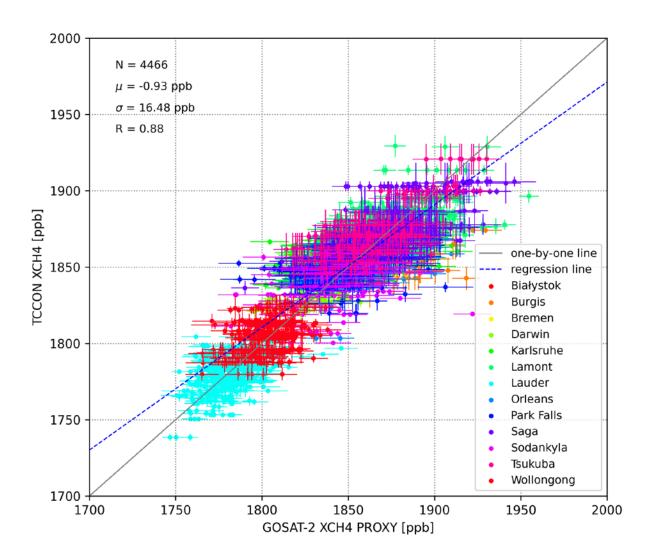
Page 10
Version 3.0
27. January 2022

May 2020. Not all TCCON sites updated their datasets regularly, which leads to suppressed number of collocations.

Figure 3 shows the collocations of GOSAT-2 PROXY XCH₄ (combined land and glint observations) with the 13 TCCON sites. Statistics per site for each mode are shown in **Figure 4** and **Figure 5**, respectively. Detailed bias and scatter, i.e., single sounding precision measured by the standard deviation of the difference to TCCON after removing systematic effect are described in E3UB (2021).

The mean bias (global offset) amounts to -0.9 ppb. The standard deviation of the site biases (spatial accuracy or station-to-station variability) is 4.96 ppb for land and 6.02 ppb for sun-glint observations. TCCON observes these gases with a precision on mole fractions of \sim 0.15% and \sim 0.2% for CO₂ and CH₄, respectively (Toon et al., 2009). The single measurement precision of GOSAT-2 compared to TCCON amounts to 16.48 ppb.

The validation results can be summarized as follows:


- Mean bias (all observations, global offset): -0.9 ppb
- Standard deviation site biases (spatial accuracy or station-to-station variability): 4.96 ppb for land and 6.02 for sun-glint
- Single measurement precision (all observations, 1-sigma): 16.48 ppb

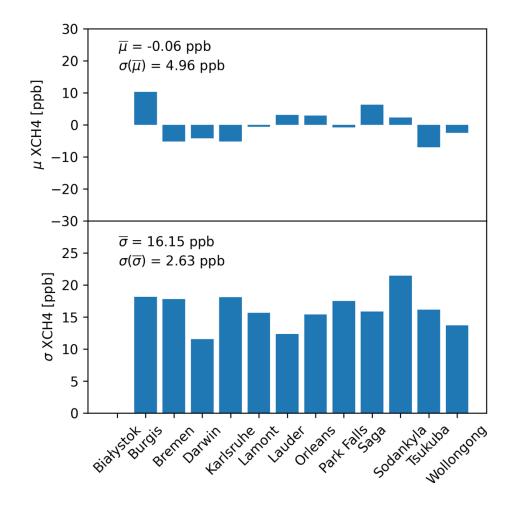
	ghg cci
GHG-CCI+	- project

ESA Climate	Change	Initiative	"Plus"	(CCI+)	ì
-------------	--------	------------	--------	--------	---

for	the	Essential Climate Variable (ECV))
		Greenhouse Gases (GHG)	

Page 11
Version 3.0
27 January 2022

Figure 3 Validation of single soundings of PROXY-CH₄ with co-located TCCON measurements at all TCCON sites for the period Feb. 2019 - May 2020. Numbers in the figures: μ = bias, i.e., average of the difference; σ = single measurement precision, i.e., standard deviation of the difference; N = number of co-locations; R = Pearson correlation coefficient.


.

ghg cci		
GHG-CCI+ project		

ESA Climate	Change	Initiative	"Plus"	(CCI+)	ì
-------------	--------	------------	--------	--------	---

for the Essential Climate Variable (ECV) Greenhouse Gases (GHG)

Page 12
Version 3.0
27. January 2022

Figure 4: Validation statistics bias (**top**) and scatter (**bottom**) per TCCON site for land observation (bias corrected). The summarizing values represent the standard deviation of the site biases and the average scatter relative to TCCON.

for the Essential Climate Varial	ole (ECV)
Greenhouse Gases (GH	G)

Page 13	
Version 3.0	
27. January 2022	

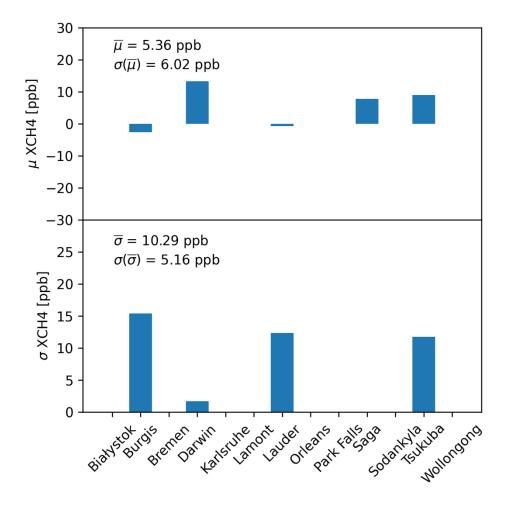


Figure 5: Same as Figure 4 but for sun-glint observations.

4.3 Bias correction

From comparison with TCCON it was found, that the error in XCH₄ is highly correlated with the retrieved albedo α at window 2 (1600 nm). Based on this correlation, the following bias correction for land observations has been developed.

$$XCH4_{corr} = XCH4 * (a + b * \alpha)$$

ESA Climate Change Initiative "Plus" (CCI+)

for the	Essential Climate Va	ariable (ECV)
	Greenhouse Gases	(GHG)

Version 3.0 27. January 2022		Page 14
27 January 2022	Vei	rsion 3.0
Eri danidary Edel	27. Janua	ary 2022

with a = 1.0003 and b = 0.0192. The bias correction parameters are obtained by the fitting of GOSAT-2 and TCCON differences.

For sun-glint observations, it is found that XCH₄ error is correlated with the O₂ ratio RO₂. It defines the ratio between retrieved and prior O₂ column. In this case, a similar correction function is applied,

$$XCH4_{corr} = XCH4 * (a + b * RO_2)$$

with a = 1.0054 and b = -0.0037.

ESA Climate C	Change Initiative	"Plus"	(CCI+)
---------------	-------------------	--------	--------

for the Essential Climate Variable (ECV)
Greenhouse Gases (GHG)

Page 15
Version 3.0
27. January 2022

5. Description of data format

5.1 Product Content and Format

The RemoteC XCH4 data product is stored per day in a single NetCDF file. Retrieval results are provided for the individual GOSAT-2 spatial footprints. The product file contains the key products, i.e., the retrieved column averaged dry air mixing ratio XCH₄ with and without bias correction. Information relevant for the use of the data is included in the data file, like the vertical layering and averaging kernels. Also, the parameters that are retrieved simultaneously with XCH₄ are included (e.g., surface albedo), as well as retrieval diagnostics like retrieval errors, quality of the fit.

Table 1: Common dimensions for the CH4_GO2_SRPR product

Dimensions	Туре	Unlimited	Units	Description
				I.
sounding_dim	int	no		Number of sounding
polarization_dim	int	no		Number of polarization = 2
level_dim	int	no		Number of level = 5
layer_dim	int	no		Number of layer = 4
window_dim	int	no		Number of retrieval window = 4
char_l1bname	int	no		Number of character of L1B name = 44

Table 2: Common variables for the CH4_GO2_SRPR product

Variable	Туре	Dim.	Units	Description
solar_zenith_angle	float	sounding_dim	degrees	Angle between line of sight to the sun and local vertical

for the Essential Climate Variable (ECV) Greenhouse Gases (GHG)

Page 16
Version 3.0
27. January 2022

sensor_zenith_angle	float	sounding_dim	degrees	Angle between the line of sight to the sensor and the local vertical
time	float	sounding_dim	seconds	Seconds since 1970-01-01 00:00:00
longitude	float	sounding_dim	degrees _east	Center longitude
latitude	float	sounding_dim	degrees _north	Center latitude
pressure_levels	float	sounding_dim, level_dim	hPa	Pressure levels
pressure_weight	float	sounding_dim, layer_dim		Layer dependent weights needed to apply the averaging kernels
xch4	float	sounding_dim	1e-9	Retrieved column dry-air mole fraction of atmospheric methane (XCH4) in ppb
xch4_uncertainty	float	sounding_dim	1e-9	1-sigma (scaled) uncertainty of the retrieved column-average dry-air mole fraction of atmospheric methane
xch4_averaging_kernel	float	sounding_dim, layer_dim		Normalized column averaging kernel
ch4_profile_apriori	float	sounding_dim, layer_dim	1e-9	A priori dry-air mole fraction profile of atmospheric methane
xch4_quality_flag	int	sounding_dim		Quality flag for XCH4 retrieval, 0 = good, 1 = bad

Table 3: Product specific (additional) variables for the CH4_GO2_SRPR product

Name	Туре	Dim.	Units	Description
flag_landtype	int	sounding_dim		0 = land, 1 = ocean
flag_sunglint	int	sounding_dim		0 = no sunglint, 1 = sunglint
gain	int	sounding_dim		gain setting of sensor
exposure_id	int	sounding_dim		Exposure identification number of the sounding

ESA Climate Change Initiative "Plus" (CCI+)

Product User Guide (PUG) XCH₄ GOSAT-2 SRON PROXY (CH4_GO2_SRPR)

for the Essential Climate Variable (EC\	/)
Greenhouse Gases (GHG)	-

Page 17	7
Version 3.0)
27 January 2022	- >

l1b_name	char	sounding_dim, char_l1bname		Name of the Level 1B file of the sounding
signal_to_noise_window	float	sounding_dim, window_dim, polarization_dim		Signal to noise ratio per retrieval window and for both polarization directions
dry_airmass_layer	float	sounding_dim, layer_dim	m-2	Dry airmass per layer
altitude	float	sounding_dim	m	Vertical altitude above the surface
air_temperature	float	sounding_dim, level_dim	К	The bulk temperature of the air at each level
surface_altitude_stdv	float	sounding_dim	m	Standard deviation of the surface elevation within the sounding
x_wind	float	sounding_dim, level_dim	m s-1	Eastward wind velocity
y_wind	float	sounding_dim, level_dim	m s-1	Northward wind velocity
chi2	float	sounding_dim		Chi-squared value of the sounding
optical_thickness_of_atmos phere_layer_due_to_ambie nt_aerosol	float	sounding_dim, window_dim		Scattering optical thickness per retrieval window
raw_xch4_err	float	sounding_dim	1e-9	1-sigma (unscaled) statistical uncertainty of the retrieved column-average dry-air mole fraction of atmospheric methane
h2o_column_1593	float	sounding_dim	m-2	Retrieved total water column at 1593 nm
h2o_column_1629	float	sounding_dim	m-2	Retrieved total water column at 1629 nm
h2o_column_2042	float	sounding_dim	m-2	Retrieved total water column at 2042 nm
surface_albedo_758	float	sounding_dim		The retrieved albedo at 758 nm
surface_albedo_1593	float	sounding_dim		The retrieved albedo at 1593 nm
surface_albedo_1629	float	sounding_dim		The retrieved albedo at 1629 nm
surface_albedo_2042	float	sounding_dim		The retrieved albedo at 2042 nm
intensity_offset_o2a	float	sounding_dim	W cm-2	The retrieved intensity offset in the O2A band

GHG-CCI+ project

ESA Climate Change Initiative "Plus" (CCI+)

Product User Guide (PUG) XCH₄ GOSAT-2 SRON PROXY (CH4_GO2_SRPR)

for the Essential Climate Variable (ECV)
Greenhouse Gases (GHG)

	Page	18
Ve	rsion	3.0

27. January 2022

intensity_offset_band_2	float	sounding_dim	W cm-2	The retrieved intensity offset in spectral window 2
intensity_offset_band_3	float	sounding_dim	W cm-2	The retrieved intensity offset in spectral window 3
intensity_offset_band_4	float	sounding_dim	W cm-2	The retrieved intensity offset in spectral window 4
raw_xch4	float	sounding_dim	1e-9	Retrieved column dry-air mole fraction of atmospheric methane (XCH4) in ppb before scattering correction
xch4_no_bias_correction	float	sounding_dim	1e-9	Retrieved column dry-air mole fraction of atmospheric methane (XCH4) in ppb before bias correction
raw_xco2	float	sounding_dim	1e-6	Retrieved column dry-air mole fraction of atmospheric carbon dioxide (XCO2) in ppm before scattering correction
xco2_apriori	float	sounding_dim	1e-6	A priori dry-air mole fraction of atmospheric carbon dioxide
co2_profile_apriori	float	sounding_dim, layer_dim	1e-6	A priori dry-air mole fraction profile of atmospheric carbon dioxide
xco2_averaging_kernel	float	sounding_dim, layer_dim		Normalized column averaging kernel for carbon dioxide
raw_xco2_err	float	sounding_dim	1e-6	1-sigma (unscaled) statistical uncertainty of the retrieved column-average dry-air mole fraction of atmospheric carbon dioxide

for t	he	Essential Climate Variable	(ECV)
		Greenhouse Gases (GHG)	

Page 19
Version 3.0
27. January 2022

5.2 Quality Flags and Metadata

To use data of GOSAT-2 PROXY XCH₄, users are encouraged to check the corresponding quality flag. In the NetCDF files, the quality flag, namely xch4_quality_flag, has been generated. It can have two values,

- 0: good quality data for **land** or **sun-glint** (quality has been checked)
- 1: data should not be used (e.g. bad fit to data, residual cloud contamination)

To be processed by the RemoTeC PROXY algorithm, GOSAT-2 ground pixel data have to fulfill the following criteria, GOSAT-2 nominal quality flags should be good and the standard deviation of the elevation in the pixel should be less than 1000 meters to filter out the most extreme terrains.

After the retrieval, the data that fulfill the following criteria are flagged as 0 (good):

- Cost function (chi2) < 18.0
- Signal to noise ratio (SNR) > 50
- Std. deviation of surface elevation within GOSAT-2 ground pixel < 150 m
- Solar zenith angle (SZA) < 75⁰
- 0 < Blended Albedo < 0.8
- 0.98 < CO₂ ratio < 1.08
- 0.91 < O₂ ratio < 1.05
- 0.92 < H₂O ratio < 1.25

5.3 Recommended data usage

It is strongly recommended to only use the bias-corrected data in, except if users explicitly correct for biases themselves (e.g. in an inverse modeling framework). The bias correction has been developed independently for land and sun-glint observations.

Important! Please only use data with xch4_quality_flag = 0 (for land and sunglint observation)

for	the	Essential Climate Variable (ECV))
		Greenhouse Gases (GHG)	

Page 20	
Version 3.0	
27. January 2022	

If the data are to be compared with other XCH₄ data for which vertical profile information is available (e.g. inverse modeling, comparison to models, comparison to measured profiles), the column averaging kernels should be used. Here, it should be noted, that **the column averaging kernels are to be applied to layer sub-columns** (m-2), as these are the quantities directly retrieved by the RemoTeC algorithm.

For model comparisons, the retrieved XCH₄ should be compared to [VCH4]'model/[VAIR]model, where [VAIR]model is the total dry air column provided by the model and [VCH4]'model is the model total CH₄ column after applying the column averaging kernel, viz.:

$$[VCH4]'_{\text{model}} = [VCH4]_{\text{prior}} + \mathbf{a}^T (\mathbf{x}_{\text{model}} - \mathbf{x}_{\text{prior}})$$

where [VCH4]_{prior} is the prior CH₄ total column used in the retrieval, \mathbf{x}_{model} is the vertical CH₄ profile from the model (as sub-columns) and \mathbf{x}_{prior} is the prior vertical profile from the retrieval. For application of the column averaging kernel, the model vertical profile should be re-calculated on the vertical grid of the retrieval (preferred) or the averaging kernel has to be interpolated to the vertical grid of the model.

5.4 Tools for Reading the Data

The data are stored in NetCDF format which can be read with standard tools in the common programming languages (IDL, Matlab, Python, Fortran90, C++, etc).

for	the	Essential Climate Variable (ECV))
		Greenhouse Gases (GHG)	

Page 21
Version 3.0
27. January 2022

6. References

/ATBD, 2020/ T. Krisna and the GHG-CCI+ group at SRON: ESA Climate Change Initiative "Plus" (CCI+) ATBD Version 1.2 for the RemoTeC CH₄ GOSAT-2 Data Product CH4_GO2_SRPR for the Essential Climate Variable (ECV) Greenhouse Gases (GHG), ESA GHG CCI+, 2020.

/E3UB, 2021/ T. Krisna and the GHG-CCI+ group at SRON: ESA Climate Change Initiative "Plus" (CCI+) End-to-End ECV Uncertainty Budget Version 2.0 for the RemoTeC CH₄ GOSAT-2 Data Product CH4_GO2_SRPR for the Essential Climate Variable (ECV) Greenhouse Gases (GHG), ESA GHG CCI+, 2021.

/PUGS, 2019/ Buchwitz, M., Aben, I., J., Armante, R., Boesch, H., Crevoisier, C., Di Noia, A., Hasekamp, O. P., Reuter, M., Schneising-Weigel, O., Wu, L., Product User Guide and Specification (PUGS) – Main document for Greenhouse Gas (GHG: CO2 & CH4) data set CDR 3 (2003-2018), C3S project C3S_312b_Lot2_DLR, v3.0, 2019.

/Chevallier et al., 2019/ Validation report for the CO2 fluxes estimated by atmospheric inversion, v18r2Version 1.0, Copernicus Atmosphere Monitoring Service, ECMWF Copernicus report, CAMS73_2018SC1_D73.1.4.1-2018-v1_201907_Validation inversionCO2fluxes_v1, https://atmosphere.copernicus.eu/sites/default/files/2019-08/CAMS73_2018SC1_D73.1.4.1-2018-v1_201907_v1.pdf

/Nakajima et al., 2017/ M. Nakajima, Hiroshi Suto, K. Yotsumoto, K. Shiomi, T. Hirabayashi, "Fourier transform spectrometer on GOSAT and GOSAT-2," Proc. SPIE 10563, International Conference on Space Optics — ICSO 2014, 105634O (17 November 2017); https://doi.org/10.1117/12.2304062.

/Toon et al., 2009/ Toon, G., Blavier, J.F., Washenfelder, R., Wunch, D., Keppel-Aleks, G., Wennberg, P., Connor, B., Sherlock, V., Griffith, D., Deutscher, N. and Notholt, J., 2009, April. Total column carbon observing network (TCCON). In Fourier Transform Spectroscopy (p. JMA3). Optical Society of America.

/Wunch et al., 2015/ Wunch, D., Toon, G.C., Sherlock, V., Deutscher, N.M., Liu, X., Feist, D.G., Wennberg, P.O., The Total Carbon Column Observing Network's GGG2014 Data Version. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA (available at: doi:10.14291/tccon.ggg2014.documentation.R0/1221662), 2015.

ghg cci
GHG-CCI+ project

ESA Climate Change Init	tiative "Plus" ((CCI+)
-------------------------	------------------	--------

for the Essential Climate Variable	(ECV)
Greenhouse Gases (GHG)	

Page 22
Version 3.0
27. January 2022

*** end of document