

Quantification of natural and man-made greenhouse gas surface fluxes from satellite observations of atmospheric CO₂ and CH₄ column amounts

<u>H. Bovensmann</u>, M.Buchwitz, John P. Burrows University of Bremen, Institute of Environmental Physics

on behalf of the CarbonSat Team

CarbonSat preparatory activities were funded by WFB Bremen and DLR Space Agency

http://www.iup.uni-bremen.de/carbonsat/

7th IWSGGMS, Edinburgh, 16.-18.5.2011

CarbonSat Proposal Team

	Core Team				
H. Bovensmann, M. Buchwitz, J.P. Burrows, K. Ge Krings, J. Notholt M. Reuter, Univ. Bremen, Gern	erilwoski, T. F.M. Breon, CEA/DSM/LSCE, Gif sur Yvette, France nany H. Boesch, P.S. Monks, Space Centre, University of				
 P.Bergamaschi, Climate Change Unit, Institute for Environment and Sustainability (IES), European Commission Joint Research Centre, Ispra, Italy M. Heimann, MPI BGC, Jena, Germany T. Trautmann, DLR IMF, Oberpfaffenhofen, German S. Quegan, University of Sheffield, UK P. Rayner, LSCE/IPSL, CEA de Saclay, France 	Leicester, UK D. Crisp, JPL, Pasadena, USA H.J. Dittus, DLR IRS, Bremen, Germany J. Erzinger, GFZ Potsdam, Germany G. Ehret, DLR IPA, Oberpfaffenhofen, Germany NR. Harding, NERC, Centre for Ecology and Hydrology (CEH), UK Technical support from OHB-System AG for defining the				
	overall Satellite System and Spacecraft bus, and Kayer- Threde for defining the Satellite Payload is kindly acknowledged.				
Science and Data User Team					
J. Achache, GEO Secretariat, Geneva,, Switzerland G. R. Asrar, WMO WCRP, Geneva, Switzerland B. Buchmann, D. Brunner, EMPA, CH J. Canadell, CSIRO Marine and Atmospheric Resea Australia F. Chevalier, LSCE, France P. Ciais, LSCE, France U. Cortesi, IFAC, Italy P. J. Crutzen, MPI C Mainz, Germany J.R. Drummond, Dalhousie University, Halifax, Can C.Gerbig, MPI BGC, Jena, Germany K. Gurney, Purdue Univ, US C. Frankenberg, JPL Pasadena, USA J. Fischer, FU Berlin, Germany	 S. DelBianco, IFAC, Italy S. Maksyutov, NIES, Japan T. Oda, NIES Japan arch, A. Richter, Univ. of Bremen, Germany I. Leifer, Univ of St. Barbara, USA S. Houweling SRON, Utrecht, The Netherlands C. Miller JPL, Pasadena, USA USA M. Scholze, University of Bristol, UK E.J. Llewellyn, University of Saskatchewan, Canada R. Martin, Dalhousie University, Halifax, Canada R. Ravishankara, ESRL NOAA, Boulder USA, O. Tarasova, WMO, M. Voß RWE, Essen, Germany 				

Example: Carbon Balance of Europe

ecosystem CO₂ flux ²⁰⁰⁰⁻²⁰⁰⁴

av.

sd. error on ecosystem CO₂ flux

E. D. Schulze, NGEO, 2009

Fluxes AND Meteorology determine XCO2

column average CO2, time 2003-07-12_13:00:00

WRF+CASA+VPRM, created at MPI-BGC

D. Pillai et al. 2010 ACP, MPI Jena

NH CO_2 Emissions 2006

CO₂ and CH₄ surface fluxes have spatially extended (diffuse) and localised components, both temporal variable

- ground based measurements are very accurate but have a "footprint" of at least several 100 km
- limited knowledge about localised emissions limits the quantification of the NH CO₂ land sink below continental scales (Guerney et al. 2005, Schulze et al. 2009, Ciais et al. 2010 etc.)
- Current satellite missions start to deliver GHG data of sufficient quality, but do not sample adequately atmospheric CO_2 and CH_4 (temporal, spatial resolution and coverage)
- CarbonSat aims to better separate biogenic and anthropogenic fluxes with global CO_2 and CH_4 data and "imaging" of strong localised CO_2 and CH_4 emission areas in <u>combination of with inverse modelling</u>.

CarbonSat - Spatial resolution & coverage

CarbonSat spatial resolution and coverage enables new important application areas: CO₂ and CH₄ emission from large point sources

CarbonSat Mission Requirements Overview			
Parameter	Description		
Main geophysical data products	 Level 2: Column-averaged mixing ratios of carbon dioxide (CO₂) and methane (CH₄) at ground-pixel resolution: XCO₂: Precision: < 1 ppm (threshold < 3 ppm = 0.8%) XCH₄: Precision: < 10 ppb (threshold < 18 ppb =1%) Level 3: XCO₂ maps (e.g., monthly at 0.5°x0.5°) XCH₄ maps (e.g., monthly at 0.5°x0.5°) The required relative accuracy for monthly averages at 500 x 500 km² resolution is: XCO₂: < 1 ppm (threshold < 2 ppm = 0.5%) XCH₄: < 10 ppb (threshold < 18 ppb = 1%) Level 4: Regional CO₂ surface fluxes: Precision weekly fluxes @ 500 x 500 km² in gC/m²/day: < 1 (goal), < 2 (threshold) Regional CH₄ surface fluxes: Precision weekly fluxes @ 500 x 500 km² in mgCH₄/m²/day: < 10 (goal), < 20 (threshold) CO₂ hotspot emissions (e.g., power plant emissions): Precision single overpass (MtCO₂/yr): < 4 (goal), < 8 (threshold) CH₄ hotspot emissions (e.g., geological sources): Precision single overpass (ktCH₄/yr): < 4 (goal), < 8 (threshold) 		

Measurement Technique: Solar Absorption Spectroscopy (as SCIAMACHY, GOSAT and OCO)

Details: Bovensmann et al. AMT, 2010

(

CarbonSat mission requirements survey

- Based on lessons learned from SCIA, OCO, • GOSAT
- Single measurement error ٠
 - $XCO_2 < 1-3 \text{ ppm}$
 - XCH₄: < 10 -18 ppb
- Orbit: •
 - LEO polar-sun-sync, early afternoon,
 - JPSS and S5P
- High spatial resolution and coverage: ٠
 - 2×2 km² ground pixel (T)
 - 500 km swath width (G)
- Spectrometer for O₂, CO₂ and CH₄ absorption ٠ bands around 765 nm, 1.6 µm, and 2.0 µm.
- spectral resolution (0.05 0.3 nm), ۲
- high SNR (300-600) ۲
- nadir imaging (main mode), glint mode, • calibration modes
- 5 years mission lifetime

Universität Bremen

CarbonSat spectrometer (Phase 0 by Kayser Threde)

Parameter	Value / Description
Orbit height	828km
Field of view	35°
Swath	500km
SSD	2km x 2km (at nadir)
Polarisation handling	Polarisation scrambler
Spectrometer slit size	54 µm x 13.5 mm
Spectral bands: NIR SW1 SW2	[nm] 757-775 1,559-1,675 2,043-2,095
Spectral resolution NIR SW1 SW2	0.045 nm, 3 pixels 0.35 nm, 3 pixels 0.125nm, 3 pixels
Calibration accuracy	< 1.5 %
Polarisation sensitivity	< 0.01
Detector technology	substrate-removed MCT
Pixel size	18µm x 18µm
Spectral pixels	~ 1000
Spatial pixels	~ 250 (after binning)
Detector temperature	150K

- Push broom grating imaging spectrometer
- High spectral resolution, high SNR, high accuracy
- Nadir and sun glint tracking observation modes
- Sun diffuser and on-board light sources for regular calibration and stability monitoring
- Mass (including CAI) ~ 90kg
- Power (including CAI) ~ 150W

Simulated Retrievals -> Retrieval Precisions

Table 3. Specification of eight scenarios and corresponding retrieval precisions for CO₂ and CH₄ columns, surface pressure (p_o), $XCO_2(p_o)$ and $XCO_2(CH_4)$ for CarbonSat nadir mode observations. $XCO_2(p_o)$ refers to XCO_2 obtained using the " p_o -proxy method" and $XCO_2(CH_4)$ refers to XCO_2 obtained using the "CH₄-proxy method" (see main text for details). Aerosol scenario: single scattering albedo 0.999, Henyey-Greenstein phase function with asymmetry parameter 0.7, aerosol optical depth (AOD) 0.2 at 550 nm with λ^{-1} wavelength dependence.

Security		Surface alleada ()	874	CO: es1		Retrieval precision		VCO-(CIL)	-> XCH	
Scenario		NIR / SWIR-1 / SWIR-2	(deg.)	(%)	р <i>о</i> (%)	(%)	(ppm)	(ppm)	precision	
VEG_25:	Vegetation, SZA=25°	0.20/0.10/0.05	25	0.26	0.08	0.37	1.1	1.8	~0.5%	
SAS_25:	Sand/soil, SZA=25°	0.20/0.30/0.30	25	0.14	0.07	0.21	0.6	0.9	0.070	
VEG_50:	Vegetation, SZA=50°	0.20/0.10/0.05	50	0.29	0.06	0.42	1.2	2.0		
SAS_50:	Sand/soil, SZA=50°	0.20/0.30/0.30	50	0.17	0.06	0.23	0.7	1.1	1000_2 .	
A01_50:	Albedo=0.1, SZA=50°	0.10/0.10/0.10	50	0.27	0.07	0.42	1.1	1.9	1-2 ppm	
A005_60:	Albedo=0.05, SZA=60°	0.05/0.05/0.05	60	0.43	0.14	0.77	1.8	3.4		
VEG_75:	Vegetation, SZA=75°	0.20/0.10/0.05	75	0.40	0.11	0.63	1.6	2.9	СП ₄ .	
SAS_75:	Sand/soil, SZA=75°	0.20/0.30/0.30	75	0.24	0.11	0.31	1.0	1.5	8 ppb	

CarbonSat Orbits + MODIS Clouds

Figure 42: Estimated of number of cloud free observations (relative). Fig. M. Reuter, IUP.

CarbonSat Number of Clear-Sky Observations					
Instrument	Spatial resolution [km ²]	Total number observations per day	Clear-sky frequency	Total number clear- sky observations per day	
CarbonSat	4	28,000,000	23%	6,440,000	
осо	3	1,680,000	27%	453,600	
GOSAT	85	10,000	13%	1,300	
SCIAMACHY	1800	70,000	5%	3,500	

Table 3-1: Estimate of CarbonSat's number of total and clear-sky observations per day compared to other missions.

Local Hot Spot Example: Power Plant CO₂

Krings et al in preparation, see poster

Oniversitat Dremen

Bovensmann et al. AMT, 2010

CarbonSat: Simulation of power plant CO_2

Max.

Aircraß%

15

10

20

observation

Local Point Sources as seen by MAMAP

- MAMAP: O2A and 1.6 µm channels
- Jänschwalde power plant (~24 Mt CO2/yr)
- no smoothing !

Universität Bremen

Improvement in instrument performance: factor 3-4 improvement in RMS

MAMAP: Gerilowski et al. AMT, 2011 First inversion results see Krings et al , AMTD, 2011

CarbonSat: Methane hot spot emission targets

Target must produce a detectable methane column enhancement at 2x2 km² resolution: => Single overpass detection limit is **4 - 8 ktCH4/year** (u = 2 - 6 m/s, precision 8 ppb)

Methane hot spot targets	Comparison with CarbonSat detection limit
Pipelines incl. compressor stations	Under certain conditions detection may be possible even at GOSAT resolution of 10 km (estimated GOSAT detection limit 11 ktCH4/year (u = 1 m/s, 4 ppb) (Inoue et al., 2009); leaks in eastern Europe found to be up to 29 ktCH4/year
Oil and gas fields	E.g. western siberian gas fields (Yamal, south of Kara sea) Jagovkina et al., 2000 (500 ppb above background below 500 m = approx. 2% column enhancement) or Prudhoe Bay, northern Alaska (unpublished ARCTAS DC-8 March 2008 results: CH_4 columns enhanced by about 5% along several km)
Landfills	Many landfills emit more than 10 ktCH4/year (e.g., European Pollutant Release and Transfer Register)
Mud volcanoes	Under certain conditions (e.g., eruption) detection may be possible even at SCIAMACHY resolution of 30x60 km ² (Kourtidis et al., 2006)
Seeps	Several, e.g. Coal Oil Point (COP) marine seeps, Santa Barbara, California (Leifer et al, 2006): about 25 ktCH4/year (1.15 m ³ /s) or Georgia Black Sea seeps (Judd et al., 2004): about 40 ktCH4/year
Other	Potentially many other more or less localized targets such East Siberian Arctic Shelf (ESAS): up to +8 ppm over Laptev Sea along > 100 km (Shakhova et al., 2010)
Universität Bremen	

Methane Hot Spots

 XCH_4 retrieval precision = 8 ppb (0.5%): CH₄ emission statistical error (1-sigma): 3-8 ktCH₄/yr (u=2-6 m/s) Anthropogenic CH₄ emissions (2005) · `` EDGAR v4.0 0.1°x0.1° > 10 ktCH₄/yr > 20 ktCH₄/yr http://edgar.jrc.ec.europa.eu/ v40 ch4 2005 all.txt

Bovensmann et al. AMT, 2010

CarbonSat Contributions: XCO₂

CarbonSat Contributions XCH4

CarbonSat Secondary Product: Vegetation Fluorescence

Summary & Conclusions

• CarbonSat aims to better separate biogenic and anthropogenic fluxes by "imaging" regions of strong localised CO₂ and CH₄ emissions.

• CarbonSat mission concept is designed to provide for the first time data on XCO_2 and XCH_4 with local spatial resolution (2 x 2 km²) and good global coverage (500 km swath)

• in November 2010 CS selected by ESA for Phase A/B1 as Earth Explorer #8 (opportunity class), launch 2018 earliest

- Mission & instrument studies, incl. inverse modelling ongoing
- Investigation of other (fast-track) mission implementation options ongoing
- Vision: international constellation of CarbonSat's

CarbonSat Constellation

• With increased spatial resolution of < 2km and adequate accuracy

5 Satellites cover 2500 km on ground in 1 orbit

global coverage every day with 2 km spatial resolution

CarbonSat constellation

- Globally comparable data
- Timely detection of changes
- improves our understanding of the CO₂ and CH₄ sources and sinks for better attribution and prediction of climate change
- Contributes to monitoring, assessement and attribution in support the Kyoto and post Kyoto protocols
- Reliable and timely services

The End

Further Reading ...

Atmos. Meas. Tech., 3, 781–811, 2010 www.atmos-meas-tech.net/3/781/2010/ doi:10.5194/amt-3-781-2010 © Author(s) 2010. CC Attribution 3.0 License.

A remote sensing technique for global monitoring of power plant CO₂ emissions from space and related applications

H. Bovensmann¹, M. Buchwitz¹, J. P. Burrows¹, M. Reuter¹, T. Krings¹, K. Gerilowski¹, O. Schneising¹, J. Heymann¹, A. Tretner², and J. Erzinger²

¹Institute of Environmental Physics (IUP), University of Bremen FB1, Otto Hahn Allee 1, 28334 Bremen, Germany ²Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany

Received: 6 November 2009 – Published in Atmos. Meas. Tech. Discuss.: 7 January 2010 Revised: 14 June 2010 – Accepted: 15 June 2010 – Published: 1 July 2010

Abstract. Carbon dioxide (CO_2) is the most important anthropogenic greenhouse gas (GHG) causing global warming. The atmospheric CO₂ concentration increased by more than 30% since pre-industrial times – primarily due to burning of fossil fuels – and still continues to increase. Reporting of PP CO₂ emission due to instrument noise is in the range 1.6–4.8 MtCO₂/yr for single overpasses. This corresponds to 12–36% of the emission of a mid-size PP (13 MtCO₂/yr). We have also determined the sensitivity to parameters which may result in systematic errors such as atmospheric transport

Further Reading: Airborne Demonstration ...

Atmos. Meas. Tech., 4, 215–243, 2011 www.atmos-meas-tech.net/4/215/2011/ doi:10.5194/amt-4-215-2011 © Author(s) 2011. CC Attribution 3.0 License.

MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: instrument description and performance analysis

K. Gerilowski¹, A. Tretner², T. Krings¹, M. Buchwitz¹, P. P. Bertagnolio^{1,*}, F. Belemezov¹, J. Erzinger², J. P. Burrows¹, and H. Bovensmann¹ Atmos. Meas. 7

*now at: University of Siena, Department of Earth Sciences, Via Laterina 8, 53100 Siena, It © Author(s) 2011. CC Attribution 3.0 License.

J. P. Burrows¹, and H. Bovensmann¹ ¹University of Bremen, Institute of Environmental Physics, P.O. Box 330440, 28334 Breme WWW.atmos-meas-tech-discuss.net/4/2207/2011/ ²Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Telegrafenbe doi:10.5194/amtd-4-2207-2011

Received: 9 July 2010 – Published in Atmos. Meas. Tech. Discuss.: 2 August 2010 Revised: 13 January 2011 – Accepted: 22 January 2011 – Published: 10 February 2011

Universität Bremen

This discussion paper is/has been under review for the journal Atmospheric Measurement Techniques (AMT). Please refer to the corresponding final paper in AMT if available.

MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates

T. Krings¹, K. Gerilowski¹, M. Buchwitz¹, M. Reuter¹, A. Tretner², J. Erzinger², D. Heinze³, J. P. Burrows¹, and H. Bovensmann¹

New "Full Physics" Retrieval Algorithm

Atmos. Meas. Tech., 3, 209–232, 2010 www.atmos-meas-tech.net/3/209/2010/ © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License.

A method for improved SCIAMACHY CO₂ retrieval in the presence of optically thin clouds

M. Reuter, M. Buchwitz, O. Schneising, J. Heymann, H. Bovensmann, and J. P. Burrows

University of Bremen, Institute of Environmental Physics, P.O. Box 330440, 28334 Bremen, Germany

Received: 28 August 2009 – Published in Atmos. Meas. Tech. Discuss.: 8 October 2009 Revised: 15 January 2010 – Accepted: 9 February 2010 – Published: 12 February 2010

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D04301, doi:10.1029/2010JD015047, 2011

Retrieval of atmospheric CO₂ with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results

M. Reuter,¹ H. Bovensmann,¹ M. Buchwitz,¹ J. P. Burrows,¹ B. J. Connor,² N. M. Deutscher,^{3,4} D. W. T. Griffith,³ J. Heymann,¹ G. Keppel-Aleks,⁵ J. Messerschmidt,¹ J. Notholt,¹ C. Petri,¹ J. Robinson,² O. Schneising,¹ V. Sherlock,⁶ V. Velazco,¹ T. Warneke,¹ P. O. Wennberg,⁵ and D. Wunch⁵

Received 13 September 2010; revised 16 November 2010; accepted 10 December 2010; published 23 February 2011.