English Kontakt Intern / Service Sitemap Mitarbeiter Suche Notfall Datenschutzerklärung Startseite
Startseite über das Institut Forschung Daten M.Sc. / PhD Kurse + Seminare Jobs Publikationen Universität Bremen

Die Abteilung Atmosphärenphysik und -chemie besteht aus mehreren Gruppen mit unterschiedlichen Arbeitsgebieten. Sie reichen von der Bestimmung von Spektren atmosphärisch interessanter Gase mit Hilfe eines Fourier Transform Spektrometers über die Messung von Aerosolen und Spurengasen in der Troposphäre bis zur wissenschaftlichen Unterstützung und Datenauswertung von Satellitenprojekten wie GOME und SCIAMACHY. Die Struktur der Abteilung zeigt das Organigramm [4.019 KB] .

  • Carbon Gas Forschung:
  • Der Fokus der Forschungsaktivitäten der IUP CarbonGroup ist es, Informationen über die atmosphärischen Kohlenstoffgase ("carbon gases", im wesentlichen CO2, CH4, CO) aus Satellitenmessungen (z.B. SCIAMACHY) und Flugzeugmessungen (MAMAP) abzuleiten und zu interpretieren, z.B. im Hinblick auf Quellen und Senken (Emission und Aufnahme, z.B. durch Pflanzen) dieser Gase. Die IUP CarbonGroup ist in eine Reihe nationaler, europäischer und internationaler Projekte eingebunden. Das IUP leitet z.B. das GHG-CCI Projekt der Climate Change Initiative (CCI) der ESA. Das IUP ist auch in der Spezifikation zukünftiger Satellitenmissionen involviert, wie z.B. CarbonSat.
  • CarbonSat: Um auch nach SCIAMACHY globale Messungen von CO2 und CH4 durchzuführen, arbeitet das IUP an der Spezifikation einer neuen Satellitenmission: Carbon Monitoring Satellite – CarbonSat.

(Image: NASA/wikipedia)

  • Aerosol and cloud research: Main topic of this group is the investigation of global optical and microphysical parameters of clouds and aerosols from space.

  • SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY) is a spectrometer designed to measure sunlight, transmitted, reflected and scattered by the earth atmosphere or surface in the ultraviolet, visible and near infrared wavelength region (240 - 2380 nm) at moderate spectral resolution (0,2 - 1,5 nm).

  • GOME (Global Ozone Monitoring Experiment) is a nadir viewing UV/VIS spectrometer aboard the ERS-2 satellite. The scientific projects at IUP encompass: radiative transfer modelling, retrieval algorithm development, validation of GOME data products, and scientific case studies. The whole GOME data can now be found at one place.

  • The DOAS (Differential Optical Absorption Spectroscopy) group is using the DOAS method to retrieve atmospheric trace gas concentrations from UV/visible spectra of scattered sunlight. The method is applied to data from the GOME and SCIAMACHY satellite instruments, aircraft measurements and the data from the BREDOM network of ground-based UV/visible instruments.

  • The UVSat group is part of the "Physics and Chemistry of the Atmosphere" division led by Prof. John Burrows within the Institute of Environmental Physics (IUP). Our research focuses in satellite retrievals of ozone and other geophysical quantities in the UV and visible spectral region and we conduct studies related to ozone chemistry, atmospheric dynamics, and ozone-climate interaction. We are working with the satellite instruments GOME (Global Ozone Monitoring Experiment, launched in 1995) and SCIAMACHY (SCanning ImAging spectroMeter for Atmospheric CHartographY, launched 2002).

  • Limb Retrieval and Radiative Transfer (LRRT) group focuses its activities on the retrieval of the vertical distributions of atmospheric species (O3, NO2, BrO, H2O) and stratospheric aerosol characteristics (extinction, particle size disribution) from space borne measurements of the scattered solar light in UV-Visible-NIR-SWIR spectral range. Measurements form SCIAMACHY and OMPS-LP instruments are mainly used. Furthermore, we continue developing the SCIATRAN radiative transfer model.

  • TROLAS (Tropospheric Radical Observations and Laser Absorption Spectroscopy) is a research group interested in the investigation of radical species of atmospheric relevance. The investigation approach bases on the development of in-situ measurement methods and their deployment in different scientific platforms.

  • Effect of Megacities on the transport and transformation of pollutants on the Regional and Global scales
  • The number and size of major population centers (MPCs) is increasing worldwide. The investigation of the impact of transport and transformation of plumes from MPC has lately received much attention in the scientific community but our knowledge is still quite limited and inadequate.
  • EMeRGe exploits the unique capabilities of the new High Altitude and LOng Range (HALO) aircraft research platform to investigate the impact of MPC emissions on air pollution at local, regional and hemispheric scales by making dedicated airborne measurement campaigns, coupled interpretation and modelling studies of primarily the short lived climate pollutants, i.e. reactive gases, temporary reservoirs, and aerosol particles.

  • Atmospheric Modeling: The atmospheric modeling group at the IUP Bremen currently uses the Bremen 3D Chemistry and Transport Model (B3DCTM) to study processes from the upper troposphere up to the mesosphere. Our current research is related to stratospheric ozone trends and anomalies and the impact of very short-lived substances on stratospheric bromine loading.

  • ACCENT / AT-2: Several projects at the IUP Bremen are part of the European ACCENT network which is dedicated to promoting the European role in research on atmospheric composition. The IUP Bremen mainly contributes to the task Satellite Observations AT2,which evolved from the EROTRAC-2 TROPOSAT project.

  • Molecular Spectroscopy and Chemical Kinetics: Our work is to provide accurate reference data for atmospheric remote sensing, to study molecular physics and chemistry related to atmospheric problems, and to determine atmospheric concentrations by optical methods.

  • ELECTRONICS OPTICS & SENSORS GROUP: The main areas are electronics and optics specialties as well as design and test of airborne and balloonborne sensors and components.

  • OVOC emissions: A new Emmy-Noether Research Group, funded by the DFG to characterize emissions of oxygenated volatile organic compounds from the biosphere, using micrometeorological techniques in conjunction with Chemical Ionization Mass Spectrometry.

  • Helmholtz-University Young Investigators Group PHYTOOPTICS, a cooperation between AWI Climate Sciences and IUP, studies to the retrieval of new biooptical information from the European satellite SCIAMACHY in addition to using the data of the common ocean color sensors MERIS, SeaWiFS and MODIS. Besides remote sensing retrievals, biooptical and biochemical in-situ parameters of phytoplankton and light conditions are measured and models are used to calculate radiative transfer and primary production.

  • Paleozon: Modelling possible impacts of large changes of geomagnetic intensity on the atmospheric composition using a 2 D version of the SLIMCAT model. Specifically, the impact of large solar proton events on the chemical composition and radiative balance of the atmosphere is investigated.

  • SCIAmetals: The project's objective is the monitoring of metal species in the atmosphere, in particular in the mesophere. Being excited mainly by sunlight metal atoms and ions (e.g. Fe, Mg, Na, Si, Cr) emit light at wavelengths in the UV/Vis. These emissions are retrieved from SCIAMACHY data and used to obtain global concentration profiles of metal species.

  • GeoTROPE (Geostationary Tropospheric Pollution Explorer): The scientific objective of the GeoTROPE mission is to investigate and assess the importance of anthropogenic activity and natural phenomena on the changing tropospheric composition, linking diurnal with seasonal to annual timescales, and regional with continental to global spatial scales.

  • SCIATRAN The radiative transfer program has been designed to allow fast and accurate simulation of radiance spectra as measured or expected to be measured from space with the passive remote sensing UV-Vis-NIR spectrometers GOME.

  • BRAPHO (BRemens ATmosphärisches PHOtochemische Modell): Die Gruppe beschäftigt sich mit der Modellierung der Chemie und Physik der Atmosphäre. BRAPHO wurde entwickelt, um photochemische Prozesse in der Atmosphäre zu simulieren.


Die Leitung dieses Forschungsbereiches erfolgt durch Prof. John P. Burrows.