

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Fast emission estimates in China and South Africa constrained by satellite observations

Bas Mijling Ronald van der A

PRESCRIBE workshop, 16 May 2013

Overview

- New emission estimation algorithm
- Applied to China

 NO_x emission trend analysis 2007-2011
- Applied to South Africa

 First results of NO_x emissions

Basic tools

└── NO₂ retrievals from OMI and GOME2

CHIMERE 0.25 °×0.25°

Domain East China

Difference between observations and model

Average over June-August 2008

Inversion techniques

finding the relation between emission changes and concentration changes

- Adjoint code of CTM Not always available.
- Ensemble Kalman Filter Multiple forward model runs necessary.
- Local inversion by concentration ratio e.g. by Martin et al. (2006). Transport from source neglected.
- **DECSO** algorithm (*Mijling and Van der A, JGR, 2012*) Daily Emission estimates Constrained by Satellite Observations

Only 1 model run necessary:

Algorithm is relatively fast, enabling daily inversion of observations.

Transport from source is included:

Enabling emission estimation on a mesoscale resolution (10-25 km) Using a simplified 2D transport scheme to approximate CTM run 1.

Two concentration contributions

Consider a time interval t=[0,T] (24 hrs). The concentration at t=T is composed of

Transported and aged background concentration:

$$c_i(T) = \sum_j \exp\left(-T/\tau_j\right) \Omega_{j \to i}(T) c_j(0) \implies \mathbf{c}(T) = \mathbf{G}\mathbf{c}(0)$$

2. Emitted and transported NO_x during the time interval:

$$c_i(T) = \sum_j \left(\int_0^T \exp\left(-t/\tau_j\right) \Omega_{j \to i}(t) f_j(T-t) dt \right) e_j \implies \mathbf{c}(T) = \mathbf{H} \mathbf{e}$$

Effective lifetime

Dependence of NO₂ columns in grid cell *i* on NO_x emission changes in grid cell *j*

 $= \frac{\partial c_i^{NO2}}{\partial e_i^{NOx}} = \gamma_i \frac{a_j}{a_i} \int_0^t e^{-t/\tau_j} \Omega_{ij}(t) f_j(T-t) dt$ H_{ii}

- 24h time window between two satellite overpasses [0,T]diurnal emission modulation $f_i(t)$
- transport of NO_x from cell *j* to *i* during [t,T] $\Omega_{ii}(t)$ effective lifetime of NOx τ_{j}
- ratio grid cell area a_i/a_i
 - NO_2/NO_x ratio

 γ_i

The sensitivities **H** are interpolated to the satellite footprints and are corrected for by the averaging kernel of the retrieval method.

Inversion problem

Difference satellite observation and model simulation over East China

Sensitivity matrix ~ 2000×15000 Update emission inventory (0.25°) over East China

Inversion: The Kalman Filter

State vector forecast $\mathbf{x}^{f}(t_{i+1}) = M_{i} [\mathbf{x}^{a}(t_{i})]$ Error covariance forecast $\mathbf{P}^{f}(t_{i+1}) = \mathbf{M}_{i}\mathbf{P}^{a}(t_{i})\mathbf{M}_{i}^{T} + \mathbf{Q}(t_{i})$ Kalman gain matrix $\mathbf{K}_{i} = \mathbf{P}^{f}(t_{i})\mathbf{H}_{i}^{T}[\mathbf{H}_{i}\mathbf{P}^{f}(t_{i})\mathbf{H}_{i}^{T} + \mathbf{R}_{i}]^{-1}$ State vector analysis $\mathbf{x}^{a}(t_{i}) = \mathbf{x}^{f}(t_{i}) + \mathbf{K}_{i}(\mathbf{y}_{i}^{o} - H_{i} [\mathbf{x}^{f}(t_{i})])$ Error covariance analysis $\mathbf{P}^{a}(t_{i}) = (\mathbf{I} - \mathbf{K}_{i}\mathbf{H}_{i}) \mathbf{P}^{f}(t_{i})$

- Starts from a priori information, i.e. the best known bottom-up emission inventory
- Update depends on error in observation and simulation

- No update where no information is available
- Emissions are updated by addition instead of scaling
- Error estimation of new emission inventory

NO_x emission trend Beijing area

NO_x emission estimates for East China

Emission results China

- New power plants in Inner Mongolia
- Distinct emissions along great rivers
- No emissions in North Korea
- Ship tracks

Agreement between observation and forecast

May-December 2008

NO_x time series 2007-2011

Emission trends by province

6

40

Domain South Africa

N

Moroni

19°S–37°S, 10°E–42°E, 0.25° resolution, 9417 grid cells

South Africa: Emissions characterized by few hot spots (power plants, heavy industry)

Apriori emissions taken from EDGAR v4.2

Mozambique

Madagaso

- Total emissions too low
- Location and strength of hot spots generally wrong

EDGAR v4.2

low

200 km

First results

GOME-2 observations January 2008

Colocated simulations Based on EDGAR v4.2 **No assimilation**

First results

GOME-2 observations January 2008

P_{0} P_{0

Observed tropospheric NO₂

40

Ν

έ

10

Assimilated observations

Observation error (tropospheric NO₂)

New results

GOME-2 observations 2010

Concentration simulation

Emission injection height according to sector

Source-receptor (sensitivity) calculation Backward trajectory calculation

Emission update

- Update NO_x-correlated pollutants
- Noise and bias reduction over remote areas

20

 10^{15} molec/cm²

30

40

10

EDGAR v4.2

low

200 km

DECSO (with OMI)

200 km

3 Maputo 分Maputo Mpumalanga gatleng Hhohho **☆**Mbabane Swaziland Lubombo Pretoria Shiselweni Johannesburg Gauteng Soweto O 2.7

Maputo

샵Mapute

Hhohho ☆^{Mbabane}

Swaziland Lubombo

Shiselweni

Matimba power plant

Mpumalanga

Pretoria

Johannesburg Gauteng Soweto O

gatleng

Maputo

分Mapute

Ð

Hhohho ☆Mbabane

Swaziland Lubombo

C Ball

Shiselweni

Pretoria Johannesburg Gauteng Soweto O

Sasol company oil from coal

Mpumalanga

gatleng

Algorithm summary

- The presented method is a promising new technique for top-down emission estimates from satellite observations.
- The algorithm is fast (<1h), enabling daily assimilation of satellite data.
- The algorithm only needs a forward CTM run; CTM is treated as a black box.

Results and Outlook (1)

- Successfully applied to China and South Africa.
- Better and up-to-date estimates of location and strength of NO_{x} emission sources.
- More validation necessary, e.g. with power plant emission data.
- Application to other regions (India, Middle East).
- Application to other species (e.g. SO₂).

Outlook (2)

- Improve error estimation. (Kalman formalism, autocorrelation of timeseries)
- Influence of satellite resolution on emission resolution. (Smaller footprint of TROPOMI will improve results)
- Ingression of combined data sets. (e.g. GOME-2 and OMI)

Air pollution in Beijing January 2013

China: Economic indicators

SOURCE: International Monetary Fund, World Economic Outlook Database, October 2008

Number of vehicles in Beijing, 1998-2015

China's urbanization, 1980-2011

Source: China Statistical Yearbook, China Daily (17/2/09)

Closed loop test: Pearl River Delta region

Comparison of yearly NO_x emission totals for East China in Tg N/yr

	2006	2007	2008	2009	2010	2011
DECSO	_	5.63	5.91	6.06	7.09	7.96
EDGAR v4.2	5.03	5.34	5.93	Ι	-	-
INTEX-B	6.09	-	-	_	-	-
MEIC	-	-	7.54	_	8.28	-
REAS v1.1	4.44	4.55	4.65	4.76	4.86	-

