Addressing the role of major chemical uncertainties on top-down NOx and VOC emission estimates

T. STAVRAKOU & J.-F. MULLER I. DE SMEDT & M. VAN ROOZENDAEL Belgian Institute for Space Aeronomy

J. PEETERS Dept. of Chemistry, University of Leuven

F. BOERSMA & R. VAN DER A Royal Netherlands Meteorological Institute

15-16 May 2013

- Inverse modeling adjusts emission fluxes in a model to match the observations – Main assumption : Uncertainties in bottom-up emissions larger than uncertainties in the data and in the model
- Recent studies point to flaws in the current mechanisms regarding the representation of NOx and VOC chemistry in models ⁽²⁾

QUESTIONS THAT WE ADDRESS :

- Sinks of tropospheric NOx : how well are they known?
 How are affected top-down NOx emissions based on satellite NO₂ retrievals?
 Can independent data help to reduce the overall uncertainty?
 How well OH radicals are represented in models?
 Oxidation of isoprene : what are the latest developments?
 What is the impact of OH recycling on top-down VOC estimates ?
- Other uncertainties?

Sinks of tropospheric NOx : how well are they known?

THE MAIN NOX SINK: NO₂ + OH \rightarrow HNO₃

A POTENTIALLY IMPORTANT SINK: NO + HO₂ \rightarrow HNO₃

BETWEEN TWO REALISTIC SCENARIOS

	MINIMUM LOSS	MAXIMUM LOSS
NO ₂ +OH	Henderson et al. (2012)	Sander et al. (2011)
$NO+HO_2 \rightarrow HNO_3$	Ignored	Butkovskaya et al. (2009)
Υ N2O5	Brown et al. (2009)	Davis et al. (2008)
Isoprene chemistry	MIM2 (Taraborrelli et al. 2009)	MIM2+ (Lelieveld et al. 2008)

MODELING TOOL : IMAGESv2 GLOBAL CTM

ropo aeronomie be

NOx SINK RATES

MINLOSS

MAXLOSS

- ✓ Spectacular increase in the loss rate over tropical regions mostly due to $NO+HO_2$ → HNO_3
- \checkmark In mid-latitudes the loss is more important in July due to radiation
- ✓ The major sink is NO₂+OH → distributions reflect boundary layer OH

How are affected top-down NOx emissions based on satellite NO₂ retrievals?

(DOMINO v2.0, www.temis.nl)

Solve using the adjoint model technique (Stavrakou et al. 2006, 2008,2009) Perform inversion at 2°x2.5° for 2007

NOx ANNUAL EMISSION UPDATES IN 2007

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 4.0 5.0

Major differences : 50% higher emission in MAXLOSS

- Largest discrepancies in natural emissions
- ✓ Significant differences also in anthropogenic emissions, estimates in China consistently higher than the a priori
- ✓ MAXLOSS : 1/5 of NOx source is removed via NO+HO₂ → HNO₃

$1 \rightarrow \text{COMPARISON TO AIRBORNE MEASUREMENTS}$

MINLOSS
 provides a
 better match
 with
 observations
 both over land
 and ocean

2 \rightarrow COMPARISON TO REASV2 AND MEIC INVENTORIES

0 1 2 3 5 7 10 15 20 30 50 70 100 x 10¹⁰ molec.cm⁻² s⁻¹

✓ MAXLOSS realizes the best match with both inventories

✓ Total emission is underestimated by both inversions

✓ Correlation is higher for MAXLOSS (0.90-0.92), 0.85-0.88 for MINLOSS

✓ REASv2 : 7.2 Tg N, MEIC : 7.6 Tg N, MAXLOSS : 6.5 Tg N, MINLOSS : 5.8 Tg N

□ Both inversions modify the seasonality of anthropogenic emissions

- MAXLOSS seasonality is in remarkably good agreement with the recent bottom-up inventories
- The a priori seasonality too high in late winter, too low in summer is not supported by OMI observations

- Support from comparisons with independent data, but evidence favoring one or the other assumption is still partial
- Neither scenario improves the agreement with ALL independent datasets
- Comparisons to SCIAMACHY and aircraft measurements point to MINLOSS as the most likely, BUT opposite conclusions are drawn from top-down estimates in China
- □ Ideas? Organic nitrate formation dominates instantaneous NOx sink in rural sites, underestimated OH levels in large Chinese cities, HONO formation → unknown mechanisms !

Stavrakou, T. et al., Atmos. Chem. Phys. Discuss., 2013

How well OH radicals are represented in models?

<u>Traditional view :</u> Isoprene depletes OH, especially at remote (low-NOx) locations and decreases the oxidizing capacity of the atmosphere

BUT observations show that OH is severely underestimated by CTMs

Modelled and observed OH

Model underprediction increases for increasing isoprene concentrations and decreasing NO levels
 Isoprene oxidation recycles much more OH than predicted by current oxidation mechanisms, especially at low/moderate NOx

Enhance OH formation in isoprene oxidation? Recycling !

Leuven

Isoprene Mechanism" (LIM0)

- Fast isomerisation of the Z-δ-OH-hydroxy-isoprenyl-peroxy radicals by 1,6-H shift, yielding hydroperoxy-methyl-butenals, "HPALDs" which photolyse rapidly to yield several OH (Peeters and Muller, 2010)
- Implemented LIM0 in IMAGESv2 CTM (Stavrakou et al. 2010)

Lelieveld et al., Nature, 2008 Peeters et al., Phys. Chem. Chem. Phys., 2009 Peeters, J., and J.-F. Müller, Phys. Chem. Chem. Phys., 2010 Stavrakou, T., J. Peeters, and J.-F. Müller,, Atmos. Chem. Phys., 2010

Oxidation of isoprene : what are the latest developments?

- □ LIM0 was upgraded in light of theoretical findings & recent literature
 → *LIM1* (Peeters et al. in preparation)
- ☐ <u>Compared to LIM0 :</u>
 - Iower isomerisation yield but secondary chemistry generates more OH, while keeping [HO2] down
 - Several mechanisms and crucial rates remain uncertain, require refined theoretical quantifications and/or experimental verification

What is the impact of OH recycling on top-down VOC estimates ?

- Impact of OH uncertainty on the HCHO columns & top-down estimates
- Tropospheric HCHO columns from GOME-2 (De Smedt et al. 2012, http://h2co.aeronomie.be)
- Monthly averaged columns accounting for the sampling times of observations at each location
- 2 global-scale inversions either using MIM2+ mechanism, or LIM1 (preliminary!)

HCHO yield from isoprene : KPP box calculations

Isoprene mechanism	0.1 ppb NOx		1 ppb NOx	
Duration	1 day	10 days	1 day	10 days
MIM2+	1.6	2.1	2.5	2.5
LIM1	1.5	1.9	2.2	2.3

□ MIM2+ yields are higher, low NOx : by 8% - 12%, high NOx : by 10%

Input in IMAGESv2 : REASv2, GFEDv3, MEGANv2011

Biogenic JJA emissions (Tg)					
Inversion	MIM2+	LIM1			
Global	66	70			
China	3.8	4.1			
N. America	11.1	12.4			

 LIM1 inversion yields by 6% higher emissions globally, by 8% in China, by 12% in N. America

→ Not much difference!

Other uncertainties?

Combine crop maps with harvest season burning from *Huang et al. (2012)*

Doubling of anthrop. emissions in Beijing and surrounding provinces, strong decrease in South China, decreased isoprene in South China and Indonesia – in agreement with flux measurements in tropical rainforests

- June's harvest burning patterns explain a major part of the correlation in central and south China Plain, but cannot explain the high HCHO columns around Beijing region – other sources present? Correct a priori information is essential
- □ Inherent difficulty to infer anthropogenic VOCs from HCHO inversion : thousands of VOCs with different reactivities → Chemistry matters!
- Effort to improve the a priori model (sources-chemistry, etc.) inversions cannot repair missing or misrepresented sources/processes

THANK YOU FOR YOUR ATTENTION

jenny@aeronomie.be http://tropo.aeronomie.be

NO_X DAYTIME LIFETIMES OVER MEGACITIES

- Calculate the lifetime : (1) ONIT&PAN are not a NOx sink (dotted lines) ,
 (2) ONIT&PAN are formed in the grid cell & exported (solid lines)
- ✓ Very satisfactory agreement for most of the cities, but discrepancy for Moscow in winter, to a lesser extent for Tokyo