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� SCIAMACHY/Envisat, OMI/Aura and GOME2/MetopA SO2 columns over China are presented.
� Monthly mean time series of megacities and known power plant locations are examined.
� 90% of the locations studied show a sharp decline in SO2 emissions this past decade.
� 70% of the locations have a statistically significant annual cycle with highs in winter.
� The implementation of government desulphurisation legislation over China is effective.
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a b s t r a c t

China, with its rapid economic growth and immense exporting power, has been the focus of many
studies during this previous decade quantifying its increasing emissions contribution to the Earth's at-
mosphere. With a population slowly shifting towards enlarged power and purchasing needs, the
ceaseless inauguration of new power plants, smelters, refineries and industrial parks leads infallibly to
increases in sulphur dioxide, SO2, emissions. The recent capability of next generation algorithms as well
as new space-borne instruments to detect anthropogenic SO2 loads has enabled a fast advancement in
this field. In the following work, algorithms providing total SO2 columns over China based on SCIA-
MACHY/Envisat, OMI/Aura and GOME2/MetopA observations are presented. The need for post-
processing and gridding of the SO2 fields is further revealed in this work, following the path of previ-
ous publications. Further, it is demonstrated that the usage of appropriate statistical tools permits
studying parts of the datasets typically excluded, such as the winter months loads. Focusing on actual
point sources, such as megacities and known power plant locations, instead of entire provinces, monthly
mean time series have been examined in detail. The sharp decline in SO2 emissions in more than 90%
e95% of the locations studied confirms the recent implementation of government desulphurisation
legislation; however, locations with increases, even for the previous five years, are also identified. These
belong to provinces with emerging economies which are in haste to install power plants and are possibly
viewed leniently by the authorities, in favour of growth. The SO2 load seasonality has also been examined
in detail with a novel mathematical tool, with 70% of the point sources having a statistically significant
annual cycle with highs in winter and lows in summer, following the heating requirements of the Chi-
nese population.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Sulphur dioxide emissions in China have long interested the
scientific community, both from the modelling aspects as well as
the study of the remote sensing observations of SO2. In the work of
Lu et al., 2010, it was shown that from 2000 to 2006, the total SO2
emissions in China increased by 53%, with power plants contrib-
uting around half of that increase. Furthermore, a clear North-
South gradient was revealed, with Northern provinces increasing
their emissions by 85%, whereas the Southern values increased by
only 28%. In the same work, it was shown that the growth rate in
SO2 emissions slowed around year 2005 and exhibited a decrease
after 2006, mainly due to the widespread application of flue-gas
desulfurization devices (FGD) in power plants in response to a
new policy of the Chinese government (Lu et al., 2010; Klimont
et al., 2013), also reported that, while China is the largest single
contributor of SO2 emissions (supplying around 30% of total global
emissions), Chinese SO2 emissions peaked around 2006 followed
by a decline towards 2011. Satellite observations have since verified
these findings, as discussed in the work of Li et al., 2010, showing
substantial increases in SO2 and tropospheric column NO2 OMI/
Aura observations from 2005 to 2007 over several areas in northern
China where large coal-fired power plants were built during this
period (Zhang et al., 2009), as well as dramatic reductions in SO2 for
2008. These reductions further confirm the effectiveness of FGD
devices, as also extensively discussed by Lu et al., 2010. The recent
work of Krotkov et al., 2016, has extended the time period exam-
ined to 2014, confirming the continued decrease in SO2 emissions
from 2010 onwards in the context of a further reduction associated
with the ongoing global economic crisis.

The inherent potential of different satellite instruments to sense
strong SO2 sources has been long demonstrated in literature; from
the era of Nimbus 7/TOMS and GOME/ERS-2 where volcanic
eruptions and outgassing (Krueger, 1983; Eisinger and Burrows,
1998) as well as lignite burning from Eastern European power
plants (Zerefos et al., 2000) were identified, all the way to OMI/
Aura monitoring of the air quality over Canadian oil sands
(McLinden et al., 2012, 2014). Anthropogenic sources such as
copper smelters, fires in sulphur plants, coal-fired power plants,
heavy metal smelting and so on, have been identified in numerous
works and a variety of satellite sensors, see for e.g. the works of
Carn et al., 2004, 2007; De Foy et al., 2009; Fioletov et al., 2013;
Bauduin et al., 2014, among others. Similarly, volcanic outgassing
and eruptive events have been revealed for e.g. by Khokhar et al.,
2005, Lu et al., 2013, Carn et al., 2015, among others. In this
work, the SO2 atmospheric load over China as reported by SCIA-
MACHY/Envisat, OMI/Aura and GOME2/MetopA is presented. The
funding behind this line of investigation originates in the FP7 Eu-
ropean Union Marco Polo/Panda project which aims to study air
quality over China using a variety of space-born observational tools
and modelling techniques [http://www.marcopolo-panda.eu/].
Scientists, local authorities, municipal and provincial level
decision-makers are to benefit from the latest that air quality
monitoring technology has to offer. The only disadvantage of cur-
rent satellite instrumentation in air quality science is the fact that
the aforementioned sensors all fly on polar orbiting platforms,
hence providing, at best, two measurements per location per day.
This fact makes it impossible to study the daily variability of the
tropospheric pollutants of interest to air quality, an important
piece of information for the short lived species, such as the NOx
family of gases. However, a number of geostationary orbiting sat-
ellites carrying air quality morning instruments are due to become
operational during the next decade; Korea with GEMS (Geosta-
tionary Environment Monitoring Spectrometer; Lasnik et al., 2014) to
be flown on GeoKOMPSAT-2B, Europe (ESA and EUMETSAT) with
the UVNS (UV NIR Spectrometer; http://esamultimedia.esa.int/docs/
EarthObservation/Sentinel4_facts_2015.pdf) on Sentinel-4 and
NASAwith TEMPO (Tropospheric Emissions: Monitoring of Pollution;
Zoogman et al., 2016) will cover Asia, Europe and America
respectively with hourly measurements on a fine spatial resolu-
tion. Those instruments will bring inumerous new possibilities in
the field of emission monitoring from space. The work reported
here does not aim to inter-compare, evaluate or perform inter-
satellite validation of the SO2 estimates obtained by different
sensors and algorithms. The paper wishes to present the vertical
column density (VCD) data reported by each algorithm and assess
their individual strengths and shortcomings in particular for
studying the SO2 atmospheric load over China. The main premise is
that almost all these are official datasets that an independent user
should be able to simply download and post-process for her/his
scientific needs, and this paper will proceed with this line of
enquiry in mind. To be more specific, the main goals of this paper
are the following:

i. Firstly to demonstrate the potential of the SCIAMACHY/
Envisat, OMI/Aura and GOME2/MetopA satellite instruments
and algorithms to observe the anthropogenic SO2 load over
China. The focus is on presenting the optimum spatial and
temporal scales needed in order to achieve an adequate
signal-to-noise ratio for each sensor.

ii. Secondly, to identify SO2 emitting point sources separately
for each instrument and algorithm. Here, attention is given to
pixel size and the effect of data gridding onto regular maps.
The effect of local point sources on surrounding regions is
also discussed.

iii. Thirdly, to demonstrate that significant trends per point
source can be observed when the appropriate post-
processing has been performed. Furthermore, special cases
of locations with positive trends, possible dust incursion ef-
fects and/or strong seasonal signals, are identified and
discussed.

The datasets are presented in Section 2 with the GOME2/
MetopA GDP4.7 SO2 product, the SCIAMACHY/Envisat SGP5.02
product, the OMI/Aura NASA PCA product and the OMI/Aura BIRA
algorithm product discussed in Sections 2.1, 2.2, 2.3 and 2.4
respectively. In the various sub-sections of Section 3, we describe
the analysis and associated findings. Finally, the main findings and
conclusions are summarized in Section 5.
2. The datasets

In this work, sulphur dioxide columns reported as Vertical
Column Densities, VCDs, by the SCIAMACHY/Envisat, OMI/Aura and
GOME2/MetopA instruments are studied. Traditionally, in com-
parison and evaluation works such as the one by Fioletov et al.
(2013), the Slant Column Density [SCD] is examined so that the
application of a common air mass factor [AMF] will lead to com-
parable results. However, as stated in the introduction, in this work
we aim to demonstrate the benefits that each reported VCD pro-
vides without delving into the intricacies of each algorithm.

The domain considered extends from 60� to 135�E and from 20�

to 55�N and covers all of China as well as parts of the Far East. The
data were filtered for high Solar Zenith Angle, SZA, of >70�, cloud
fraction, of >0.2 and also SO2 algorithm flagging. The filtered data
were then averaged onto a 0.25� � 0.25� monthly grid using a 0.75�

smoothing average box.
The provenance of each dataset is discussed in the following

four sub-sections.

http://www.marcopolo-panda.eu/
http://esamultimedia.esa.int/docs/EarthObservation/Sentinel4_facts_2015.pdf
http://esamultimedia.esa.int/docs/EarthObservation/Sentinel4_facts_2015.pdf
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2.1. GOME2/MetopA GDP 4.7 algorithm

GOME-2 on board the MetopA satellite measures UV Earthshine
spectra with a ground pixel size of 80� 40 km2 on a 1920 km broad
swath, thus allowing for a near global coverage within 1.5 days
(Munro et al., 2016). Once per day a solar irradiance spectrum is
recorded that is used for the calculation of an Earth reflectance
spectrum. A comprehensive review of the instrument and the
current status of its products may be viewed in Hassinen et al.,
2016. SO2 vertical columns are retrieved on an operational basis
with the GDP 4.7 algorithm in the framework of EUMETSAT's Sat-
ellite Application Facility for Atmospheric Composition and UV
Radiation, O3M-SAF, project. First, a DOAS retrieval is performed in
the wavelength region 315e326 nm, in which cross-sections of SO2
(Bogumil et al., 2003), O3 (Brion et al., 1993) and NO2 (Gür et al.,
2005) are fitted to the UV Earth reflectance spectrum (see Rix
et al., 2012 for further details). The retrieved SO2 slant column is
then corrected for any instrumental bias by applying a latitude and
surface-altitude dependent offset correction. The correction factors
are determined in a 14-days moving time window. The resulting
slant columns are then corrected for the atmospheric temperature
in which SO2 is expected. Secondly, the background and tempera-
ture corrected slant columns are converted to total vertical columns
(VCDs) by means of an Air Mass Factor (AMF), which takes into
account the viewing geometry, surface and cloud parameters as
well as an a priori SO2 profile shape. Since at the time of the
measurement it is unknown at which altitude the SO2 layer is
located, the user is provided with a set of three SO2 results for pre-
defined SO2 profile scenarios. For each of these scenarios a single-
wavelength AMF at 320 nm is applied. It is based on an SO2 pro-
file with the centre of mass at prescribed altitudes. For this paper
the VCD calculated with an SO2 centre of mass located at 2.5 km
was chosen. The GOME-2A GDP4.7 have been formally validated as
part of the official EUMETSAT O3MSaf project (Theys et al., 2013).
We should note here, as a preamble to what follows, that there
exists an unavoidable instrumental effect in orbit; instruments
measuring in the UV/Vis regions are known to be sensitive to effects
of contamination and to degradation of their optical elements. The
impact of GOME-2 instrument degradation on Level-2 product
quality is very much dependent on the spectral region and the type
of retrieval methods chosen (EUMETSAT, 2012) and has been
quantified in Dikty et al. (2011).

In the following, the forward scan observations of the
descending node of the GOME-2 flight path were used over the
time period between January 2007 to December 2014. The data
have been downloaded from http://atmos.eoc.dlr.de/gome2/.

2.2. SCIAMACHY/Envisat SGP 5.02 algorithm

The SCanning Imaging Absorption spectroMeter for Atmo-
spheric CartograpHY (SCIAMACHY) was launched in March 2002
aboard the European platform ENVISAT and has been operational
for more than ten years providing global coverage in approximately
six days (Bovensmann et al., 1999) up until April 2012. ENVISATwas
in a sun-synchronous orbit with an inclination of 98.5�, a mean
altitude of 796 km and had a period of 100min, performing 14 or 15
orbits per day with an Equator crossing time of 10:00 local time.
The nominal swath was 960 km with a typical footprint size of
60 km � 30 km for SO2 observations. The current version of the
operational algorithm SGP version 5.02, as well as the format of the
level-2 total SO2 columns are described in detail in the relevant
Products Quality Readme File (SCIAMACHY Readme File, 2011) and
the Algorithm Theoretical Baseline Description, ATBD, (SCIAMACHY
ATBD, 2015). In short, the fitting interval is between 315 and
327 nm, while a 3rd order polynomial is being fitted. The
absorption cross sections come from Vandaele et al. (1994), the
background reference sector is from the Pacific region, around
180�e220�, while an inverse spectrum of Earthshine radiance is
used for offset and slope correction. The AMF reference wavelength
is at 315 nm and for the anthropogenic case used here a pollution
scenario of 1 DU SO2 for the first kilometre from the ground is
assumed. It is strongly recommended that the SCIAMACHY
DGP5.02 Boundary Layer SO2 product should only be used for the
largest signals and should be cross-checked against other data sets,
which is the sideways result of this work. As suggested in the
Readme File, only the forward scan observations are accepted over
the time period between January 2004 and December 2011. The
data have been downloaded from https://earth.esa.int/

2.3. OMI/Aura NASA algorithm

The NASA standard OMI/Aura Planetary Boundary Layer, PBL,
SO2 VCD data are produced with an innovative Principal Compo-
nent Analysis (PCA) algorithm (Li et al., 2013). This algorithm em-
ploys a PCA technique to extract a set of principal components (PCs)
from satellite-measured radiances in the spectral range of
310.5e340 nm. The leading PCs that explain the most spectral
variance are generally associated with both physical processes (e.g.,
O3 absorption and rotational Raman scattering) and measurement
artefacts (e.g., wavelength shift) that may interfere with SO2 re-
trievals. When the PCs are used in the spectral fitting, they can help
account for these various interfering factors in SO2 retrievals,
leading to reduced retrieval noise and biases. The current opera-
tional OMI PBL SO2 product uses a simplified Jacobian lookup table
calculated assuming fixed solar and viewing zenith angles
(SZA ¼ 30�, VZA ¼ 0�), cloud-free conditions, surface albedo ¼ 0.05
and O3 VCD ¼ 325 D.U. for all pixels. The algorithm also assumes
that SO2 load is predominantly in the lowest 1000 m of the at-
mosphere. This may lead to biases particularly under partially
cloudy conditions and a new generation algorithm with a more
comprehensive lookup table is currently being developed. Details
about the PCA algorithm can be found in Li et al., (2013). The data
used in this work have been downloaded from https://disc.sci.gsfc.
nasa.gov/for the time period examined between January 2005 and
December 2014. Following current updates on the OMI row index
anomaly [http://omi.fmi.fi/anomaly.html and KNMI, 2012] only
pixels in rows between 5 and 23 were accepted.

2.4. OMI/Aura BIRA algorithm

The retrieval of SO2 VCDs using the BIRA algorithm is achieved
by applying Differential Optical Absorption Spectroscopy (DOAS)
(Platt and Stutz, 2008) to the measured spectra in the 312e326 nm
wavelength range. This is followed by a data filtering for the row-
anomaly and a background correction to account for possible bia-
ses on the retrieved slant columns. The obtained quantity is con-
verted into an SO2 VCD using an air mass factor that accounts for
changes in measurement sensitivity due to observation geometry,
ozone column, clouds, and surface reflectivity. The air mass factor
calculation is made for anthropogenic SO2 profile shapes from the
IMAGES tropospheric chemistry transport model. More details on
the BIRA OMI SO2 algorithm can be found in Theys et al. (2015). This
dataset, provided for the period January 2005 to December 2014,
have been flagged accordingly.

3. Data screening and optimal gridding choices for an SO2
anthropogenic signal over China

Section 3.1 aims to cover the first of the two aims of this paper,
namely the discussion of the different gridding, mapping, filtering,

http://atmos.eoc.dlr.de/gome2/
https://earth.esa.int/
https://disc.sci.gsfc.nasa.gov/
https://disc.sci.gsfc.nasa.gov/
http://omi.fmi.fi/anomaly.html
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etc, techniques that may be applied to satellite SO2 observations
before those can provide a statistically significant result. Contrary
towhat has been shown in previous works [for e.g. in Fioletov et al.,
2011; Lee et al., 2011] the winter months are not excluded in this
analysis as they form an important part of the SO2 seasonal cycle. In
the beginning of the Section, different masking choices on monthly
SO2 gridded maps over China are considered and the resultant
yearly averages are presented. Locations of SO2 emitting sources
around the domain is also discussed. In Section 3.2, the monthly
mean time series around the SO2 locations are discussed, including
the screening process and the calculation of statistically significant
trends, hence covering the third aim of this paper. Special cases of
interest, such as locations with a positive trend and locations
affected by possible dust events with signatures in the SO2 obser-
vations [Section 4.1], as well as the study of seasonality in the SO2
loading over China [Section 4.2] using novel mathematical tools,
based on the OMI/Aura BIRA dataset, complete this study.

3.1. SO2 loading over Eastern China

Even though some minor differences between the instructions
given by the PIs of the different algorithms exist, they all converge
that a restriction should be applied in the manipulation of the SO2
Fig. 1. Seasonal mean SO2 loads [left panels] and smoothed mean SO2 loads [right panels] f
left] and summer [bottom right] are shown.
columns on both the cloud fraction and the solar zenith angle
associated with the measurement (Fioletov et al., 2011; Theys et al.,
2015). For the cloud fraction, a value between 0.2 [i.e. 20% cloud
coverage in the satellite pixel] and 0.3 [30%] is the best cut-off level
for the anthropogenic [or PBL] SO2 columns as the optimum
compromise between ensuring clear-sky pixels and keeping a large
number of data points. Similarly, a value between 60� and 70� is
recommended for the solar zenith angle cutoff. Apart from these
restrictions, there are studies that have shown that the noise level
in the SO2 column is rather large during the winter months, even at
middle latitudes as those of China (Fioletov et al., 2013). As a result,
winter months are entirely excluded from their analyses, in
particular when the end aim is the extraction of new, top-down
emission databases.

In the following daily satellite observations were gridded onto
monthly 0.25 � 0.25� fields and then onto seasonal and yearly
maps. We first present the effect of spatially smoothing the SO2
fields using seasonally averaged map from the GOME2/MetopA,
hereafter GOME2A, data for year 2011. In Fig. 1 the seasonal mean
SO2 load is shown with cloud fraction of <0.2 and SZA <70� re-
strictions applied. The simple mean SO2 load is shown alongside
the smoothed SO2 field is displayed. In the simplemean the gridded
field was created by assigning the mean of all SO2 satellite
or the GOME2/MetopA product in autumn [top left], winter [top right], spring [bottom
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observations whose central pixel falls within that 0.25 � 0.25� grid
box. For the creation of the monthly and yearly gridded sets, the
standard deviation, STD, is also used as a weight for the averaging
process. In the smoothed SO2 mean field, the SO2 load assigned to
each of the 0.25� 0.25� boxes has beenweighted by the SO2 load of
the eight surrounding cells. This way the noise levels, potential
gridding issues, as well as gaps in the gridded set, have been
averaged out, since the smoothing is applied to a running
0.75 � 0.75� domain.

One striking feature shown very explicitly by Fig. 1 is the fact
that by spatially smoothing the mean GOME2A SO2 values, the
noise seen in the left panels of the composite figures entirely dis-
appears in the right panels and known SO2 hot-spots appear more
clearly; the greater Beijing Area being one of them. A second point
to note is that there appears not to be any difference between using
only the cloud fraction or both the cloud fraction and the SZA as
restrictions for the spring and summer months [not shown here].
This is not the case for the winter months, where effectively the
simple mean gridded SO2 product is far too noisy [with STDs higher
than 5 D.U.] and the domain coverage is severely reduced when
applying the SZA restriction as well. We hence recommend that,
depending on the intended use of these datasets, great attention is
given to the data filters applied.

For presenting the satellite observations, and to avoid repeti-
tious discussions, the strict restriction for a clf< 0.2 and a SZA <70�

will be shown on yearly fields. Year 2011 was chosen for all cases
(Fig. 2). Due to the SCIAMACHY revisit time, the number of pixels
per grid box is smaller than for GOME2 as well as than in the OMI
Fig. 2. Yearly smoothed SO2 load [D.U.] over Eastern China in 2011. Upper left: SCIAMACHY
OMI_BIRA/Aura. Not the slightly altered colour scale to accommodate the different SO2 load
referred to the web version of this article.)
fields [not shown here]. Even though the number of negative SO2
levels for SCIAMACHY is high, producing a very noisy map, when
applying spatial averaging the hot spots emerge strongly. For the
OMI observations, due to their high spatial resolution, the associ-
ated standard deviation is quite low, usually below 1D.U. and the
number of observations per grid box may approach values higher
than 20e25, especially for the summer months [not shown here.]
Another point to note is that the SO2 fields for both the NASA and
the BIRA algorithms given by the simplemean and by the smoothed
mean do not differ as much as the equivalent ones for the other two
sensors, again due to the small OMI pixel size. In the yearly maps
presented in Fig. 2, for demonstrational purposes, both regional and
point SO2 sources are revealed.

3.2. Point sources

The list of power plants in the People's Republic of China, PRC,
considered in this work is given in Appendix I. The list of megacities
in China considered in this work are given in Appendix II. This lists
do not form a final enumeration of possible anthropogenic SO2
sources around China; however, a fair number of the most known
power plants and industrial regions do appear here, as also in the
works of Fioletov et al., 2016. In the recent work of McLinden et al.,
2016, they estimated that around 10% of SO2 sources revealed by
satellite observations on a global scale are not included in the
leading emission catalogues, further strengthening the case for the
ability of space-born instruments to robustly identify emitting
locations.
/Envisat; upper right: GOME2/MetopA; lower left: OMI_NASA/Aura and lower right:
ranges. (For interpretation of the references to colour in this figure legend, the reader is
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In Fig. 3 the locations of the known point SO2 sources listed in
Appendix I and Appendix II are shown superimposed on GOME2A
maps for year 2011. The clarity of the loading when viewing the
smoothed gridded map is promising for the analysis of these point
sources. Note also that there undoubtedly exist more SO2 sources in
China which have not been identified in this work and are hence
beyond the scope of this discussion.

In the following section, the findings of the point sources
analysis are presented via time series and trend analysis.

3.3. Monthly mean time series analysis

The monthly mean time series for the locations examined were
extracted from the 0.25� � 0.25� gridded monthly mean data
created for a 5� � 5� degree box around each point source. Then,
using spherical trigonometry and allowing a 40 km radius of search
between the site and the gridded monthly mean fields, monthly
mean estimates for each point source and each of the satellite
sensors were calculated. Apropos, different radii of search where
examined, such as 20 km and 60 km, but it was found that in order
to keep the uniformity in investigation between the different sen-
sors, the 40 km radius was the optimal choice. Please note at this
stage that, unavoidably, due to the different time spans of the
missions, the time series analysis is performed on a different time
frame for each of the three instruments. Hence, the SCIAMACHY
time series spans from 2004 to 2011, the OMI time series from 2005
to 2014 and the GOME2A time series from 2007 to 2014.

As will be shown later on, outliers in the monthly mean time
series were found to affect the linearly regressed trend lines fit to
the data for each location [see Fig. 4]. Moreover, we found that
differences from the best-fit lines were not normally-distributed
and were strongly skewed. This was particularly the case at the
sites affected by strong seasonality in the SO2 load or sporadic
changes in the aerosol load. As a result, we opted to filter out
outliers using statistics associated with the median rather than the
mean. Monthly mean values that were found to be higher than 1.5
times the inter-quartile range (IQR) or below 1.5 times the IQRwere
flagged and excluded [see Fig. 4]. The linear regression was then
repeated excluding these values and the null hypothesis was tested
with a two-tail t-test at the 95% level of significance. Hence, in the
following, a statistically significant positive or negative trend is
Fig. 3. The locations of the SO2 point sources listed in Appendix I and Appendix II are show
power plants with capacity between 2200 and 3500 MW and in green circles the power
megacities examined. Left: the simple mean SO2 load for year 2011 from GOME2A. Right: th
in this figure legend, the reader is referred to the web version of this article.)
reported when the associated p-value is less than 0.05. Further-
more, in order to ascertain the representativity of the time series, a
minimum of 30 monthly mean values was permitted for the anal-
ysis, with locations left with less than 30 monthly mean points
excluded from further discussion.

An example of a location with an important negative trend is
shown in Fig. 4 via the monthly mean time series for the city of
Dongguan. Themonthlymean SO2 loading calculated using a radius
of 40 km based on the smoothed mean gridded fields unfiltered for
outliers and filtered for outliers is given. Dongguan is a prefecture-
level city of approximately 6.5 million inhabitants in central
Guangdong province, China. Dongguan, an important industrial
city located in the Pearl River Delta, borders with the provincial
capital of Guangzhou to the North, Huizhou to the Northeast,
Shenzhen to the South, and the Pearl River to the West. It is part of
the Pearl River Delta megacity with more than 45 million in-
habitants at the 2010 census spread over nine municipalities
(including Macao) across an area of 17,573 km2. A strong as well as
statistically significant negative trend has been identified for the
filtered time series based on the area weighed mean SO2 grid for
GOME2A, OMI_NASA and OMI_BIRA [discussed further below].
Numerous points may be made based on this composite Figure;
firstly that the variability of the monthly mean values reduces
almost by a factor of 10 when using the smoothed mean grid as
input for all sensors and algorithms instead of the simple mean
gridded fields [not shown here]. Then, in the specific example
shown, the actual drift remains of the same order of magnitude and
sign for the statistically significant cases, whereupon it can be seen
that GOME2A [Fig. 4, first row, right], even though it has a larger
footprint than OMI, does provide a very similar monthly mean
variability as the OMI algorithms and OMI_BIRA in particular [Fig. 4,
bottom row, right]. Conversely, it has become apparent that the
SCIAMACHY dataset is affected by many gaps in the time series due
to its footprint and revisiting times, as well as higher levels of noise
in the data, as attested to by the magnitude of the associated STD.
As a result, for the example case of Dongguan, applying the outlier
filter decreases the amount of data by such a large amount that no
trend analysis may be further applied. This result was found for
numerous of the locations chosen, even more so at the high lati-
tudes where the SZA and clf restrictions all but excluded entire
regions from SCIAMACHY analysis.
n; in orange diamonds power plants with capacity less than 2200 MW; in blue squares,
plants with capacity higher than 3500 MW. The purple triangles denote the Chinese
e smoothed mean SO2 load for year 2011. (For interpretation of the references to colour



Fig. 4. The monthly mean time series for the city of Dongguan as observed by the SCIAMACHY sensor [top left], GOME2A [top right], OMI_NASA [bottom left] and OMI_BIRA
[bottom right.] The monthly mean SO2 loading calculated based on the smoothed mean gridded fields is shown unfiltered for outliers [red] and filtered for outliers [blue]. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The effect of the choice of spatial averaging and filtering on the
time series and trends calculated for the locations around China are
given in Table 1. The numbers of the table depict the amount of
locations [out of an original sample of 149] that fulfil each criterion
stated given for the three algorithms in sequence: GOME2A,
OMI_BIRA and OMI_NASA. In the first row, the statistical analysis is
performed on the unfiltered simple mean SO2 overpass time series.
In the second row, on the filtered simple mean SO2 overpass time
series. In the third row, on the unfiltered area averaged mean SO2
overpass time series and in the fourth row, on the filtered area
averaged mean SO2 overpass time series. Recall that by filtered, we
refer to the monthly mean time series that the statistical exclusion
of the ±1.5*IQR was applied to all values and the outliers are
excluded from the analysis. Also recall that this analysis is per-
formed for ten full years for the OMI algorithms and for eight full
years for GOME2A.

The first thing to note is that the application of the N > 30 cri-
terion does not affect the amount of locations found for the two
OMI algorithms as it does for the GOME2A datasets. Even with this
simple exclusion, some 32 locations are excluded for GOME2A
when applying this filter for the simple mean filtered SO2 dataset
and 22 for the area-weighted mean filtered SO2 dataset. When
further restricting the work by calculating the statistically signifi-
cant cases the GOME2A dataset is left with between 17 and 47 lo-
cations, depending on the choice of monthly mean time series
whereas the two OMI datasets show a much larger amount of lo-
cations, between 70 and 102. Note how the amount of statistically
significant locations increases for all satellite sets when employing
the area-weighted average instead of the simple mean average,
resulting from the noise levels in the individual datasets.

The vast majority of locations examined in this work show a
statistically negative drift for the time spans examined per satellite
lifetime [see final column of Table 1.] One might hence deduce that,
as discussed in other works (van der A et al., 2016) the SO2 emis-
sions are by and large decreasing this past decade over different
sites around China with few exceptions. Surprisingly enough, for
the cases of positive drifts, the amount of locationswith statistically
significant ones increases when using the filtered monthly mean
time series, a fact discussed further below as well. The trends for
the locations discussed for the filtered area-weighted SO2 monthly
mean time series are shown in Fig. 5. Even though the colour scales
for the two OMI algorithms are not the same, the locations of the
significant SO2 changes are very similar strengthening the case that
these represent locations where the SO2 emissions have decreased
[or increased for 3e4 locations only] in the decade 2004 to 2014
inclusive.

Since numerous recent literature studies have shown a marked
decline in the SO2 levels in Eastern China from years 2010e2011
[for e.g. Krotkov et al., 2016 and references therein], the trend
calculations summarized in Table 1, were repeated for years



Table 1
The amount of locations that fulfil different criteria for GOME2A (first block), OMI_BIRA (second block) and OMI_NASA (third block). First column: the amount of locations
whosemonthlymean time series containmore than 30 points. Second column: as per first, for the statistically significant cases. Third column: as per second, separated into the
amounts of positive and negative drifts. Fourth column: as per third, separated into the amounts of power plants and megacities. The differences in the row statistics are
discussed in the text.

GOME2A (2007e2014) N > 30 N > 30, Significance
level > 95%

N > 30, Significance level >
95% positive drift j negative drift

N > 30, Significance level
> 95% Power Plant j Cities

Simple mean 1 16 9 8
With outliers 149 17
Simple mean 2 21 15 8
No outliers 117 23
Smoothed mean 1 31 18 14
With outliers 149 32
Smoothed mean 4 43 34 13
No outliers 127 47
OMI_BIRA (2004e2014)
Simple mean 149 94 1 93 73 21
With outliers
Simple mean 147 81 3 78 66 15
No outliers
Smoothed mean 149 102 1 101 80 22
With outliers
Smoothed mean 149 88 4 84 65 23
No outliers
OMI (2004e2014)
Simple mean 149 92 2 90 66 26
With outliers
Simple mean 143 70 2 68 49 21
No outliers
Smoothed mean 149 95 2 93 73 22
With outliers
Smoothed mean 144 76 3 73 55 21
No outliers

Fig. 5. The statistically significant trends in D.U. per decade for the GOME2A data [first row], the OMI_NASA data [second left] and the OMI_BIRA data [second right.] Note the colour
scales do not span the same data range.



Table 2
The amount of locations for 2011e2014 period that fulfil different criteria for GOME2A (first), OMI_BIRA (second) and OMI_NASA (third). First column: the amount of locations
whosemonthlymean time series containmore than 30 points. Second column: as per first, for the statistically significant cases. Third column: as per second, separated into the
amounts of positive and negative drifts. Fourth column: as per third, separated into the amounts of power plants and megacities.

GOME2A (2011e2014) N > 30 N > 30, Significance
level > 95%

N > 30, Significance level
> 95% positive drift j negative drift

N > 30, Significance level
> 95% Power Plant j Cities

Smoothed mean 2 21 18 5
No outliers 98 23
OMI_BIRA (2011e2014)
Smoothed mean 137 62 e 62 49 13
No outliers
OMI (2011e2014)
Smoothed mean 111 51 2 49 42 9
No outliers

Table 3
Locations with a positive statistically significant drift for the GOME2A, OMI_NASA and OMI_BIRA datasets.

Sensor/algorithm Location Drift [D.U. per decade] Standard deviation Significance level [%]

GOME2A (2007e2014) Haimeng 0.14 0.058 98.36
Yuanbaoshan 0.28 0.098 99.43
Shantou 0.17 0.069 98.63
Urumqi 0.20 0.072 99.09

OMI_NASA (2005e2014) Daba 0.099 0.035 99.51
Lingwu 0.21 0.047 100
Yimin 0.032 0.016 95.66
Urumqi 0.079 0.026 99.72

OMI_BIRA (2005e2014) Daba 0.17 0.061 99.35
Lingwu 0.38 0.09 99.99
Urumqi 0.16 0.061 98.79
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2011e2014 included. The case of the smoothed gridded data
excluding the outlier months from the statistics is shown in Table 2.
As expected, most of the locations constantly provide a negative
drift in the SO2 load, whereas the positive drifts also remain. As
mentioned above, the locations chosen for further study form by no
means a complete catalogue; it should however be noted that in
most published works, entire provinces are averaged and yearly
trends presented [for e.g. see van der A et al., 2016], which might
also account for the fact that the signal from new point sources,
such as new power plants/industrial compounds, is averaged out.

Ground-based air quality observing stations also testify to the
SO2 decreasing trends around China and should be quoted here:
Liang et al., 2014, report declining SO2 levels for the Beijing-Tianjin-
Shijiazhuang region; Zhu et al., 2015 for Wuhan city, whereas even
an atmospheric background station in North China (Bai et al., 2015)
also shows this general clearing up of the air over China.
1 http://www.ningdong.gov.cn/zcms/wwwroot/2014ywbzgnxndnyhgjd/
investmentguide/partnerlist/287162.shtml.
4. Identifying special cases of SO2 loading over China

4.1. Positive SO2 changes

One of the main interesting results of this work was the iden-
tification of locationswhere the SO2 load increasedwithin the years
studied. These locations are a mixture of megacity and power plant
locations [Appendix I]. In Table 3 these locations are enumerated
for the three datasets. These locations are also depicted in Fig. 6.
The difference in locations observed between the GOME2A and
OMI sensors may be partially due to the degradation of the former
instrument (Dikty et al., 2011); the Haimeng Power Plant, in
Guangdong Province is very near to the city of Shantou, which of
course decreases the amount of independent locations showing a
positive trend for the entire time span.

Some of these locations, also show an interesting sprint-time
feature. In Fig. 7 two such sites are presented; Lingwu is the most
important industrial city of the Ningxia Hui Autonomous Region, in
the northwestern region of the People's Republic of China. How-
ever, Ningxia is the province with the third smallest gross domestic
product in China, even though its neighbors, Inner Mongolia and
Shaanxi, are among the strongest emerging provincial economies
in the country. The positive trend observed by both OMI algorithms,
shown in Fig. 7, left, may be in effect identifying possible industrial
growth of the city. Several big power plants are also currently being
built/upgraded in Ningxia1 whichwould explain the increase in SO2
observed by the satellite sensors [see also van der A et al., 2016 and
references therein]. A second interesting feature of this Figure are
the high SO2 estimates for the spring months, also observed in
higher frequency in Fig. 7, right, where the time series of the city of
Ürümqi, the capital of the Xinjiang Uyghur Autonomous Region
also in Northwest China is shown. When the spring-time outliers
are excluded automatically by the outlier detection code, the pos-
itive trend remains, and in the case of Lingwu, it doubles. An
obvious explanation for the behaviour of the time series of the
twenty locations affected by this spring-time event is that we are
faced with algorithm artefacts in the AMF calculation. However, a
more daring possibility is that we might be observing Asian Dust
transport. Also known as yellow dust, it is a seasonal meteorolog-
ical phenomenon which affects much of East Asia sporadically
during the months of spring [for e.g. Han et al., 2015; Kim et al.,
2016; Liu et al., 2016]. The dust originates in the deserts of
Mongolia, northern China and Kazakhstan where high-speed sur-
facewinds and intense dust storms kick up dense clouds of fine, dry
soil particles. These clouds are then carried eastward by prevailing
winds and pass over China, North as well as parts of the Russian Far
East. For e.g., to explain the high values observed in 2008 for
Lingwu, Fig. 7, left, we might examine the March 2008 dust event
when the characteristic “yellow dust” from the Gobi Desert blew
eastward over the Beijing region, the Yellow Sea, and North and

http://www.ningdong.gov.cn/zcms/wwwroot/2014ywbzgnxndnyhgjd/investmentguide/partnerlist/287162.shtml
http://www.ningdong.gov.cn/zcms/wwwroot/2014ywbzgnxndnyhgjd/investmentguide/partnerlist/287162.shtml


Fig. 6. The locations of the cities where positive trends were found by either of the
satellite datasets are shown as black dots. The background field is the 2011 OMI_BIRA
mean SO2 load in D.U.

Fig. 7. Two interesting locations with positive trends and high spring-time signatures in the
Ürümqi, Xinjiang Uyghur Autonomous Region, China [right]. The format follows that of Fig

Fig. 8. Seasonal variability in the reported SO2 load over the city of Suzhou, Jiangsu [left] an
shown in red; the time series excluding the outlier months as described in the text is sh
interpretation of the references to colour in this figure legend, the reader is referred to the
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South Korea (Luo et al., 2014 and http://earthobservatory.nasa.gov/
IOTD/view.php?id¼8477]. Extreme aerosol loading may hinder the
AMF calculation, not in the sense of an artefact, but of a natural
phenomenon not included in the radiative transfer calculations.
The spring-time behaviour of the twenty locations is an issue
currently under investigation.
4.2. Seasonality in SO2 loading

For a significant number of the locations examined there
appeared to be a strong and well-defined seasonality in the SO2
signal, pointing to the possibility of a strong inter-annual variability
observable from space. In Fig. 8 two such locations are shown as
example; the city of Suzhou, in Jiangsu Province and a power plant
in Yuenyang, in Yunnan Province.

Singular Spectrum Analysis (SSA) is a non-parametric spectral
estimation technique based on time-delay embedding of a time
series to decompose it into an additive sum of interpretable com-
ponents [see for e.g. Golyandina et al., 2001; Ghil et al., 2002]. These
components include the trend, possible periodicity and of course
the noise in the original time series. A more generic and automated
reported SO2 load, the city of Lingwu, Ningxia Hui Autonomous Region, China [left] and
. 4.

d a power plant in Yuenyang, Yunnan [right.] The original monthly mean time series is
own in blue; the singular spectrum analysis reconstruction is shown in green. (For
web version of this article.)

http://earthobservatory.nasa.gov/IOTD/view.php?id=8477
http://earthobservatory.nasa.gov/IOTD/view.php?id=8477
http://earthobservatory.nasa.gov/IOTD/view.php?id=8477
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system for the detection of both significant trends, as well as clear
seasonal features, is being developed in Taylor et al. (2016a) where
a Discrete Fourier Transform (DFT) analysis is also applied to the
time series. This permits the actual extraction and quantification of
the main temporal components as well as identification of statis-
tically significant seasonal cycles. Parts of this work have already
been presented in Taylor et al., 2016b. Fig. 9 shows the total trend,
periodicity and noise components extracted by SSA from the
interpolated time series at Suzhou and Yueyang; the pictorial
explanation of the methodology behind the detection of
statistically-significant annual and bi-annual cycles in each case is
shown in the bottom row of Fig. 9.

The procedure used to identify statistically-significant cycles is
briefly summarized as follows. We begin by subtracting the SSA
nonlinear trend [shown as example in the upper panels of the top
row of Fig. 9] to produce detrended time series. At this point, we
also calculate the correlation coefficient, labeled R(ols vs ssa) be-
tween a best fit linear line and the calculated SSA trend line
Fig. 9. [Upper panels] The total extracted trend, periodicity and noise SSA components for S
cycles (12 and 6 months respectively) using the method of Taylor et al. (2016a) for the SSA d
the grey circles, the smoothed spectrum by the blue line, the null continuum by the green lin
red circles and the actual peaks by pink filled circles. (For interpretation of the references t

Table 4
Summary statistics for detection of annual (12 ± 0.5 month), bi-annual (6 ± 0.5 month)
includes cities and power station locations. R(ols vs ssa) is the mean correlation between t
correlation between the SSA and DFT periodicities.

Cycle Detected N out of 141 cases analysed

Annual (12 month) 99
Bi-Annual (6 month) 60
Seasonal (3 month) 39
[penultimate column of Table 4]. The DFT is then computed to
produce a Fourier line spectrum containing 192 frequencies in the
range 0e0.5 cycles/month (i.e. at half the sampling frequency) as
shown by the raw spectrum in Fig. 9 [bottom row, grey dots].
Although the SSA method is able to robustly extract the total
periodicity and noise, it is unable to identify the sinusoidal com-
ponents often associated with seasonal variability, i.e. the actual
numbers of the periodicity; hence the need for the extra DFT
calculation. In order to ascertain that the DFT is providing the same
seasonality as the SSA, we calculate the correlation between the
two methods, denoted as R(dft vs ssa), [final column of Table 4]. To
identify the statistically-significant frequencies (identified as pink
filled circles, peaks, bottom row, Fig. 9) we smooth the raw spectra
by iteratively applying a Daniell filter since this produces the most
stable spectral estimate for a given bandwidth and allows 95%
confidence intervals [pink lines, bottom row, Fig. 9] to be con-
structed (see Bloomfield, 2004: pp181-184). Finally, the area under
the smoothed spectrum [blue line, bottom row, Fig. 9] is used to
uzhou (left) and Yueyang (right). [Lower panels] The detection of annual and bi-annual
etrended time series at Suzhou (left) and Yueyang (right). The raw spectrum is given by
e, the 95% confidence interval (C.I.) by the purple line, the significant DFT frequencies by
o colour in this figure legend, the reader is referred to the web version of this article.)

and seasonal (3 ± 0.5 month) cycles at N sites in a sample of 141 cases studied that
he SSA trend and the ordinary least square regression fit, R(dft vs ssa) being themean

% R(ols vs ssa) R(dft vs ssa)

70.2 0.979 0.886
45.4 0.962 0.713
27.7 0.971 0.733
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scale a first order auto-regressive AR(1) “red noise” model of the
time series and produce the null continuum [green line, bottom
row, Fig. 9]. A chi-squared test then flags up those statistically-
significant frequencies whose spectral estimate (lower confidence
interval, C.I.) is above the null continuum at the 95% level [red line
and dots, bottom row, Fig. 9]. Peak frequencies are then given by the
local maxima [pink filled circles, bottom row, Fig. 9]. Hence, we
note that at both Suzhou and Yueyang, two statistically significant
annual (12-month) and bi-annual (6-month) cycles are detected. In
Table 4 we summarize the results of applying this seasonality
detection scheme to a sample of outlier-removed time series at 141
locations from this study.

Annual and inter-annual SO2 cycles are clearly evident in the
monthlymean time series and atmany of the locations examined in
this work, see auxiliary material to this work in: http://users.auth.
gr/mariliza/China/. All graphs depicting the main steps of the
methodology described above are provided for each of the loca-
tions discussed in this paper. The seasonality is a strong component
of the data and this variability is discoverable from space with the
appropriate statistical tools, such as those briefly described in
Taylor et al., 2016b, and fully deployed in Taylor et al., 2016a.

5. Short summary

The ability of the SCIAMACHY/Envisat, OMI/Aura and GOME2/
MetopA satellite instruments, analysed by both operational and
scientific algorithms, to observe the anthropogenic SO2 load over
China has been studied in this work. The optimal spatiotemporal, as
well as filtering, choices required to attain a satisfactory signal-to-
noise ratio for each sensor have been discussed, followed by an
extensive monthly mean time series analysis on point locations,
instead of province mean loads. In short:

▪ Irrespective of the instrument's pixel size, the recommended
flagging restrictions of the operational algorithms do not permit
a noise-free monthly mean map to be created for scientific
purposes. A careful gridding and smoothing technique is para-
mount in order to obtain statistically significant monthly mean
time series for locations of interest.

▪ For SO2 emitting locationswith a high enough SO2 load, it is within
the ability of the OMI/Aurameasurements to provide a robust time
series including the winter months, which are of high interest.

▪ Negative trends over more than 90% of the megacities and po-
wer plant sites examined in this work were revealed by both the
GOME2/MetopA and the OMI/Aura observations.

▪ Positive trends for a few locations were also found for the
decade 2005e2014 which remained statistically significant
when limiting the time period to 2010e2014, the five years
whenmost of the known power plants applied desulphurisation
filters in their facilities. This finding impresses the need to not
only focus SO2 load studies on the provincial level, but also to
Power plant Province Ca

Tuoketuo Neimenggu 54
Beilun Zhejiang 50
Jiaxin Zhejiang 50
Taishan Guangdong 50
Waigaoqiao Shanghai 50
Yingkou Liaoning 48
Yangcheng Shanxi 46
Qinbei Henan 44
Ninghai Zhejiang 44
Zouxian Shandong 44
Houshi Fujian 42
focus on emerging economies within the Chinese realm which
introduce new industrial and power plant parks.

▪ A clear annual cycle in the SO2 observed by the OMI/Aura in-
strument was unveiled, with highs in winter and lows in sum-
mer. Over 70% of the locations evaluated in this work showed his
clear signal, which has been fully analysed and enumerated
using a new state-of-the-art mathematical tool.

▪ A number of the locations studied have exhibited a strong and
repetitive signal in the reported SO2 load over spring months;
this fact merits further study as these spring-time highs might
be possible outcomes of Gobi Desert dust intrusions that hinder
the capabilities of the satellite algorithms, after a fashion.

As also shown in the work of van der A et al., 2016, when a strict
control by the Chinese authorities on the actual use of the desul-
phurisation installations was enforced around 2007e2008, a clear
effect on the air quality was observed by both ground- and space-
born instruments. In the last couple of years, the effect of the
new restrictions on NOx emissions from heavy industry and power
plant regulations is gradually revleaved by satellite observations as
well. It hence follows that enforcing and updating current legisla-
tion and measures will certainly clean up the air over China, as was
achieved for Europe in the last two decades [European Environ-
mental Agency; http://www.eea.europa.eu/.]

As future steps, we consider that the wealth of sulphur dioxide
emissions information obtainable from satellite observations can
be used in top-down emission inventory calculations to update the
more traditional bottom-up inventories and hence permit a global
well of information on the atmosphere sulphur dioxide load from
anthropogenic sources.
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Appendix A. Expected locations of detectable SO2 emissions
in China.

Appendix I. The list of power plants in the People's Republic of China
considered in this work sorted by the reported capacity in MW in
2010. List adapted from https://en.wikipedia.org/wiki/List_of_
power_stations_in_China#Coalas well as http://carma.org/plant
pacity [MW] Latitude Longitude

00 40�1104900N 111�2105200E
00 29�5602600N 121�4804800E
00 30�3704700N 121�0804600E
00 21�5200000N 112�5502200E
00 31�2102100N 121�3505000E
40 40�1801700N 122�0601700E
20 35�2801100N 112�3404100E
00 35�1001100N 112�4205600E
00 29�2901600N 121�3003400E
00 35�1903600N 116�5600200E
00 24�1801100N 118�0703500E

http://users.auth.gr/mariliza/China/
http://users.auth.gr/mariliza/China/
http://www.eea.europa.eu/
http://www.marcopolo-panda.eu/
http://o3msaf.fmi.fi/
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https://en.wikipedia.org/wiki/List_of_power_stations_in_China#Coal
https://en.wikipedia.org/wiki/List_of_power_stations_in_China#Coal
http://carma.org/plant


(continued )

Power plant Province Capacity [MW] Latitude Longitude

Nantong Jiangsu 4060 31�4502500N 120�5803100E
Yuhuan Zhejiang 4000 28�0605700N 121�0801600E
Jianbi Jiangsu 3980 32�1005400N 119�3403500E
Shajiao Guangdong 3880 22�4405000N 113�4003900E
Zhujiang Guangdong 3800 22�4805100N 113�3400400E
Shangdu Inner Mongolia 3720 42�1302700N 116�0104100E
Datong_II Shanxi 3720 40�0104400N 113�1703700E
Shidongkou Shanghai 3600 31�2704900N 121�2401500E
Suizhong Liaoning 3600 40�0404800N 120�0002700E
Xuzhou Jiangsu 3460 34�2301000N 117�1502800E
Wuhu_Huadian Anhui 3320 31�1402200N 118�0900600E
Pengcheng Jiangsu 3280 34�2204000N 117�10ʹ3500E
Lingwu Ningxia 3200 38�0805400N 106�2004500E
Qinzhou Guangxi 3200 21�4205000N 108�3605300E
Shaoguan Guangdong 3200 24�3500300N 113�3500000E
Hanchuan Hubei 3200 30�3902200N 113�5502300E
Xutang Jiangsu 3200 34�2005500N 117�5505500E
Huilai Guandong 3200 23�0002000N 116�3204800E
Sanbaimeng Guandong 3200 23�3305800N 117�0504900E
Dalate Inner Mongolia 3180 40�2200000N 109�5904500E
Hongjun Inner Mongolia 3000 45�3002600N 119�3900000E
Changshu Jiangsu 3000 31�4502500N 120�5803100E
Tongling Anhui 2975 30�5303000N 117�4500000E
Taicanggang Jiangsu 2770 31�3500500N 121�1502500E
Fuzhou Fujian 2720 25�5902700N 119�2805400E
Lusigang Jiangsu 2640 32�0303100N 121�4303400E
Jiutai Jilin 2640 44�90400N 125�5002000E
Shangan Hebei 2620 38�0302500N 114�1104600E
Xinmi Henan 2600 34�2905500N 113�3504600E
Puqi Hubei 2600 29�3905200N 113�5202300E
Ligang Jiangsu 2600 31�5602200N 120�0405400E
Zhuhai Guangdong 2600 21�5800400N 113�1005600E
Yueyang Hunan 2525 29�2604700N 113�0903100E
Pucheng Shaanxi 2520 34�5804200N 109�4705600E
Datong_Tashan_Pithead Shaanxi 2520 39�5503500N 113�0500100E
Fengzhen Inner Mongolia 2520 40�2401800N 113�0804700E
Dingzhou Hebei 2520 38�3005000N 114�5004100E
Shanwei Guangdong 2520 22�4202100N 115�3301700E
Liuan Anhui 2520 31�4000300N 116�2905600E
Fengtai Anhui 2520 32�4502600N 116�3900000E
Tianji Anhui 2520 32�4000900N 117�0103100E
Huanghua Hebei 2520 38�1803600N 117�5204300E
Changzhou Jiangsu 2520 31�5703000N 119�5903300E
Yueqing Zhejiang 2520 28�1001500N 121�0502600E
Dezhou Shandong 2520 37�2700700N 116�1403500E
Ningde Fujian 2520 26�4502700N 119�4401300E
Pannan Guizhou 2400 25�2800800N 104�3503000E
Diandong Yunnan 2400 25�1105900N 104�4005700E
Faer Guizhou 2400 26�1903100N 104�4601100E
Daba Ningxia 2400 37�5900200N 105�5504100E
Hexi Shaanxi 2400 39�4902200N 110�0200400E
Jinjie Shaanxi 2400 38�4401000N 110�1000100E
Hequ Shaanxi 2400 39�2205900N 111�1100800E
Jinzhushan Zhejiang 2400 27�3703400N 111�2805500E
Yangxi Guangdong 2400 21�3201500N 111�4001300E
Daihai Inner Mongolia 2400 40�3101400N 112�4000400E
Liaocheng Shandong 2400 36�2902100N 116�1403500E
Duolun Inner Mongolia 2400 42�1205900N 116�3402400E
Lanxi Zhejiang 2400 29�1101200N 119�3002300E
Tieling Liaoning 2400 42�2004000N 123�4801500E
Fengcheng Jiangxi 2400 28�1104500N 115�4203100E
Guangan Sichuan 2400 30�3104100N 106�4903400E
Kemeng Fujian 2400 26�2202400N 119�4504400E
Luohe Anhui 2400 32�4100700N 117�0404000E
Pingliang Gansu 2400 35�3000600N 106�4701000E
Pingwei Anhui 2400 32�4100300N 116�5400500E
Wushashan Zhejiang 2400 29�3002200N 121�3905100E
Xiangfan Hubei 2400 31�5405700N 112�1001000E
Xibaipo Hebei 2400 38�1404500N 114�1300900E
Yangluo Hubei 2400 30�4103800N 114�3203500E
Yangzhou_II Jiangsu 2400 32�1601200N 119�2501900E
Zhanjiang Guangdong 2400 21�1803500N 110�2403400E
Xingdian Shandong 2250 36�4605700N 118�1400900E
Shouyangshan Henan 2240 34�4305300N 112�4502100E

(continued on next page)
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(continued )

Power plant Province Capacity [MW] Latitude Longitude

Hebi Henan 2200 35�5100400N 114�1004400E
Panshan Tianjin 2200 39�5805500N 117�2704000E
Yimin Neimenggu 2200 48�3300100N 119�4604000E
Huangpu Guangdong 2170 23�0404300N 113�2904400E
Jingyuan Gansu 2150 36�4304600N 104�4503700E
Yuanbaoshan Neimenggu 2100 42�1801200N 119�1904500E
Hezhou Guangxi 2090 24�4401500N 111�2100900E
Wujing Shanghai 2075 31�0303100N 121�2705600E
Banqiao Jiangsu 2070 31�5605200N 118�3704900E
Taizhou Zhejiang 2070 28�4105300N 121�2702800E
Rizhao Shandong 2060 35�2004000N 119�3004000E
Haimeng Guangdong 2060 23�11’1700N 116�3901400E
Pinghai Guangdong 2060 22�3603200N 114�4403400E
Huangdao Shandong 2050 36�0201800N 120�1301000E
Shuangyashan Heilongjiang 2030 46�3305500N 131�4001800E
Yuzhou Henan 2020 34�1002800N 113�2102100E
Dingxiang Shaanxi 2000 38�28022N 112�57025E
Luyang Henan 2000 34�4901500N 113�0005100E
Yaomeng Henan 2000 33�4401400N 113�1402300E
Beijiang Tianjin 2000 39�1300800N 117�5505000E
Jinling Jiangsu 2000 32�1001800N 119�0100700E
Jurong Jiangsu 2000 32�1204600N 119�1203400E
Weifang Shandong 2000 36�3803700N 119�1305800E
Laizhou Shandong 2000 37�2505600N 120�0100500E
Penglai Shandong 2000 37�4004700N 120�1805000E
Nanshan Shandong 2000 37�4304400N 120�2605300E
Cangnan China 2000 27�2905400N 120�3904400E
Caojing Shanghai 2000 30�4503600N 121�2305900E
Shentou_II Shaanxi 2000 39�2200400N 112�3200000E
Taizhou Jiangsu 2000 32�11‘140 ‘N 119�54‘5900E
Appendix II. The list of megacities in the People's Republic of China
considered in this work sorted by their reported metro area
population based on the 2010 census. List adapted from: https://en.
wikipedia.org/wiki/List_of_cities_in_China_by_population_and_
built-up_area.
City Province Population
[2010 census]

Latitude Longitude

Shanghai Shanghai 24800000 31�120N 121�300E
Beijing Beijing 21150000 39�540N 116�230E
Guangzhou Guangdong 12400000 23�080N 113�160E
Shenzhen Guangdong 11700000 22�330N 114�060E
Tianjin Tianjin 10600000 39�080N 117�110E
Shijiazhuang Hebei 10163788 38�040N 114�290E
Chongqing Chongqing 9977000 29�330N 106�340E
Handan Hebei 9174683 36�360N 114�290E
Wuhan Hubei 9158000 30�350N 114�170E
Dongguan Guangdong 7280000 23�020N 113�430E
Hong Kong Hong Kong 7200000 22�160N 114�110E
Chengdu Sichuan 6670000 30�390N 104�030E
Foshan Guangdong 6486000 23�010N 113�070E
Nanjing Jiangsu 5866000 32�030N 118�460E
Harbin Heilongjiang 5687000 45�450N 126�380E
Shenyang Liaoning 5568000 41�480N 123�240E
Hangzhou Zhejiang 5448000 30�150N 120�100E
Xian Shaanxi 4975000 34�160N 108�540E
Zibo Shandong 4530000 36�500N 118�080E
Linfen Shanxi 4316612 36�050N 111�310E
Shantou Guangdong 4175000 23�210N 116�400E
Zhenzhou Henan 3964000 34�460N 113�390E
Qingdao Shandong 3797000 36�040N 120�230E
Jinan Shandong 3697000 36�400N 116�590E
Changchun Jilin 3694000 43�540N 125�120E
Taiyuan Shanxi 3495000 37�520N 112�330E
Kunming Yunnan 3472000 25�040N 102�410E
Suzhou Jiangsu 3463000 31�180N 120�360E
Wuxi Jiangsu 3366000 31�340N 120�180E
Dalian Liaoning 3359000 38�550N 121�380E
Changsha Hunan 3335000 28�110N 112�580E
Urumqi Xinjiang 3123000 43�490N 087�360E
Hefei Anhui 3012000 31�520N 117�170E
Qinhuangdao Heibei 2987605 39�560N 119�360E
References

Bai, J.H., Wu, Y.M., Chai, W.H., Wang, P.C., Wang, G.C., 2015. Long-term variation of
trace gases and particulate mater at an atmospheric background station in
North China. Adv. Geosciences 5, 248e263. http://dx.doi.org/10.12677/
ag.2015.53025.

Bauduin, S., Clarisse, L., Clerbaux, C., Hurtmans, D., Coheur, P.-F., 2014. IASI obser-
vations of sulfur dioxide (SO2) in the boundary layer of Norilsk. J. Geophys. Res.
Atmos. 119, 4253e4263. http://dx.doi.org/10.1002/2013JD021405.

Bloomfield, P., 2004. Fourier Analysis of Time Series: an Introduction. John Wiley &
Sons. ISBN: 0-471-88948-2.

Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O.C., Vogel, A.,
Hartmann, M., Bovensmann, H., Frerick, J., Burrows, J.P., 2003. Measurements of
molecular absorption spectra with the SCIAMACHY pre-flight model: instru-
ment characterization and reference data for atmospheric remote-sensing in
the 230e2380 nm region. J. Photochem. Photobiol. A 157, 157e167.

Bovensmann, H., Burrows, J.P., Buchwitz, M., et al., 1999. SCIAMACHY: mission ob-
jectives and measurement modes. J. Atmos. Sci. 56 (2), 127e150.

Brion, J., Chakir, A., Daumont, D., Malicet, J., Parisse, C., 1993. High-resolution lab-
oratory absorption cross section of O3. Temperature effect. Chem. Phys. Lett.
213, 610e612.

Carn, S.A., Yang, K., Prata, A.J., Krotkov, N.A., 2015. Extending the long-term record of
volcanic SO2 emissions with the ozone mapping and profiler suite nadir map-
per. Geophys. Res. Lett. 42 http://dx.doi.org/10.1002/2014GL062437.

Carn, S.A., Krueger, A.J., Krotkov, N.A., Gray, M.A., 2004. Fire at Iraqi sulfur plant
emits SO2 clouds detected by Earth Probe TOMS. Geophys. Res. Lett. 31 (19),
2e5. http://dx.doi.org/10.1029/2004GL020719.

Carn, S.A., Krueger, A.J., Krotkov, N.A., Yang, K., Levelt, P.F., 2007. Sulfur dioxide
emissions from Peruvian copper smelters detected by the Ozone Monitoring
Instrument. Geophys. Res. Lett. 34 (9) http://dx.doi.org/10.1029/2006GL029020.

De Foy, B., Krotkov, N.A., Bei, N., Herndon, S.C., Huey, L.G., Martínez, A.-P., Ruiz-
Su�arez, L.G., Wood, E.C., Zavala, M., Molina, L.T., 2009. Hit from both sides:
tracking industrial and volcanic plumes in Mexico City with surface measure-
ments and OMI SO2 retrievals during the MILAGRO field campaign. Atmos.
Chem. Phys. 9 (24), 9599e9617. http://dx.doi.org/10.5194/acp-9-9599-16 2009.

Dikty, S., Richter, A., Weber, M., et al., 2011. GOME-2 on MetOp-a Support for
Analysis of GOME-2 In-orbit Degradation and Impacts on Level 2 Data Products
Final Report. Technical Document ITT 09/10000262, EUMETSAT, available at:
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService¼GET_
FILE&dDocName¼PDF_GOME2_MA_INORB_DEGR_L2_PRODS_
REP&RevisionSelectionMethod¼LatestReleased&Rendition¼Web (last access:
21.04.16.).

Eisinger, M., Burrows, J.P., 1998. Tropospheric sulfur dioxide observed by the ERS-2
GOME instrument. Geophys. Res. Lett. 25 (22), 4177e4180. http://dx.doi.org/
10.1029/1998GL900128.

EUMETSAT, 2012. GOME-2/Metop-A Level 1B Product ValidationReport No. 5: Sta-
tus at Reprocessing G2RP-R2. Technical Document EUM/OPS-EPS/REP/09/0619,
version 1F, EUMETSAT, available at: http://www.eumetsat.int/website/wcm/idc/
idcplg?IdcService¼GET_FILE&dDocName¼pdf_gome_l1b_prod_

https://en.wikipedia.org/wiki/List_of_cities_in_China_by_population_and_built-up_area
https://en.wikipedia.org/wiki/List_of_cities_in_China_by_population_and_built-up_area
https://en.wikipedia.org/wiki/List_of_cities_in_China_by_population_and_built-up_area
http://dx.doi.org/10.12677/ag.2015.53025
http://dx.doi.org/10.12677/ag.2015.53025
http://dx.doi.org/10.1002/2013JD021405
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref3
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref3
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref4
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref4
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref4
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref4
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref4
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref4
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref4
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref5
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref5
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref5
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref6
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref6
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref6
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref6
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref6
http://dx.doi.org/10.1002/2014GL062437
http://dx.doi.org/10.1029/2004GL020719
http://dx.doi.org/10.1029/2006GL029020
http://dx.doi.org/10.5194/acp-9-9599-16 2009
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=PDF_GOME2_MA_INORB_DEGR_L2_PRODS_REP&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=PDF_GOME2_MA_INORB_DEGR_L2_PRODS_REP&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=PDF_GOME2_MA_INORB_DEGR_L2_PRODS_REP&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=PDF_GOME2_MA_INORB_DEGR_L2_PRODS_REP&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=PDF_GOME2_MA_INORB_DEGR_L2_PRODS_REP&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=PDF_GOME2_MA_INORB_DEGR_L2_PRODS_REP&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=PDF_GOME2_MA_INORB_DEGR_L2_PRODS_REP&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=PDF_GOME2_MA_INORB_DEGR_L2_PRODS_REP&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=PDF_GOME2_MA_INORB_DEGR_L2_PRODS_REP&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=PDF_GOME2_MA_INORB_DEGR_L2_PRODS_REP&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://dx.doi.org/10.1029/1998GL900128
http://dx.doi.org/10.1029/1998GL900128
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=pdf_gome_l1b_prod_val&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=pdf_gome_l1b_prod_val&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=pdf_gome_l1b_prod_val&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=pdf_gome_l1b_prod_val&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=pdf_gome_l1b_prod_val&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web


M.E. Koukouli et al. / Atmospheric Environment 145 (2016) 45e59 59
val&RevisionSelectionMethod¼LatestReleased&Rendition¼Web (last access:
21.04.16.).

Fioletov, V.E., McLinden, C.A., Krotkov, N., Li, C., Joiner, J., Theys, N., Carn, S.,
Moran, M.D., 2016. A global catalogue of large SO2 sources and emissions
derived from the Ozone Monitoring Instrument. Atmos. Chem. Phys. Discuss.
http://dx.doi.org/10.5194/acp-2016-417 (in review).

Fioletov, V.E., McLinden, C.A., Krotkov, N., Moran, M.D., Yang, K., 2011. Estimation of
SO2 emissions using OMI retrievals. Geophys. Res. Lett. 38 (21) http://
dx.doi.org/10.1029/2011GL049402.

Fioletov, V.E., McLinden, C.a., Krotkov, N., Yang, K., Loyola, D.G., Valks, P., Theys, N.,
Van Roozendael, M., Nowlan, C.R., Chance, K., LiuX., LeeC., Martin, R.V., 2013.
Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for
detection of large emission sources. J. Geophys. Res. Atmos. 118 (19),
11399e11418. http://dx.doi.org/10.1002/jgrd.50826.

Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E.,
Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., Yiou, P., 2002. Advanced
spectral methods for climatic time series. Rev. Geophys. 40 (1), 1003. http://
dx.doi.org/10.1029/2000RG000092.

Golyandina, N., Nekrutkin, V., Zhigljavsky, A., 2001. Analysis of Time Series Struc-
ture: SSA and Related Techniques. Chapman and Hall/CRC.

Gür, B., Spietz, P., Orphal, J., Burrows, J.P., 2005. Absorption Spectra Measurements
with the GOME-2 FMs using the IUP/IFE-UB’s Calibration Apparatus for Trace
Gas Absorption Spectroscopy. CATGAS. Final Report, ESA/EUMETSAT.

Han, Y., Wu, Y., Wang, T., Xie, C., Zhao, K., Zhuang, B., Li, S., 2015. Characterizing a
persistent Asian dust transport event: optical properties and impact on air
quality through the ground-based and satellite measurements over Nanjing,
China. Atmos. Environ. 115, 304e316. http://dx.doi.org/10.1016/
j.atmosenv.2015.05.048.

Hassinen, S., Balis, D., Bauer, H., et al., 2016. Overview of the O3M SAF GOME-2
operational atmospheric composition and UV radiation data products and
data availability. Atmos. Meas. Tech. 9, 383e407. http://dx.doi.org/10.5194/amt-
9-383-2016.

Khokhar, M.F., Frankenberg, C., Van Roozendael, M., Beirle, S., Kühl, S., Richter, A.,
Platt, U., Wagner, T., 2005. Satellite observations of atmospheric SO2 from
volcanic eruptions during the time-period of 1996-2002. Adv. Space Res. 36,
879e887.

Kim, H.-S., Chung, Y.-S., Yoon, M.-B., 2016. An analysis on the impact of large-scale
transports of dust pollution on air quality in East Asia as observed in central
Korea in 2014, Air Quality. Atmos. Health 9 (1), 83e93. http://dx.doi.org/
10.1007/s11869-014-0312-5.

Klimont, Z., Smith, S.J., Cofala, J., 2013. The last decade of global anthropogenic
sulfur dioxide: 2000e2011 emissions. Environ. Res. Lett. 8 (1), 014003. http://
dx.doi.org/10.1088/1748-9326/8/1/014003.

KNMI, 2012. Background Information about the Row Anomaly in OMI [online]
Available from: http://www.knmi.nl/omi/research/product/rowanomaly-
background.php (accessed 5.08.15.).

Krotkov, N.A., McLinden, C.A., Li, C., Lamsal, L.N., Celarier, E.A., Marchenko, S.V.,
Swartz, W.H., Bucsela, E.J., Joiner, J., Duncan, B.N., Boersma, K.F., Veefkind, J.P.,
Levelt, P.F., Fioletov, V.E., Dickerson, R.R., He, H., Lu, Z., Streets, D.G., 2016. Aura
OMI observations of regional SO2 and NO2 pollution changes from 2005 to
2015. Atmos. Chem. Phys. 16, 4605e4629. http://dx.doi.org/10.5194/acp-16-
4605-2016.

Krueger, A.J., 1983. Sighting of El Chichon sulfur dioxide clouds with the Nimbus 7
total ozone mapping spectrometer. Science 220 (4604), 1377e1379. http://
dx.doi.org/10.1126/science.220.4604.1377.

Lasnik, J., Stephens, M., Baker, B., et al., 2014. Geostationary Environment Moni-
toring Spectrometer (GEMS) over the Korea Peninsula and Asia-Pacific Region.
American Geophysical Union. Fall Meeting 2014, abstract #A51A-3003,
2014AGUFM.A51A3003L.

Lee, C., Martin, R.V., Van Donkelaar, A., Lee, H., Dickerson, R.R., Hains, J.C.,
Krotkov, N., Richter, A., Vinnikov, K., Schwab, J.J., 2011. SO2 emissions and
lifetimes: estimates from inverse modeling using in situ and global, space-
based (SCIAMACHY and OMI) observations. J. Geophys. Res. Atmos. 116 (6)
http://dx.doi.org/10.1029/2010JD014758.

Li, C., Joiner, J., Krotkov, N. a., Bhartia, P.K., 2013. A fast and sensitive new satellite
SO2 retrieval algorithm based on principal component analysis: application to
the ozone monitoring instrument. Geophys. Res. Lett. 40 (23), 6314e6318.
http://dx.doi.org/10.1002/2013GL058134.

Li, C., Zhang, Q., Krotkov, N.A., Streets, D.G., He, K., Tsay, S.-C., Gleason, J.F., 2010.
Recent Large Reduction in Sulfur Dioxide Emissions from Chinese Power Plants
Observed by the Ozone Monitoring Instrument, vol. 37, pp. 1e6. http://
dx.doi.org/10.1029/2010GL042594.

Liang, Z.Q., Ma, M.T., Du, G.F., 2014. Comparison of characteristics and trend analysis
of atmospheric pollution in Beijing- Tianjin-Shijiazhuang during 2003-2012. Air
Pollut. Control 32 (12), 78e81. http://en.cnki.com.cn/Article_en/CJFDTotal-
HJGC201412020.htm.

Liu, L., Huang, X., Ding, A., Fu, C., 2016. Dust-induced radiative feedbacks in north
China: a dust storm episode modeling study using WRF-Chem. Atmos. Environ.
129 http://dx.doi.org/10.1016/j.atmosenv.2016.01.019.

Lu, Z., Streets, D.G., De Foy, B., Krotkov, N.A., 2013. Ozone monitoring instrument
observations of interannual increases in SO2 emissions from Indian coal-fired
power plants during 2005-2012. Environ. Sci. Technol. 47 (24), 13993e14000.
http://dx.doi.org/10.1021/es4039648.
Lu, Z., Streets, D.G., Zhang, Q., Wang, S., Carmichael, G.R., Cheng, Y.F., Wei, C.,

Chin, M., Diehl, T., Tan, Q., 2010. Sulfur dioxide emissions in China and sulfur
trends in East Asia since 2000. Atmos. Chem. Phys. 10 (13), 6311e6331. http://
dx.doi.org/10.5194/acp-10-6311-2010.

Luo, Y., Zheng, X., Zhao, T., Chen, J., 2014. A climatology of aerosol optical depth over
China from recent 10 years of MODIS remote sensing data. Int. J. Climatol. 34,
863e870. http://dx.doi.org/10.1002/joc.3728.

McLinden, C.A., Fioletov, V., Boersma, K.F., Kharol, S.K., Krotkov, N., Lamsal, L.,
Makar, P.A., Martin, R.V., Veefkind, J.P., Yang, K., 2014. Improved satellite re-
trievals of NO2 and SO2 over the Canadian oil sands and comparisons with
surface measurements. Atmos. Chem. Phys. 14 (7), 3637e3656. http://
dx.doi.org/10.5194/acp-14-3637-2014.

McLinden, C.A., Fioletov, V., Boersma, K.F., Krotkov, N., Sioris, C.E., Veefkind, J.P.,
Yang, K., 2012. Air quality over the Canadian oil sands: a first assessment using
satellite observations. Geophys. Res. Lett. 39 (4) http://dx.doi.org/10.1029/
2011GL050273.

McLinden, Chris, A., Vitali Fioletov, Shephard, Mark W., Krotkov, Nick, Li, Can,
Martin, Randall V., Moran, Michael D., Joiner, Joanna, 2016. Space-based
detection of missing sulfur dioxide sources of global air pollution. Nat. Geosci.
http://dx.doi.org/10.1038/ngeo2724.

Munro, R., Lang, R., Klaes, D., et al., 2016. The GOME-2 instrument on the Metop
series of satellites: instrument design, calibration, and level 1 data processing e

an overview. Atmos. Meas. Tech. 9, 1279e1301. http://dx.doi.org/10.5194/amt-
9-1279-2016.

Platt, U., Stutz, J., 2008. Differential Optical Absorption Spectroscopy (DOAS):
Principle and Applications. Springer, Berlin.

Rix, M., Valks, P., Hao, N., Loyola, D., Schlager, H., Huntrieser, H., Flemming, J.,
Koehler, U., Schumann, U., Inness, A., 2012. Volcanic SO2, BrO and plume height
estimations using GOME-2 satellite measurements during the eruption of
Eyjafjallaj€okull in May 2010. J. Geophys. Res. 117, D00U19. http://dx.doi.org/
10.1029/2011JD016718.

SCIAMACHY/Envisat Algorithm Description (ATBD) (2015): Lichtenberg, G., Boven-
smann, H., Van Roozendael, M., Doicu, A., Eichmann, K.-U., Hess, M., Hrechanyy,
S., Kokhanovsky, A., Lerot, C., Noel, S., Richter, A., Rozanov, A., Schreier, F. and
Tilstra, L.G., SCIAMACHY Offline Level 1b-2 Processor ATBD, ENV-ATB-QWG-
SCIA-0085, 2010, issue 1A, http://atmos.caf.dlr.de/sciamachy/documents/
level_1b_2/sciaol1b2_atbd_master.pdf, (last accessed: 16.06.15.).

SCIAMACHY/Envisat SGP 5.02 Level-2 products Readme File issue 1.2, (2011),
https://earth.esa.int/documents/700255/708683/
SCIAMACHYþL2þQualityþReadmeþfile/db993046-d18c-40ed-b6e6-
5c4b474ab7a5, ENVI-GSOP-EOGD-QD-13-0118, (ast accessed: 16.06.16.).

Taylor, M., Koukouli, M.E., Theys, N., et al., 2016b. A Robust Seasonality Detector for
Time Series Affected by Periodic Drivers and Sporadic Events; Application to
SO2 Observations over China, XIII EMTE National-international Conference of
Meteorology-Climatology and Atmospheric Physics, Springer Atmospheric Sci-
ences, Perspectives on Atmospheric Sciences. ISBN : 978-3-319-35094-3,
September 19-21, Thessaloniki, Greece.

Taylor, M., Koukouli, M.E., Theys, N., et al., 2016a. A Robust Seasonality Detector for
Time Series Affected by Periodic Drivers and Sporadic Events; Application to
Satellite SO2 Estimates. in preparation for submission to Nonlinear Processes in
Geophysics.

Theys, N., Van Gent, J., van Roozendael, M., et al., 2013. Interim Verification Report
of GOME-2 GDP 4.7 SO2 Column Data for MetOp-B Operational Readiness Re-
view, Technical Note/Validation Report SAF/O3M/IASB/VR/SO2/TN-iasb-
gome2b-O3MSAF-SO2-2013), O3M SAF. available at: http://o3msaf.fmi.fi/docs/
vr/Validation_Report_OTO_SO2_Jun_2013.pdf (last access: 21.04.16.).

Theys, N., De Smedt, I., van Gent, J., Danckaert, T., Wang, T., Hendrick, F.,
Stavrakou, T., Bauduin Clarisse, L., Li, C., Krotkov, N., Yu, H., Brenot, H., Van
Roozendael, M., 2015. Sulfur dioxide vertical column DOAS retrievals from the
Ozone Monitoring Instrument: global observations and comparison to ground-
based and satellite data. J. Geophys. Res. Atmos. 120 (6), 2470e2491. http://
dx.doi.org/10.1002/2014JD022657.

van der A, R.J., Mijling, B., Ding, J., Koukouli, M.E., Liu, F., Li, Q., Mao, H., Theys, N.,
2016. Cleaning up the air: effectiveness of air quality policy for SO2 and NOx
emissions in China. Atmos. Chem. Phys. Discuss. http://dx.doi.org/10.5194/acp-
2016-445 in review.

Vandaele, A.C., Simon, P.C., Guilmot, M., Carleer, M., Colin, R., 1994. SO2 absorption
cross section measurement in the UV using a Fourier transform spectrometer.
J. Geophys. Res. 99, 25599e25605.

Zerefos, C., Ganev, K., Kourtidis, K., Tzortziou, M., Vasaras, A., Syrakov, E., 2000. On
the origin of SO2 above Northern Greece. Geophys. Res. Lett. 27 (3) http://
dx.doi.org/10.1029/1999GL010799.

Zhang, Q., Streets, D.G., He, K., 2009. Satellite observations of recent power plant
construction in Inner Mongolia, China. Geophys. Res. Lett. 36 (15) http://
dx.doi.org/10.1029/2009GL038984.

Zhu, Z.M., Han, G., Gong, W., Cui, Z.Z., Zhang, M., 2015. Study on long-term trend of
atmospheric contaminants in Wuhan. J. HuaZhong Normal Univ. Nat. Sci. 49 (2),
280e286.

Zoogman, P., et al., 2016. Tropospheric emissions: monitoring of pollution (TEMPO).
J. Quant. Spectrosc. Radiat. Transf. http://dx.doi.org/10.1016/j.jqsrt.2016.05.008.

http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=pdf_gome_l1b_prod_val&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=pdf_gome_l1b_prod_val&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=pdf_gome_l1b_prod_val&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=pdf_gome_l1b_prod_val&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&amp;dDocName=pdf_gome_l1b_prod_val&amp;RevisionSelectionMethod=LatestReleased&amp;Rendition=Web
http://dx.doi.org/10.5194/acp-2016-417
http://dx.doi.org/10.1029/2011GL049402
http://dx.doi.org/10.1029/2011GL049402
http://dx.doi.org/10.1002/jgrd.50826
http://dx.doi.org/10.1029/2000RG000092
http://dx.doi.org/10.1029/2000RG000092
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref18
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref18
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref19
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref19
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref19
http://dx.doi.org/10.1016/j.atmosenv.2015.05.048
http://dx.doi.org/10.1016/j.atmosenv.2015.05.048
http://dx.doi.org/10.5194/amt-9-383-2016
http://dx.doi.org/10.5194/amt-9-383-2016
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref22
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref22
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref22
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref22
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref22
http://dx.doi.org/10.1007/s11869-014-0312-5
http://dx.doi.org/10.1007/s11869-014-0312-5
http://dx.doi.org/10.1088/1748-9326/8/1/014003
http://dx.doi.org/10.1088/1748-9326/8/1/014003
http://www.knmi.nl/omi/research/product/rowanomaly-background.php
http://www.knmi.nl/omi/research/product/rowanomaly-background.php
http://dx.doi.org/10.5194/acp-16-4605-2016
http://dx.doi.org/10.5194/acp-16-4605-2016
http://dx.doi.org/10.1126/science.220.4604.1377
http://dx.doi.org/10.1126/science.220.4604.1377
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref28
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref28
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref28
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref28
http://dx.doi.org/10.1029/2010JD014758
http://dx.doi.org/10.1002/2013GL058134
http://dx.doi.org/10.1029/2010GL042594
http://dx.doi.org/10.1029/2010GL042594
http://en.cnki.com.cn/Article_en/CJFDTotal-HJGC201412020.htm
http://en.cnki.com.cn/Article_en/CJFDTotal-HJGC201412020.htm
http://dx.doi.org/10.1016/j.atmosenv.2016.01.019
http://dx.doi.org/10.1021/es4039648
http://dx.doi.org/10.5194/acp-10-6311-2010
http://dx.doi.org/10.5194/acp-10-6311-2010
http://dx.doi.org/10.1002/joc.3728
http://dx.doi.org/10.5194/acp-14-3637-2014
http://dx.doi.org/10.5194/acp-14-3637-2014
http://dx.doi.org/10.1029/2011GL050273
http://dx.doi.org/10.1029/2011GL050273
http://dx.doi.org/10.1038/ngeo2724
http://dx.doi.org/10.5194/amt-9-1279-2016
http://dx.doi.org/10.5194/amt-9-1279-2016
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref42
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref42
http://dx.doi.org/10.1029/2011JD016718
http://dx.doi.org/10.1029/2011JD016718
http://atmos.caf.dlr.de/sciamachy/documents/level_1b_2/sciaol1b2_atbd_master.pdf
http://atmos.caf.dlr.de/sciamachy/documents/level_1b_2/sciaol1b2_atbd_master.pdf
https://earth.esa.int/documents/700255/708683/SCIAMACHY+L2+Quality+Readme+file/db993046-d18c-40ed-b6e6-5c4b474ab7a5
https://earth.esa.int/documents/700255/708683/SCIAMACHY+L2+Quality+Readme+file/db993046-d18c-40ed-b6e6-5c4b474ab7a5
https://earth.esa.int/documents/700255/708683/SCIAMACHY+L2+Quality+Readme+file/db993046-d18c-40ed-b6e6-5c4b474ab7a5
https://earth.esa.int/documents/700255/708683/SCIAMACHY+L2+Quality+Readme+file/db993046-d18c-40ed-b6e6-5c4b474ab7a5
https://earth.esa.int/documents/700255/708683/SCIAMACHY+L2+Quality+Readme+file/db993046-d18c-40ed-b6e6-5c4b474ab7a5
https://earth.esa.int/documents/700255/708683/SCIAMACHY+L2+Quality+Readme+file/db993046-d18c-40ed-b6e6-5c4b474ab7a5
https://earth.esa.int/documents/700255/708683/SCIAMACHY+L2+Quality+Readme+file/db993046-d18c-40ed-b6e6-5c4b474ab7a5
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref46
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref46
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref46
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref46
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref46
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref46
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref47
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref47
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref47
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref47
http://o3msaf.fmi.fi/docs/vr/Validation_Report_OTO_SO2_Jun_2013.pdf
http://o3msaf.fmi.fi/docs/vr/Validation_Report_OTO_SO2_Jun_2013.pdf
http://dx.doi.org/10.1002/2014JD022657
http://dx.doi.org/10.1002/2014JD022657
http://dx.doi.org/10.5194/acp-2016-445
http://dx.doi.org/10.5194/acp-2016-445
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref51
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref51
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref51
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref51
http://dx.doi.org/10.1029/1999GL010799
http://dx.doi.org/10.1029/1999GL010799
http://dx.doi.org/10.1029/2009GL038984
http://dx.doi.org/10.1029/2009GL038984
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref54
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref54
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref54
http://refhub.elsevier.com/S1352-2310(16)30708-7/sref54
http://dx.doi.org/10.1016/j.jqsrt.2016.05.008

	Anthropogenic sulphur dioxide load over China as observed from different satellite sensors
	1. Introduction
	2. The datasets
	2.1. GOME2/MetopA GDP 4.7 algorithm
	2.2. SCIAMACHY/Envisat SGP 5.02 algorithm
	2.3. OMI/Aura NASA algorithm
	2.4. OMI/Aura BIRA algorithm

	3. Data screening and optimal gridding choices for an SO2 anthropogenic signal over China
	3.1. SO2 loading over Eastern China
	3.2. Point sources
	3.3. Monthly mean time series analysis

	4. Identifying special cases of SO2 loading over China
	4.1. Positive SO2 changes
	4.2. Seasonality in SO2 loading

	5. Short summary
	Acknowledgements
	Appendix A. Expected locations of detectable SO2 emissions in China.
	Appendix I. The list of power plants in the People's Republic of China considered in this work sorted by the reported capac ...
	Appendix II. The list of megacities in the People's Republic of China considered in this work sorted by their reported metr ...

	References


