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Regional NOx emission inversion through a four-dimensional variational
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a b s t r a c t

In this paper, the NOx emission scaling factors applied over the 2001 National Emissions Inventory (NEI)
are estimated through a four-dimensional variational (4D-Var) approach using SCIAMACHY (Scanning
Imaging Absorption spectroMeter for Atmospheric CHartographY) tropospheric NO2 columns measured
during summer 2004. In the ‘‘top-down’’ approach, two-month average NO2 columns are assimilated
into a regional chemical transport model (CTM), STEM, using different assimilation setups. In a basic
setup, NOx emissions are adjusted by assimilating the NO2 columns. A more general setup of emission
inversion allows the initial O3 concentrations be adjusted along with the NOx emissions. A final case is
set up to assimilate both the NO2 columns and O3 measurement from various platforms while allowing
adjustments of both the NOx emissions and the initial O3 concentrations. It is found that the addition of
O3 measurements did not improve the NOx emission inversion. With the NOx emission at surface and
upper levels being adjusted separately, results from four cases show that the elevated NOx emission
reduction ranges from 8.9% to 11.4%, and the surface NOx emission reduction is up to 6.6%. All the cases
show NOx emission reduction in Ohio valley and Washington, District of Columbia areas.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

As the most important ozone precursor and a direct contributor
to the local air pollution itself, nitrogen dioxide (NO2) is one of the
key species in atmospheric chemistry of earth’s troposphere.
Measurements by satellite instruments Global Ozone Monitoring
Experiment (GOME, from August 1995 to June 2003) spectrometer
(Burrows et al., 1999) and Scanning Imaging Absorption spec-
troMeter for Atmospheric CHartographY (SCIAMACHY, since
August 2002) (Bovensmann et al., 1999) provide continuous global
coverage of NO2 columns. Richter and Burrows (2002) presented
a technique using the Differential Optical Absorption Spectroscopy
(DOAS) to retrieve the tropospheric NO2 columns from the GOME
satellite measurements. By applying the technique to GOME and
SCIAMACHY observations from 1995 to 2004, Richter et al. (2005)
found significant reductions of tropospheric NO2 over parts of
Europe and over the Ohio valley region in the USA. An upward

trend of tropospheric NO2 over the years was observed over parts of
China and in the northeast of the USA.

To a first approximation, the changes of tropospheric NO2

columns reflect the NOx emission changes. However, transport and
photochemical reactions that affect NO2/NOx partitioning have to
be taken into account in order to attribute the changes in NO2 levels
to changes in emissions. The nonlinear relationship between NOx
emissions and NO2 columns was demonstrated by Stavrakou et al.
(2008). Using the IMAGES global CTM and its adjoint along with the
GOME/SCIAMACHY observations, they showed that the inferred
emission growth rate in Beijing region from 1997 to 2006 as
z9% year�1 in both summer and winter although there is dramatic
differences in the growth rate of the observed NO2 columns
between the two seasons (5.3% year�1 in summertime and
11.8% year�1 in wintertime). Therefore, to infer the emission of NOx
via the ‘‘top-down’’ approach, it is important to fully take advantage
of the CTMs which have our best understanding of the physical and
chemical processes thoroughly implemented.

Emission inversion problems have drawn a lot of attention in
recent years. For instance, Pétron et al. (2002) constrained the
global emissions of carbon monoxide (CO) by using a three-
dimensional inverse modeling scheme with the IMAGES model.
Palmer et al. (2003) and Wang et al. (2004) used aircraft and surface
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station observations of CO and NOy during the Transport and
Chemical Evolution Over the Pacific (TRACE-P) mission in combi-
nation of an optimal estimation inverse model to constrain the
regional CO and NOx emissions of different sources. Space-based
observations of NO2 columns have been utilized to constrain NOx
emissions over both global and regional scales using different
methods (Martin et al., 2003; Jaeglé et al., 2005; Boersma et al.,
2008; Napelenok et al., 2008). Recently, some CTMs and their
adjoints have been utilized in the ‘‘top-down’’ emission estima-
tions. The IMAGES global CTM and its adjoint were used to invert
CO and NOx emissions with both surface and satellite observations
(Müller and Stavrakou, 2005; Stavrakou and Müller, 2006; Stavra-
kou et al., 2008). The STEM regional CTM and its adjoint model
were developed for emission inversion problems and were applied
to analyze the black carbon (Hakami et al., 2005) and mercury (Pan
et al., 2007) emission inventories using the observations during the
Asian Pacific Regional Aerosol Characterization Experiment (ACE-
Asia). Henze et al. (2008) developed an inverse modeling scheme
for PM2.5 precursor emissions using the adjoint of GEOS-Chem.

In this study, we use the SCIAMACHY tropospheric NO2 columns
during the International Consortium for Atmospheric Research on
Transport and Transformation (ICARTT) (Singh et al., 2006) opera-
tions in the summer of 2004 and the STEM regional CTM to deduce
time-independent scaling factors applied to grid-based NO2 emis-
sions generated using the 2001 U.S. EPA National Emissions
Inventory (NEI). In the emission inversion, two separate sets of
emission scaling factors are applied to surface and elevated NOx
emissions, respectively. A general setup of emission inversion that
also allows the adjustment of initial concentrations of chemical
species is also tested. In addition, the effect of assimilating ozone
observations from various platforms is discussed.

The paper is organized as follows. Section 2 describes the
SCIAMACHY data. A brief description of the STEM model and the
emission inversion method using the variational approach is given
in Section 3. Section 4 presents the emission inversion results. A
summary is given in Section 5.

2. SCIAMACHY tropospheric nitrogen dioxide observations

The tropospheric NO2 columns from SCIAMACHY used in this
study were prepared at the Institute of Environmental Physics,
University Bremen, Germany for the ICARTT project. As the sensi-
tivity of nadir measurements decreases strongly towards the
surface, the NO2 retrieval requires the knowledge of the vertical

profile shape (Richter and Burrows, 2002). For the SCIAMACHY NO2

column retrievals, daily MOZART (Horowitz et al., 2003) model
profiles were used for the airmass factors (AMF) calculation. Our
current STEM model runs used the same MOZART profiles to
provide boundaries conditions. Thus, integrating the NO2 mass over
the model layers without averaging kernels generates comparable
NO2 columns.

Although SCIAMACHY can provide global coverage of NO2

columns, the region of our interest is only partially covered each
day. Fig. 1(a) shows the observed regions on July 20, 2004. The
observing time is around 1030 local time. To eliminate the effect of
clouds on the retrievals, a simple criterion, the normalized
intensity < 0.15, was used to select cloud-free regions. Fig. 1(b)
shows the tropospheric NO2 columns on July 20, 2004 after
removing the cloud regions. The number of measurements is
significantly reduced after the cloud removal. Hereafter, only data
associated with the normalized intensity less than 0.15 are used.

For the NO2 columns shown in Fig. 1, not all the NOx emissions
will be constrained if only such spatially incomplete samplings are
incorporated in the emission inversion. To have a better constraint
from the measurements in the ‘‘top-down’’ emission inversion, it is
desirable to have a near complete sampling throughout the
domain. Here we chose to merge the available NO2 columns from
July 1 to August 31, 2004 together by neglecting the daily variations.

Fig. 2 shows the cloud-free measurements during the weekends
and weekdays from July 1 to August 31, 2004, respectively. Even
with the data of 18 different weekends stacked together, there are
still significant blank regions. Merging the 44 weekdays generates
a much better coverage of the domain, although there are still areas
left without observations, e.g., middle Pennsylvania. However,
these areas are well represented by the data during the weekends.
Fig. 2 also shows little contradictions between measurements from
different days. Both weekday and weekend data sets show strong
and similar spatial patterns revealing the various levels of anthro-
pogenic activities at different locations. There are slight differences
between the data sets of weekdays and weekends, but the differ-
ences are relative small compared with the spatial variations. In
order to achieve a complete spatial coverage in the domain, we
stacked both weekday and weekend data together. Such merging
also helps to eliminate the effect of daily variation in NOx emission,
which is not of our interest here.

After stacking all the data together, we calculated the mean and
standard deviation of the observations inside each grid cell.
Whether a measurement is inside a grid cell is decided by the
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Fig. 1. SCIAMACHY NO2 columns on July 20, 2004. Unit: molecules cm�2. Original data shown on the left (a); data with the normalized intensity less than 0.15 shown on the right (b).
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center of the pixel. The standard deviation was then normalized by
the local mean to indicate the variation of the observation in the
two-month period. Fig. 3 shows the distributions of the mean
observations and normalized standard deviation in the computa-
tional domain. For 90.4% of the grid cells, the normalized standard
deviation is smaller than 70%. Except for the New York City area, the
locations with large variations are often associated with low NO2

columns. Note that the deviations inside each grid cell not only
come from the daily variations, but also come from the spatial
variations not resolved by the model. The footprint of a SCIAMACHY
pixel is approximately 60 � 30 km2, i.e., about half of the
60 � 60 km2 model grid cell. Thus, the standard deviations calcu-
lated inside grid cells include the representative errors. As Fig. 2
shows little variation between days and the daily variation is not of
our interest here, we generate a pseudo-observation data set that
has the two-month mean NO2 column at each grid cell as the
measurement value. The normalized standard deviation at each
grid cell reflects the uncertainty of the pseudo-observation and is
assigned as the uncertainty of the pseudo-observations. Fig. 3
shows the normalized standard deviation is close to 50% for most

of the domain (81% of grid cells fall between 30% and 70%). In
addition, the average measurement time during the day inside each
grid cell was given to the pseudo-observation and it is used by the
model to reconstruct the NO2 columns. Note that it is difficult to
give a good estimate of the NO2 column retrieval uncertainty. If the
SCIAMACHY retrieval uncertainty is not significantly greater than
50%, as most pseudo-observation uncertainties are close to,
including the retrieval uncertainty is not expected to add more
uncertainties to the pseudo-observation uncertainties.

3. Method

3.1. Chemical transport model

In this study, the STEM-2K3 (Tang et al., 2004) regional chemical
transport model is employed. It is a flexible regional-scale chemical
transport model using SAPRC99 chemical mechanism (Carter, 2000)
with on-line photolysis solver (Tang et al., 2003). Meteorological
inputs to the model came from the fifth-generation Mesoscale
Model (MM5) using NCEP (National Centers for Environmental
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Fig. 2. SCIAMACHY NO2 columns from July 1 to August 31, 2004. Unit: molecules cm�2. Left: accumulated data during the weekends. Right: accumulated data during the weekdays.

Fig. 3. Mean (left, Unit: molecules cm�2) and normalized standard deviation (right, STD/mean) of SCIAMACHY NO2 columns from July 1 to August 31, 2004.
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Prediction) FNL (Final Global Data Assimilation System) analyzed
data during post-analysis. A grid with a 60 km horizontal resolution
(25 cells in longitude, and 22 cells in latitude) is used over the
northeast US domain, as shown in Fig. 3. Vertically the model had 21
layers, extending from the surface to 100 hPa using 0.999, 0.9965,
0.9925, 0.985, 0.97, 0.945, 0.91, 0.87, 0.825, 0.77, 0.71, 0.65, 0.59,
0.53, 0.47, 0.41, 0.35, 0.285, 0.21, 0.125, and 0.04 in sigma coordi-
nates. The emissions inventory was based on the 2001 NEI, with
updated large point source emissions (Frost et al., 2006). Upper
troposphere lightning NOx emissions were added to the model
based on the National Lightning Detection Network (NLDN),
modulated by signal strength and multiplicity of flashes. Further
information about the lightning emissions can be found in Tang
et al. (2007). Biogenic emissions were estimated using Biogenic
Emissions Inventory System 2 (BEIS2) which generates time-varied
isoprene and monoterpene emissions driven by meteorological
variables from MM5. Forest fires that occurred during the ICARTT
period were largely outside the model domain (in Alaska and
Northwestern Canada), therefore their influence was incorporated
through lateral boundary conditions from MOZART global chemical
model predictions. The boundary conditions are provided by STEM-
2K3 run over a bigger domain that covers the continental United
States (see Tang et al., 2007 for detail).

The evolution of the chemical constituent concentration vector c
in time (t) can be described as

vc
vt
¼ �u$Vcþ 1

r
V$ðrK$VcÞ þ 1

r
f þ E (1)

Here we denote by u the wind field vector, r the air density, K the
turbulent diffusivity tensor, f the chemical transformation rate, and
E the emission rate.

3.2. Emission inversion via 4D-Var

In this study, the emission inversion problem is solved via the
STEM 4D-Var system (Sandu et al., 2005; Chai et al., 2006, 2007).
The discrepancy between the available observations and model
counterparts is built into a cost functional. Optimal solutions of
model parameters such as the NOx emissions are obtained by
finding new parameters which minimize the cost functional. To
solve the minimization problems efficiently, the sensitivity of the
cost functional with respect to the control variables (parameters to

be adjusted) need to be calculated. Adjoint models provide the
most efficient way to calculate the gradients of a scalar cost func-
tional with respect to a large number of control variables (Tala-
grand and Courtier, 1987).

The cost functional J is defined as

J ¼ 1
2
½3� 1�T E�1½3� 1� þ 1

2
½c0 � cb�T B�1½c0 � cb�

þ 1
2
½y� hðcÞ�T O�1½y� hðcÞ� (2)

E, B, and O are error covariance matrices for emission scaling
factors 3, a priori (background) initial states cb, and observations in
discrete spaces, respectively. h is a projection operator, calculating
the observation vector y from the model space c. In the current
study the control variables can include both initial states c0 and
emission rates. The subscript ‘‘0’’ is used to denote variables at the
instant t ¼ 0. Assuming that the operator h is linear, h(c) can be
written as h(c) ¼ H$c. In our application, H reflects vertical inte-
gration and linear interpolation in time when constructing model
counterparts of the NO2 columns at the same measurement time.

A larger-scale bound-constrained limited-memory quasi-
Newton code, L-BFGS-B (Zhu et al., 1997) is used for the minimi-
zation. The maximum number of iterations is set to be 25. Tests that
add 25 extra iterations show little improvements in cost functional
reduction. The initial O3 background error covariance B were esti-
mated using both NMC and observational methods. Truncated
singular value decomposition (SVD) regularization is used for the
inversion of B matrix (see Chai et al., 2007 for detail). Assuming
uncorrelated emission scaling factor errors in space, the uncer-
tainty of emission scaling factor 3 was chosen as 0.5 uniformly. The
upper and lower bounds of 3 during the minimization with L-BFGS-
B subroutine were assigned as 10 and 0.1, respectively. The obser-
vation errors of NO2 pseudo-columns were given by the standard
deviations at individual grid cells during the two-month period.
Following Chai et al. (2007), the observation errors of O3 were set to
be 8 ppbv everywhere. Errors of NO2 pseudo-columns and O3

observations were assumed uncorrelated among themselves and
between each other.

The assimilation time window is chosen to be 24 h for the
following emission inversion cases. We first started our emission
inversion tests by only adjusting the NOx emission rates. Later we
included the initial ozone concentrations as control variables as
well. It is designed to eliminate the effect of the notable errors in
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Fig. 4. Comparison between SCIAMACHY NO2 columns and ‘‘model counterparts’’, before (left) and after (right) averaging in each grid cell. ‘‘Model counterparts’’ were generated by
assuming all the observations were measured on July 20, 2004.
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the initial ozone states. The most recent work by Elbern et al.
(2007) studied the effect of combining both emission rate and
initial state as control variables. Also note that we chose emission
scaling factors 3 instead of the emission rates as control parameters
(see Hakami et al. (2005); Pan et al. (2007) for detail). However, the
linear penalty applied to the emission scaling factors is prone to
low-biased results. To avoid the problem, a logarithmic function of
the scaling factors could be introduced into the cost functional.

Appendix A illustrates the association between emission
sensitivity and adjoint variables through the ‘‘continuous adjoint’’
approach. In our application, the ‘‘discrete adjoint’’ approach is
implemented to assure consistency. This is briefly described in
Appendix B. More discussion on ‘‘continuous adjoint’’ and ‘‘discrete
adjoint’’ can be found in Sandu et al. (2005).

4. Results

4.1. Results without assimilation

First we included all the measurements and assumed the two-
month observations were measured on July 20, 2004. Fig. 4 shows the

comparison between the SCIAMACHY NO2 columns and the ‘‘model
counterparts’’ on July 20, 2004. It is seen that the model mostly
overestimates the low NO2 column values (<105 molecules cm�2).
Then we considered the pseudo-columns which were generated by
averaging multiple observations during the two-month period at
each grid cell. Fig. 4 shows a good agreement between such pseudo-
observations and their ‘‘model counterparts’’. Note that the low NO2

column values were effectively removed after the averaging for the
pseudo-observations.

Fig. 5 shows model predictions of NO2 columns on July 17
(Saturday), 18 (Sunday), 19 (Monday), and 20 (Tuesday),

Fig. 5. Modeled NO2 columns on July 17, 18, 19, and 20 respectively.

Table 1
Assessment of NO2 column predictions on four different days (July 17–20, 2004)
against the SCIAMACHY pseudo-columns. Units of bias, mean error, and RMS error
are 1014 molecules cm�2.

Date Bias Mean error RMS error Correlation coefficient

July 17, 2004 13.6 25.2 41.4 0.336
July 18, 2004 8.7 18.1 29.6 0.491
July 19, 2004 11.7 17.7 28.9 0.587
July 20, 2004 6.7 14.6 33.4 0.673

T. Chai et al. / Atmospheric Environment 43 (2009) 5046–50555050
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respectively. The NO2 columns were constructed at the same time
of the day when the measurement was made. The current emission
scheme differentiates Saturdays and Sundays from weekdays, i.e., it
has 3 different temporal daily profiles. Since the NO2 columns are
dominated by the lower level NO2 concentrations, the different
NOx daily emission profiles generated significantly different NO2

columns. It is shown in Fig. 5 that NO2 predictions on July 17 and 18
are dramatically different from those predicted during the week-
days. The differences between July 19 and 20 predictions are rela-
tively small, albeit apparent. The distribution of NO2 column
predictions on the weekdays resemble that of the SCIAMACHY
observations shown in Fig. 3. Table 1 shows that the model over-
estimates the NO2 columns for all four days. Predictions on July 20,
2004 gives the best overall agreement with the SCIAMACHY
observations, showing a small bias of 6.7 � 1014 molecules cm�2,
and correlation coefficient as 0.673.

4.2. Assimilation results

The emission inversion tests are listed in Table 2. In all four tests,
the NOx emission scaling factors are adjusted. Considering the
different nature of the two major NOx sources, transportation and
power plants, we adjust the surface and elevated (above the first
level) NOx emissions with two different sets of emission scaling
factors. No temporal variation is assumed for the scaling factors.
That is, the diurnal variations of the original emissions are
preserved. In the emission inversion, the valid range of the emis-
sion scaling factors is set to be between 0.1 and 10.0.

In case EM01, NO2 columns are assimilated on July 20, 2004 with
a 24-h time window. The distributions of the NOx emission scaling

factors at the surface and upper levels are shown in Fig. 6. In most of
the domain there is little NOx emission adjustment, indicated by the
regions with the emission scaling factors close to one. Close to the
area where the states of Ohio, West Virginia, and Pennsylvania join
each other hereinafter referred as the OWP area, both surface and
elevated emissions show downward adjustment to alleviate the
model overestimation (see Figs. 3 and5). Similar emission reduc-
tions are found at Detroit and Washington DC areas for both surface
and elevated emissions as well. At the surface, there are several other
locations with NOx emissions adjusted up or down. However, these
locations are often not associated with large NOx emission sources.
To show the overall emission adjustment in the domain, we multiply
the emission scaling factors with their base emission rates. The
results are shown in Table 3. It shows that the elevated emissions are
reduced by 12.9% and the surface emissions are reduced by only
6.6%. Combined together, the total NOx emissions are reduced by
8.0% after assimilating the SCIAMACHY data. After the emission
adjustment, the model results of NO2 columns improve significantly.
As shown in Tables 1 and 3, the bias is reduced from 6.7 � 1014

molecules cm�2 to 0.6 � 1014 molecules cm�2, and root-mean-
square (RMS) error is reduced from 33.4 � 1014 molecules cm�2 to
12.2�1014 molecules cm�2. The correlation between the model and
observation also improves, with correlation coefficient increased
from 0.673 to 0.819.

The setup of case EM02 is same as case EM01, except that the
assimilation time window is shifted one day earlier. Note that there
are not only changes in the meteorological fields, but also differ-
ences in the atmospheric chemistry states. The distributions of the
NOx emission scaling factors at the surface and upper levels are

Table 2
Descriptions of data assimilation test cases.

Case Assimilation window Assimilated
observation

Control variables

EM01 0000–2400 UT, July 20, 2004 NO2 column NOx emission
EM02 0000–2400 UT, July 19, 2004 NO2 column NOx emission
IE01 0000–2400 UT, July 20, 2004 NO2 column Init O3 þ NOx emission
IE02 0000–2400 UT, July 20, 2004 NO2 column, O3 Init O3 þ NOx emission

Init: initial.
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Fig. 6. Distributions of NOx emission scaling factors from Case EM01. Left: surface; right: upper levels.

Table 3
Data assimilation results. Units of bias and RMS error for NO2 columns are
1014 molecules cm�2.

Case Emission ratio (adjusted/original) NO2 columns

Surface Elevated Total Bias RMS
error

Correlation
coefficients

EM01 0.934 0.879 0.920 0.6 12.2 0.819
EM02 0.936 0.879 0.922 5.7 15.9 0.819
IE01 0.973 0.876 0.949 �0.9 12.1 0.832
IE02 0.992 0.911 0.972 3.6 15.1 0.794
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shown in Fig. 7. Emission reductions are seen around the OWP area
and Washington DC in both surface and upper levels, similar as case
EM01 shown in Fig. 6. However, the emission reduction in the OWP
area for case EM02 is greater than that in case EM01. For the surface
NOx emissions, there are differences in the direction of the
adjustments at several locations, such as the northeast and north-
west corners of the domain. For the elevated emissions, results of
the two cases resemble each other except for slight differences in
northern Virginia and western Erie lake areas. The emission
changes over the whole domain after the adjustment for case EM02
are very close to case EM01, especially for the emissions at the
upper levels, with both cases showing a 12.1% reduction over the
domain.

In cases EM01 and EM02, only the NOx emissions are adjusted to
fit the model predictions of the SCIAMACHY NO2 columns. This
approach assumes that the only source of error is the emission, thus

it attempts to minimize the model prediction errors by adjusting
emissions only. With significant uncertainties in many other
parameters, such as initial and boundary conditions, reaction rates,
and meteorological fields, the emission adjustments may yield
faulty results due to the errors in the other model parameters. In
cases IE01 and IE02 which are listed in Table 2, we extend the
emission inversion to include the simultaneous adjustment of
additional parameters. Adjoint sensitivity shows that NO2 columns
are more sensitive to the initial concentrations of O3 than those of
the other species, including NO2. It is probably because NO2 plays
a key role in the troposphere ozone chemistry and NO2 has a short
lifetime. We chose to add initial ozone concentrations as control
variables.

Fig. 8 shows the distributions of the NOx emission scaling factors
from case IE01. Great similarity is found between Figs. 6 and 8,
especially for the elevated emissions. At the surface, the magnitude
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Fig. 7. Distributions of NOx emission scaling factors from Case EM02. Left: surface; right: upper levels.
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Fig. 8. Distributions of NO2 emission scaling factors from case IE01. Left: surface; right: upper levels.
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of the emission adjustment tends to be smaller than for the case
EM01 in most regions. As listed in Table 3, the total emission
reduction at surface over the computational domain (2.7%) is less
than half of case EM01 (6.6%). The emission reduction for IE01 at the
upper levels (12.4%) is close to the result of case EM01 (12.1%). By
allowing additional parameters to be adjusted, the model predic-
tions of NO2 are slightly better than case EM01, as indicated by model
bias, RMS error, and correlation coefficient listed in Table 3.

In case IE01, it is found that allowing the NO2 column observa-
tions to impact both the emission scaling factors and the initial O3

improves the NO2 predictions. We also explored whether assimi-
lating additional observations would improve the results. In case
IE02, ozone observations from various platforms on July 20, 2004
(see Chai et al., 2007 for details) are added to the observation set
assimilated. Same as case IE01, both the emission scaling factors and
the initial O3 concentrations are treated as control variables. Fig. 9
shows the distributions of NOx emission scaling factors yielded from
case IE02, which are quite different from the previous cases.
However, the emission reduction in the OWP and DC areas is
consistent with the previous tests. Case IE02 results show that the
NOx emissions at several grid cells need to be doubled in order for
the model to match the additional ozone observations. After inte-
grating over the computational domain, we see little change in the
NOx emissions at the surface (0.8% in reduction). At the upper levels,
the emission reduction of 8.9% over the domain is close to the previous
cases. Compared with cases IE01 and EM01 (see Table 3), IE02 gener-
ates NO2 predictions with worse bias (3.6 � 1014 molecules cm�2),
larger RMS error (15.1�1014 molecules cm�2), and smaller correlation
coefficient (0.794). This suggests that the additional O3 observations
do not help constraining the NOx emissions. It is probably due to the
high uncertainty in other parameters involved in the ozone chemistry,
such as the emissions of volatile organic compounds (VOCs).

5. Summary

In a ‘‘top-down’’ approach, SCIAMACHY NO2 column data in the
summer of 2004 are assimilated into a chemical transport model
(CTM), STEM. We demonstrate that the four-dimensional varia-
tional (4D-Var) approach allows a more general framework in
emission inversion. In this general setup, more uncertain model
parameters can be adjusted in addition to the emission fields.

Observations of different species in various formats can also be
used to constrain the inverse problem.

The test cases show that the emission inversion results are
sensitive to the problem setup. Emission scaling factors from the
last case where both ozone observations and NO2 column data are
assimilated while allowing initial ozone and NOx emissions to be
adjusted are very different from the other cases. It is probably not
beneficial to add ozone observations to constrain the NOx emis-
sions because of the great uncertainties associated with VOCs.

When only NO2 column data are assimilated, adding initial
ozone concentrations as control variables to be adjusted generates
less adjustment in NOx emissions, especially for the surface emis-
sions. All the cases show consistent results over the Ohio valley
region and Washington, District of Columbia area, revealing the
NOx emission reduction. With emissions at surface and upper
levels adjusted separately, we found the results at upper levels are
quite robust. The elevated NOx emission reduction results from
four test cases range from 8.9% to 11.4%, indicating the power plant
NOx emission reduction from 2001 to 2004. Stavrakou et al. (2008)
reported their inferred posterior NOx emissions are decreased by
35% between July 1997 and 2006 in the Ohio River Valley, with
annual change rate of �4.3% year�1 in summertime. This agrees
well with our results.

While SCIAMACHY satellite observations provide more than
adequate data for global model emission inversion, their temporal
and spatial resolutions are lacking for a regional model application
to resolve detailed grid-based emission inversion. Ignoring the
daily variability, we stacked together the NO2 columns in two
months to generate a pseudo-observation set that has the two-
month mean at each grid cell. Such pseudo-observations do not
reflect the daily variations in chemistry and physics of the tropo-
sphere. Also note that the satellite observations are usually least
sensitive to the boundary layer where most of the emissions occur.
In addition, the 24-h assimilation time window chosen for the NOx
emission inversion tests has its drawback as well. Although we
showed that the NOx emission inversion tests using two different
days generated very similar results, a full 2-month inversion
wherein NO2 columns from each day are assimilated separately is
still preferable. While our main focus here is on the formulating of
the emission inversion problem, we plan to apply such pseudo-
observations as well as the original data over a larger domain for an
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Fig. 9. Distributions of NO2 emission scaling factors from Case IE02. Left: surface; right: upper levels.
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extended time period in the future. Such emission inversion results
will be able to provide more valuable information to evaluate and
improve the ‘‘bottom-up’’ emission inventories. In the end, we
want to emphasize that the current emission inversion formulation
can be easily applied to other types of measurements, although
here we focus on the emission inversion using the SCIAMACHY NO2

columns.
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Appendix A:. Emission sensitivity via continuous adjoint

Here we first consider a simple one dimensional problem
involving only one species. By assuming constant air density, and
ignoring the advection and reaction terms, the transport equation
is further simplified and becomes

vc
vt
¼ v

vz

�
K

vc
vz

�
þ Eðz; tÞ (3)

where c ¼ c(z, t) and z ˛ (0, L), t ˛ (0, T). As we only aim to illustrate
how the emission sensitivity associates with the adjoint variables,
instead of a cost functional in the least square form as in equation
(2), we define a general response functional as

J ¼ 1
LT

ZL

0

ZT

0

gðz; tÞdtdz (4)

To derive the adjoint equation, we introduce the Lagrange
multiplier lc(z, t). Multiply equation (3) with it and integrate over
computational domain (a factor of 1/L is added). Subtract the result
from equation (4), we get

J0 ¼ J � 1
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0

lc

�
vc
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The variation of equation (5) yields

dJ0 ¼ dJ � 1
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Integrating by parts gives
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The second term on the right-hand side vanishes as the state
variable satisfies equation (3). Combine the first and the third terms
and force them to vanish. This gives the adjoint equation

vlc

vt
¼ � v

vz

�
K

vlc

vz

�
� 1

T
vg
vc

(8)

The fourth term would vanish with proper boundary conditions
(e.g., lc¼ 0 at Dirichlet boundaries). Forcing the fifth term to be zero
gives the initial condition for the adjoint variable lc at t ¼ T as

lcðz; TÞ ¼ 0 (9)

Then equation (7) becomes

dJ0 ¼ 1
L

ZL

0

½lcdc�jt¼0dzþ 1
LT

ZL

0

ZT

0

TlcdEðz; tÞdtdz (10)

This provides the variational sensitivity information for both the
initial and emission functions.

dJ0

dcðz; t ¼ 0Þ ¼ lcðz; t ¼ 0Þ; dJ0

dEðz; tÞ ¼ Tlcðz; tÞ (11)

If we introduce emission scaling factors 3 as

3ðzÞ ¼ Eðz; tÞ
E0ðz; tÞ

(12)

Note 3(z) does not to vary in time. The last term in equation (7)
would become

1
L

ZL

0

0
@ZT

0

lcE0ðz; tÞdt

1
Ad3ðzÞdz (13)

Thus, the sensitivity of the response function to the emission
scaling factor has the following form

dJ0

d3ðzÞ ¼
ZT

0

lcE0ðz; tÞdt (14)

Without detail, here we give the emission sensitivity for species
i in a four-dimensional air quality model,

dJ0

d3iðx; y; zÞ
¼
ZT

0

lciðx; y; zÞE0ðx; y; z; tÞdt (15)

In the current study, emission rates are adjusted separately
using two sets of 2-D functions, 3s(x, y) for the surface and 3e(x, y) for
higher levels.

dJ0

d3s
i ðx; yÞ

¼
ZT

0

lciðx; y; zÞ
q0ðx; y; tÞ

Dz1
dt (16)

dJ0

d3e
i ðx; yÞ

¼ 1
ztop � z1

Zztop

z1

ZT

0

lciðx; y; zÞE0ðx; y; z; tÞdtdz (17)

where Dz1 is the depth of the first layer. z1 and ztop are the height of
the first and top layer, respectively. Note that the surface area
emission q0(x, y, t) includes the first level volume emission rate, i.e.

q0ðx; y; tÞ ¼ qsurface
0 ðx; y; tÞ þ

Zz1

0

E0ðx; y; z; tÞdz (18)
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Appendix B:. Emission sensitivity via discrete adjoint

As operator-splitting technique is implemented in solving
equation (1), the emission sensitivity is only directly associated with
vertical transport. Using Crank–Nicholson time stepping for the
concentrations and forward Euler for boundaries and the surface
emissions, the forward discrete model evolving the concentration
column vector Ci from time step n to nþ1 for vertical transport reads
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2
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e1
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A
3
5 ð19Þ

where matrix A depends on the wind field, the diffusion tensor, and
the air density. B is a scalar that accounts for the top boundary. ej is
the jth column of the identity matrix. The adjoint sensitivity with
respect to emission rates can be calculated as

vJ
vqiðtnÞ ¼

 
vCnþ1

i
vqiðtnÞ

!T

$

 
vJ

vCnþ1
i

!
¼
 

vCnþ1
i

vqiðtnÞ

!T

$lnþ1
i

¼ 1
Dz1

eT
1

�
I � Dt

2
AT�tnþ1���1

lnþ1
i $Dt (20)

vJ

vEj
iðtnÞ

¼
 

vCnþ1
i

vEj
iðtnÞ

!T

$

 
vJ

vCnþ1
i

!
¼
 

vCnþ1
i

vEj
iðtnÞ

!T

$lnþ1
i

¼ eT
j

�
I � Dt

2
AT�tnþ1���1

lnþ1
i $Dt (21)

Since the vector ðI � ðDt=2ÞAT ðtnþ1ÞÞ�1lnþ1
i is already computed

during the update of l, there is little additional cost to calculate the
emission sensitivity. If we choose the non-time-varying emission
scaling factors 3i as control variables, their sensitivities can be
written as
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where Nt and Nz are total number of time steps and vertical levels,
respectively.
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