On the detection of African pollution outflow over the Atlantic Ocean using passive DOAS

Lisa K. Behrens^{1*}, Andreas Hilboll^{2,1}, Andreas Richter¹, Enno Peters^{1,3}, *Email: lbehrens@iup.physik.uni-bremen.de

- ¹ Institute of Environmental Physics/Remote Sensing, University of Bremen, Germany
- ² MARUM Center for Marine Environmental Sciences, University of Bremen, Germany

Motivation

- enhanced levels of atmospheric pollutants can be identified over the Atlantic Ocean in satellite trace gas maps ⇒ given the very short lifetimes, current knowledge cannot explain their presence far from the coasts \rightarrow vallidation using independent ground-based measurements is needed
- 0.5 0.75 VCD HCHO [10¹⁶ molec cm⁻²]

VCD CHOCHO [10¹⁵ molec cm⁻²]

igure 1: Formalhyde (HCHO) and glyoxal (CHOCHO) satellite vertical column densities (VCDs) for October 2016 measured with

OMI The red line depicts the cruise track of MSM58/2 (see 2 Project, Ship Cruise & Data)

Detection of HCHO & CHOCHO

- \rightarrow pollution close to the ground: largest dSCDs are expected for the lowest elevation angles \rightarrow pollution higher in the atmosphere: largest dSCDs
- are expected at higher elevation angles • on three/two days, a different elevation angle
- dependency can be observed for HCHO/CHOCHO dSCDs (not shown)
- \Rightarrow pollution higher in the atmosphere • 13th and 14th October: enhanced HCHO and CHOCHO values are visible in MAX-DOAS, satellite, and model data, regarding MOZART-4 (Fig. 5 & 6)
- 17th October: enhancement only visible in HCHO MAX-DOAS data (Fig. 5)
- not present in satellite and model data which are monthly means \rightarrow a single, isolated outflow event on one particular day is not distinguishable from background
- HCHO:

4

- MAX-DOAS often observed enhanced columns compared to sat. and model data (Fig. 5)
- \rightarrow high uncertainties in sat. data over unpoll. scenes \rightarrow underestimation of VCDs in sat. and model data:
- localised nature of the enhancements
- CHOCHO:
- OMI observations show enhanced columns throughout the tropics (Fig. 6)
- \rightarrow satellite data are close to the detection limit of the retrieval • MOZART-4 data are mostly close to or slightly higher than our measurements
- \Rightarrow African continental outflow of HCHO and CHOCHO can be detected on some days

Figure 5: Daily mean HCHO VCDs Lat. dependency of HCHO VCDs along the cruise track for MAX-DOAS, sat. measurements, and model data. Correlation coefficient of MAX-DOAS & MOZART-4: 0.72; MAX-DOAS & OMI: 0.80; MAX-DOAS & GOME-2B: 0.70.

niversität Bremen

- ³ DLR German Aerospace Center, Bremerhaven, Germany
- ⁴ DLR German Aerospace Center, Oberpfaffenhofen-Wessling, Germany

Project, Ship Cruise & Data Analysis

Figure 2: Research vessel (RV) Maria S. Merian A MAX-DOAS instrument was installed on board for the cruise.

Project:

- COPMAR Continental Outflow of Pollutants towards the MArine tRoposphere:
- Maria S. Merian (MSM; Fig. 2) cruise: from Ponta Delgada (Azores) to Cape Town (South Africa, Fig. 3) the campaign was part of the cruise
- conducted: 8.-25.10.2016; on the RV
- MSM58/2

Procedure:

- ship-based Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements with elevation angles from 0° (horizon) to 90° (zenith) are used for the analysis \rightarrow one scan took ~ 10 min
- continuous scans of a vertical plane towards the African continent
- data are corrected for the ship's movement (roll)
- measurements potentially contaminated by the vessel plume are excluded (rel. wind direction: 90°-270°) • only solar zenith angles (SZA) smaller than 70° are used for the analysis of HCHO and CHOCHO, because
- for lower SZA the measurement uncertainties increases

Figure 6: Daily mean CHOCHO VCDs Same as Figure 7 but for CHOCHO. Correlation coefficient of MAX-DOAS & MOZART-4: 0.55; MAX-DOAS & OMI: 0.56. MAX-DOAS CHOCHO VCDs are close to the detection limit $(1.4 \times 10^{14} \text{ molec cm}^{-2})$.

Source regions of VOC precursors 5

Figure 7: Emission sensitivity on 13.10. The red dot indicates the mid day position of the RV Maria S. Merian. The emission sensitivties in the lowest 0.5 km for particles arriving at 2.5 km altitude above the ship, integrated over 2 days backward. The black circles are fires which were detected between 10th and 12th October, taken from the FINN database. scaled with the calculated CO_2 emissions.

- emission sensitivities are simulated with FLEXPART
- 13th and 17th October: simulated air tracers originate from the African continent (Fig. 7 & 9)
- in the source regions are forests, grasslands, and fires altitudes between 1.5–3km and 2–4.5 km after 2 and 4 days
- 14th October: small sensitivity (Fig. 8) to the continent, the air
- and CHOCHO

Leonardo M. A. Alvarado¹, Anna Beata Kalisz Hedegaard^{4,1}, Folkard Wittrock¹, John P. Burrows¹, and <u>Mihalis Vrekoussis^{2,1,5}</u>

⁵ EEWRC - Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus

3

Figure 3: Cruise track Red: periods of measurement during daylight. Yellow: the measurement periods (day).

20°N

Same as Figure 7, the emission sensitivity is integrated over 4 days backward, in the lowest 1 km. The black circles are fires which were detected between 8th and 13th October.

Figure 8: Emission sensitivity on 14.10.

Sensitivity [s]

Figure 9: Emission sensitivity on 17.10. Same as Figure 7, the emission sensitivity is integradted over 4 days backward, in the lowest 0.5 km. The black circles are fires which were detected between 12th and 14th October.

reaches the ship's position after 4 days in an alt. between 1–5 km \Rightarrow volatile organic compounds (VOCs) or their precursors have to be transported over long distances from the African continent, contrary to what is expected due to the short lifetime of HCHO

6 Summary

Results from MAX-DOAS measurements

- respectively, in elevated layers
- satellite and model data

Results from the sensitivity study

- African continent

References & Acknowledgements

- Atmospheric Chemistry and Physics, 12, 2012.

- Model Development, 4, 625-641, doi:10.5194/gmd-4-625-2011, 2011.
- Ocean in the Earth System'
- Anna B. K. Hedegaard's Phd scholarship is funded by DAAD.
- We acknowledge use of MOZART-4 global model output (available at: http://www.acom.ucar.edu/wrf-chem/mozart.shtml).
- scope of the Excellence Initiative.

Method

• outflow of HCHO and CHOCHO from the African Continent to the Atlanic Ocean can be observed on three and two days,

• we found high correlation coefficients between MAX-DOAS measurements and model / satellite data

MAX-DOAS HCHO columns are often higher than both

satellite and model data, pointing to an underestimation in

• MAX-DOAS CHOCHO columns are often lower than both satellite and model data, pointing to high uncertainties

• on 13th and 17th October: the results suggest that VOCs or their precursors were transported over long distances from the

• on 14th October: the emission sensitivity to the continent is small and high to the open ocean, fires are less important

• Peters, E., Wittrock, F., Großmann, K., Frieß, U., Richter, A., and Burrows, J. P.: Formaldehyde and nitrogen dioxid over the remote western Pacfic Ocean: SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS observations,

• Rozanov, V., et al.: Radiative Transfer through Terrestrial Atmosphere and Ocean: Software Package SCIATRAN, J. Quant. Spectrosc. Rad. Transfer, 133, 13–71, doi:10.1016/j.jqsrt.2013.07.004, 2014. • Vrekoussis, M., Wittrock, F., Richter, A., and Burrows, J. P.: Temporal and spatial variability of glyoxal as observed from

space, Physical Chemistry Chemical Physics, 9, 4485-4504, doi:10.5194/acp-9-4485-2009, 2009. • Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning, Geoscientific

• This study has been funded by the University of Bremen, and by the DFG-Research Center / Cluster of Excellence "The

• We further thank the "DFG Senatskommission für Ozeanographie" for funding the travelling time on Maria S. Merian and the "Leitstelle Deutsche Forschungsschiffe" for the logistic support.

• GOME-2 lv1 data were provided by EUMETSAT; OMI lv1 data have been provided by NASA.

• FLEXPART simulations were conducted on the HPC cluster "Aether" at the Univerity Bremen, financed by DFG in the

Advances in Optical Remote Sensing of the Atmosphere and Surface III Abstract ID: 430911 A33H-3238

