
Oxygen dimer (O2∙O2) vertical profile
• known and almost invariant profile

→ precise analysis possible
• very steep profile

→ little trace gas above cloud
→ cloud effects strongly visible

Satellite data
• examine O2∙O2 observations over dark

and bright areas
• calculate VCD assuming a cloudless sky

→ cloud effects should be visible in data
→ different behaviour over bright and

dark scenes expected
• albedos: ocean 0.15, Greenland 0.90
• aerosols:

• ocean: sea salt, water soluble
• Greenland: sea salt, water soluble,

sulfate, soot
Results
• ocean shows strong cloud shielding
• Greenland and sea­ice show little

variance
→ shielding compensated by light path

enhancement
• clouds may amplify signal
→ presence of clouds may diminish or

enhance the signal or the two effects
may counter­balance and leave the
signal indifferent

Airmass factor (AMF)
• sensitivity of satellite measurement to a trace gas depends on radiative transfer

→ can be characterized by AMF
• AMF describes enhancement of the light path relative to a single vertical path through

the atmosphere
• relates slant (observed) column density (SCD) and vertical column density (VCD):

Block­airmass factor (BAMF)
• BAMF describes the vertical contributions to the AMF

→ sensitivity to trace gases at different altitudes
• integral over altitude h of the product of the normalized vertical profile n(h) of the

trace gas and the BAMF yield the AMF
→ linear approximation

Block­Airmass Factor (BAMF)

Sensitivity of satellite observations over bright
and cloudy scenes

Achim Zien (azien@iup.physik.uni­bremen.de), Andreas Richter, Andreas Hilboll, John P. Burrows
Institute of Environmental Physics / Remote Sensing, University of Bremen, FB 1, P.O. Box 330440, D­28334 Bremen

www.doas­bremen.de
• GOME­2 radiances have been provided by EUMETSAT• Parts of this project have been funded by the INTAS project and the University of Bremen

Selected References

Observed O2∙O2 Columns

Acknowledgements

Cloud Effects on the BAMF
Effects of clouds on the radiative transfer
• high albedo at cloud top

→ increased BAMF directly above the cloud
• strong multiple scattering inside cloud

→ light path enhancement leads to high BAMF
• loss of photons inside and below the cloud

→ reducing BAMF due to shielding
• high albedo cover above ground

→ photons cannot easily reach the detector
→ light path enhancement and shielding compete

depending on cloud and surface parameters
This may allow detection of small amounts of trace gases
under cloudy conditions.

Influence of albedo
• shape of BAMF strongly dependent on

albedo
→ higher photon flux boosts light path

enhancement
• high surface albedo leads to strong peak

inside the cloud
• multiple back­and­forth scattering

counteracts shielding below the cloud
Influence of vertical profile
• strong vertical variance of BAMF
→ little variance above & below cloud
→ strong local variance within cloud

• demands precise knowledge of the
vertical profile of the trace gas

Influence of viewing geometry
• high solar zenith or viewing angles lead to

high BAMF by geometry
• radiative transfer below top of cloud only

weakly dependent on geometry
• BAMF below cloud is small compared to

BAMF above cloud
→ still, the trace gas can be detected

Results
• Presence of clouds strongly perturbs the radiative transfer
• Bright surfaces below clouds significantly alter the radiative transfer
• Multiple scattering may compensate the photon­loss below and inside the

cloud
• Effects of albedo, shielding and light path enhancement compete to either

attenuate or amplify the signal
• Precise vertical profile of trace gas needed for analysis of cloudy scenes
• Effects of clouds over bright surfaces can be seen in O2∙O2 observations

Introduction
• clouds affect the remote sensing of trace gases in the atmosphere
• three competing effects occur in the radiative transfer

• albedo effect above the cloud
• shielding of trace gas within and below the cloud
• light path enhancement by multiple scattering within and below the cloud

• excluding cloudy data leads to significantly smaller data set and may introduce biases
• some phenomena, such as transport events, are typically associated with clouds and

need a proper treatment of cloudy data
• O2∙O2 allows analysis of this effect, having a known and suited vertical profile
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