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Why measure SO,? GOME-2 Instrument

o Volcanoes emitlarge quantities of ash and trace gases into the atmosphere, including SO, GOME-2 Instrument:

e Volcanic emissions occur both during eruptions and as degassing launched on MetOp-A in October 2006
e Volcaniceruptions are dangerous for local population data since January 2007
e Volcanic SO, canlead to acid rain in the troposphere and to aerosol formation in both the tro- 4 channel nadir viewing UV/visible spectrometer

posphere and for high injection altitudes the stratosphere with effects on radiation budget similarto GOME and SCIAMACHY

and cloud format_ion | | | | | firstin a series of three identical instruments
o ash and sulphuric acid from volcanic eruptions are a hazard for air traffic and early knowl- 80 x 40 km?® pixel size

edge of plume positions and strengths is relevant for air traffic control global coverage in 1.5 days
e 09:30 LT equator crossing

o satellite observations are the only way to provide continuous global data sets for monitoring
of volcanic SO,

o theyalso can provide importantinput for airtraffic control if delivered in NRT
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|dentification of volcanic Emissions

Task: Detection of volcanic SO, plumes: August 15t/ 2nd, 2008 Conclusions

¢ identification of volcanic hot-spots 80 — S0, Slant Column |7 : :
. separation from noise Nofs Trreshad | . GOI\/IE_-2 SQZC_qumns have excellent signal to noise and good coverage
o identification of even weak signals 60 cEit e Volcanicemissions can be easily detected in an automated way

e Mminimisation of false alerts

I
o

- e quantification of volcanic emissions is complicated by the strong non-linearity of the SO,

l signal forlarge columns
e Uusing individual a priori columns for the SO, references used in the retrieval for each

pixel improves the fitting quality and the retrieved columns for large signals

Approach:

e selection of values which are above 6 x RMS
of negative (= noise) signals
limitation to SZA < 80° | | | | |
e filtering for low fit quality 22 0 2 4 6 8
counting number of alerts in 5° x 5° box time [UT]
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Future work

o creation of better resolved data base of slant optical thicknesses for SO,

GOME-2 SO,-Alerts accumulated for July 2008 Results: _ _ o T
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