DPG 2014, UP 32

A multi-wavelength retrieval of tropospheric NO₂ from GOME-2

A. Richter, A. Hilboll and J. P. Burrows Institute of Environmental Physics/Remote Sensing, University of Bremen FB 1, P.O. Box 330440, D-28334 Bremen, Germany Email: Andreas.Richter@iup.physik.uni-bremen.de

Introduction

- Retrievals of tropospheric NO₂ from nadir satellite observations are based on application of the Differential Optical Absorption Spectroscopy method on UV/visible spectra
- The approach separates the spectral retrieval and radiative transfer calculations which are tabulated into air mass factors (AMF)
- The basic assumption is that the AMF does not depend significantly on wavelength and that a single AMF is thus appropriate for the conversion of the fitted slant columns (SC) to the final vertical columns (VC)
- As a result of strong Rayleigh scattering, this assumption is not really fulfilled for the retrieval of NO₂ in a layer close to the surface (see Fig. 1)
 The wavelength dependence of the AMF results in

 poorer fits if not corrected
 a possible source of information on the vertical NO₂ distribution

Sensitivity Study

Synthetic spectra were created for

Fig. 6: Altitude dependence of (AMF proxy) / NO₂ ratio in retrievals on synthetic spectra for SZA = 30° , 60° , and 75° and three typical surface albedos of 3%, 5%, and 7%.

0.2 0.2 0 420 440 440 460 Wavelength [nm] Fig. 1: Nadir ÂMF for a 1 km surface layer

of NO_2 at 60° SZA and an albedo of 0.05

Problem and Method

- in regions of very large tropospheric NO₂, the fit quality is compromised
- this leads to a low bias in data applying fit quality criteria
- the residuals indicate that the problem is linked to the wavelength dependence of the AMF (Fig. 3)

Empirical lower troposphere NO₂ x-section

10				
10				
	III — NO ₂ x-secti	on l		

Fig. 2: Example of GOME-2 tropospheric NO₂ columns over China during the heavy pollution episode on January 7, 2013. The largest NO₂ values are removed by the fit quality criterion (left)in the standard retrieval. Right: all data is shown

- Rayleigh atmosphere, no Raman scattering
 albedo constant with wavelength
- no noise
- NO₂ confined to 1 km layer at different altitudes
 DOAS retrieval for NO₂ and NO₂ AMF proxy
- The (AMF proxy) / NO₂ ratios show
- high values close to surface, low values at higher altitudes
- little variation for albedos between 3% and 7%
- systematic dependence on SZA

At large surface albedo, the fitting coefficient for the AMF proxy decreases and even gets negative (Fig. 7). This is a result of multiple scattering over bright surfaces which leads to an decrease of AMF with wavelength, inverting the effect.

Fig. 7: Albedo dependence of the (AMF proxy) / NO₂ ratio at 60° SZA

Application to GOME-2 Data

GOME-2 A NO₂ AMF proxy 2012/07/11

Fig. 4: illustration of the creation of the NO₂ AMF proxy by taking the NO₂ cross-section (red), scaling it with wavelength (blue) and orthogonalising it to the original (green)

Idea:

approximate the wavelength dependence of the NO₂ AMF for BL pollution by linearly scaling the

NO₂ cross-section

- orthogonalise the scaled cross-section to the original cross-section in order to not change the NO₂ columns retrieved (Fig. 4)
- include the NO₂ AMF proxy in the fit as additional cross-section

Results:

- for very polluted scenarios, the spectral signature of the AMF proxy is well retrieved (Fig. 5)
- the fitting residual in these pixels is reduced to the level of other fits
- the impact on computational time is small (just one more cross-section in the fit)

Fig. 8: NO₂ slant columns (left) and AMF proxy fitting coefficient (right) for a large NO₂ plume

Application to GOME-2 data shows

- clear signatures of the AMF proxy over all major pollution hot-spots (China, Europe, US, large cities) in monthly averages
- in daily values, the scatter is large outside of very polluted scenes
- for cloudy scenes, the AMF proxy is not found even if large NO₂ columns are present
- there appears to be an interference over clear water bodies

A case study over South Africa (Fig. 8) shows that

- the AMF proxy tracks the NO₂ plume
- highest NO₂ SCs are found at the end of the plume (elevated NO₂)
- highest AMF proxy values are found close to emission point (NO₂ close to surface)

Conclusions

- for satellite nadir retrievals of tropospheric NO₂, the AMF is varying in a nearly linear fashion over the spectral range used for fitting
- at very large tropospheric NO₂ columns, this can deteriorate fitting residuals if not taken into account
- a simple AMF proxy is proposed for inclusion in the retrieval
- with this AMF proxy included, the fitting quality is good also at very large pollution
- a sensitivity study on synthetic data indicates the potential to use the ratio of the fitting coefficients of the AMF proxy and the NO_2 column to identify situations where the NO_2 is located mainly in the boundary layer
- the dependence on surface albedo is small for typical values making this retrieval relatively insensitive to a priori assumptions

Fig. 5: Example of a spectral retrieval of the NO₂ AMF proxy (left) and demonstration of the improvement in the chisquare of the retrieval over China when including the additional cross-section (right)

• a first application on GOME-2 data shows some interesting potential

Acknowledgements

GOME-2 lv1 data has been provided by EUMETSAT
This study has received research funding from DLR Bonn under contract 50EE1247

Universität Bremen

Selected References

Hilboll, A., Richter, A., and Burrows, J. P.: Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments, *Atmos. Chem. Phys.*, **13**, 4145-4169, doi:10.5194/acp-13-4145-2013, 2013
Richter, A., Begoin, M., Hilboll, A., and Burrows, J. P.: An improved NO2 retrieval for the GOME-2 satellite instrument, *Atmos. Meas. Tech.*, **4**, 1147-1159, doi:10.5194/amt-4-1147-2011, 2011
Schreier, S. F., Richter, A., Kaiser, J. W., and Burrows, J. P.: The empirical relationship between satellite-derived tropospheric NO2 and fire radiative power and possible implications for fire emission rates of NOx, *Atmos. Chem. Phys.*, **14**, 2447-2466, doi:10.5194/acp-14-2447-2014, 2014
Zien, A. W., Richter, A., Hilboll, A., Blechschmidt, A.-M., and Burrows, J. P.: Systematic analysis of tropospheric NO2 long-range transport events detected in GOME-2 satellite data, *Atmos. Chem. Phys. Discuss.*, **13**, 30945-31012, doi:10.5194/acpd-13-30945-2013, 2013

see also: www.iup.uni-bremen.de/doas