Monitoring shipping emissions in the German Bight using MAX-DOAS measurements

André Seyler¹ (a.seyler@uni-bremen.de), Folkard Wittrock¹, Lisa Kattner^{1,2}, Barbara Mathieu-Üffing^{1,2}, Enno Peters¹, Andreas Richter¹, Stefan Schmolke², Andreas Weigelt² and John P. Burrows¹

DPG-Frühjahrstagung Bremen 2017, UP 5.9

 NO_2 DSCD vis

 $(1.34 \pm 1.30) \, \text{pbb}$

0.54 ppb

before 01.01.2015 sulfur content limit = 1.0%

sulfur content limit = 0.1%

after 01.01.2015

SO₂/NO₂ ratio

Jniversität Bremen*

*EXZELLENT.

¹Institute of Environmental Physics (IUP), University of Bremen, Germany

²Federal Maritime and Hydrographic Agency (BSH), Hamburg, Germany

Why measure shipping emissions?

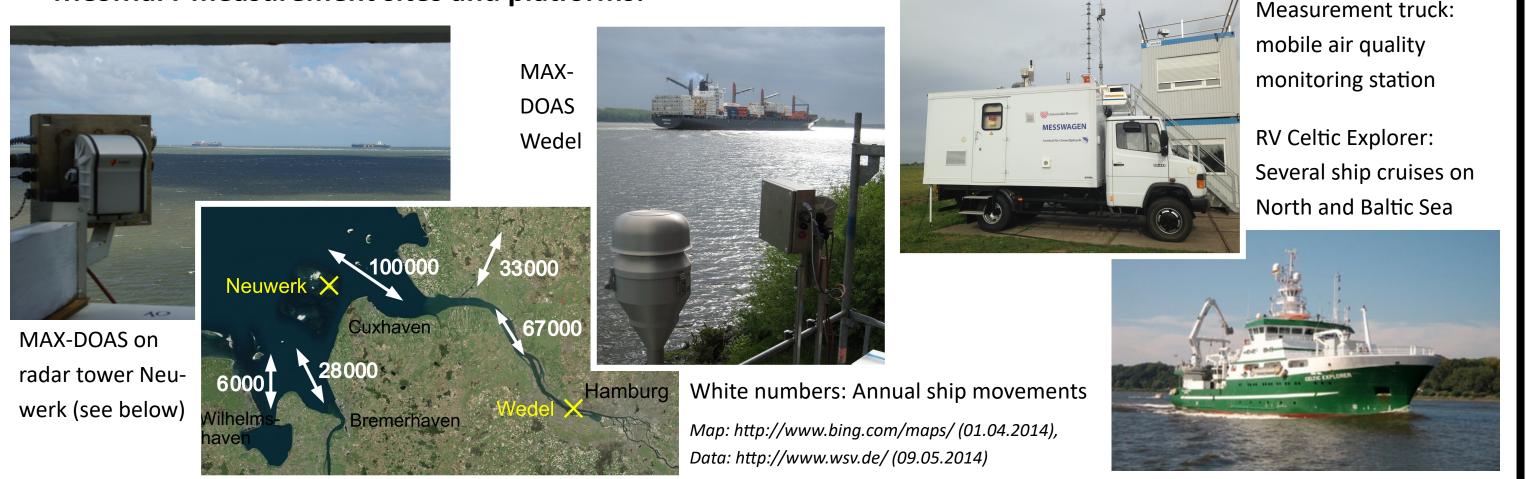
- Shipping is generally the most energy efficient transportation mode (per t per km)
- Shipping accounts for ≈ 80% of total merchandise worldwide trade volume
- Seaborne trade grows fast, despite the economic crisis
- Capacity of global merchant fleet doubled in the last decade
- ⇒ Shipping accounts for a significant part of the emissions from the transportation sector
- from ambient air)
- Emissions of SO₂ directly linked to fuel sulfur content
- Local scale: affecting air quality and harmful for human health
- Global scale: changing atmospheric composition and impact on climate

• Emissions of NO₂ from high temperature combustion (nitrogen and oxygen carbon We measure NO₂ and SO₂ emissions from ships with

Important change in existing regulations

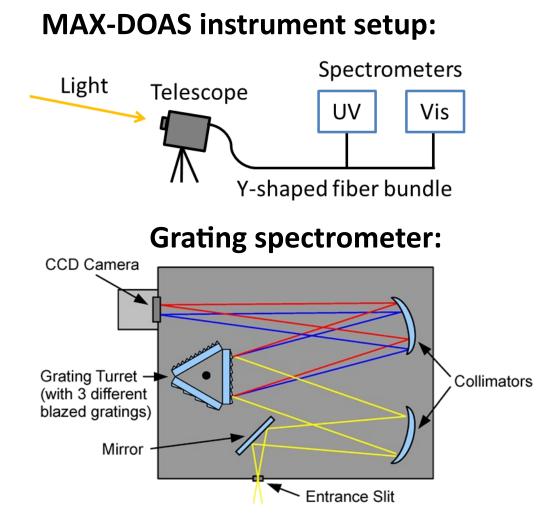
- International Maritime Organization (IMO): Convention for Prevention of Marine Pollution from Ships (MARPOL 73/78 Annex VI)
- Establishment of general Emission Controlled Areas (ECA)
- NOx emission limits for newly built engines
- Limitation of sulfur content in heavy oil fuels
- ⇒ since January 2015 only 0.1% sulfur is allowed (before: 1%) in ECAs like North Sea and Baltic Sea

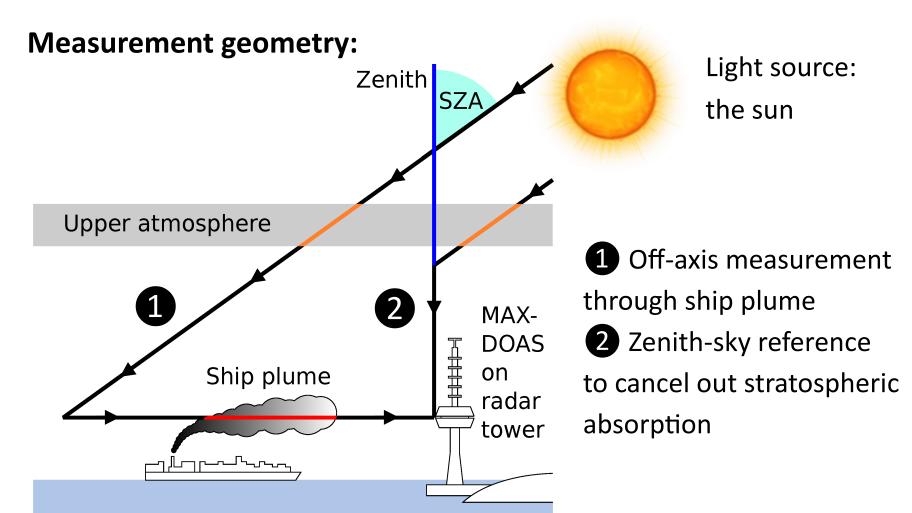
<u>GLOBA</u> 01.01.2015


technique

the DOAS remote sensing

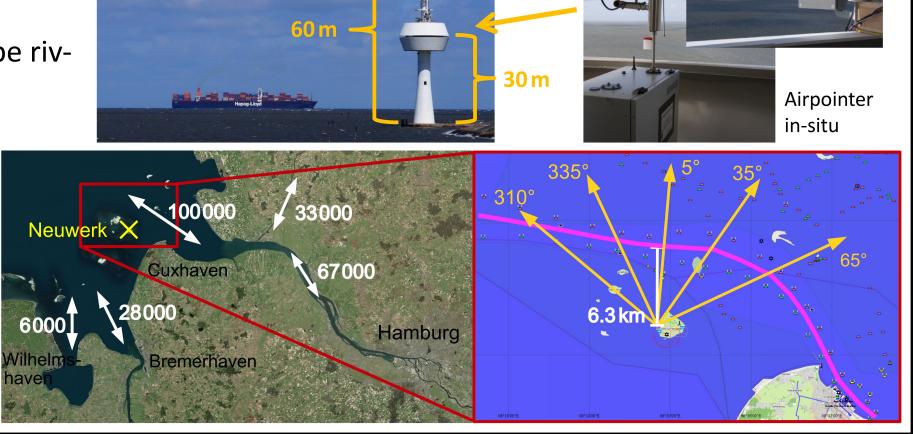
MeSMarT project


"Measurements of Shipping Emissions in the Marine Troposphere" – a project coordinated by the University of Bremen with support of the German Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und Hydrographie, BSH) and the Helmholtz Zentrum Geesthacht (HZG)


• MeSMarT measurement sites and platforms:

MAX-DOAS measurement geometry

- **DOAS** = **D**ifferential **O**ptical **A**bsorption **S**pectroscopy
- Measure spectra of back-scattered sunlight from the atmosphere, fit absorption cross sections of multiple absorbers (e.g. NO₂, O₃, H₂O, O₄) simultaneously to measured optical depth
- Retrieved quantity: Slant column density = Concentration of absorber integrated along the light path



Measurement site Neuwerk

- Neuwerk is a small island in the German Bight, close to the mouth of the Elbe river
- Close to main shipping channel into the Elbe river towards the port of Hamburg
- From July 2013 until July 2016
- Two channel MAX-DOAS (UV, vis)
- Multiple azimuthal viewing directions to cover the region and main shipping lane White numbers: Annual ship movements Map: http://www.bing.com/maps/ (01.04.2014),

Data: http://www.wsv.de/ (09.05.2014)

MAX-DOAS

Results

Measured slant column densities of NO₂ and SO₂:

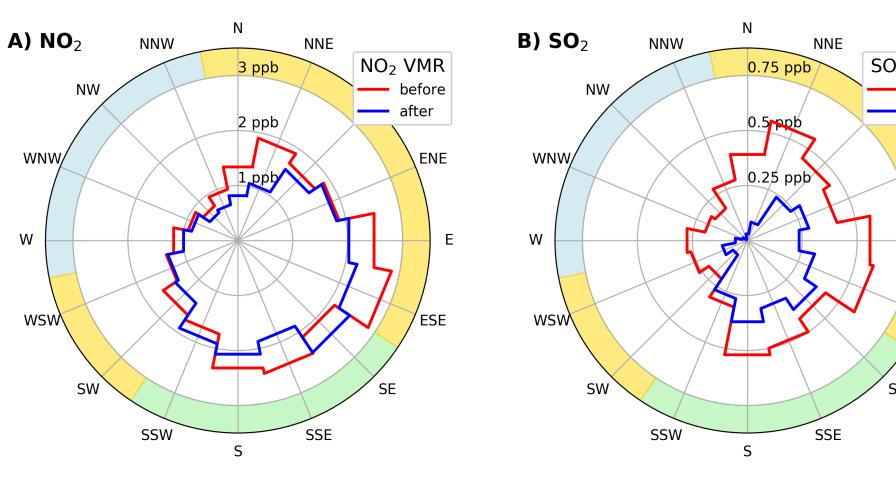
- Slant column densities of NO₂ and SO₂ measured on Neuwerk on Wednesday, 23 July 2014 in 0° elevation and -25° azimuth
- High and sharp peaks: pollution plumes emitted from ships
- Enhanced coastal background pollution in the morning
- NO₂ Peaks in azimuthal viewing directions (zoom) show movement direction of ship (east to west)

 \longrightarrow SO₂ (-25° Azim)

Classification:

- Blue sector: wind from open North Sea, shipping is the only pollution source
- Green sector: mainly land-based air pollution (traffic, industry, ...)
- Yellow sector: air mass contains shipping emissions as well as land-based air pollution (mixed origin)

Dependence of NO₂ and SO₂ pollution levels on wind direction:

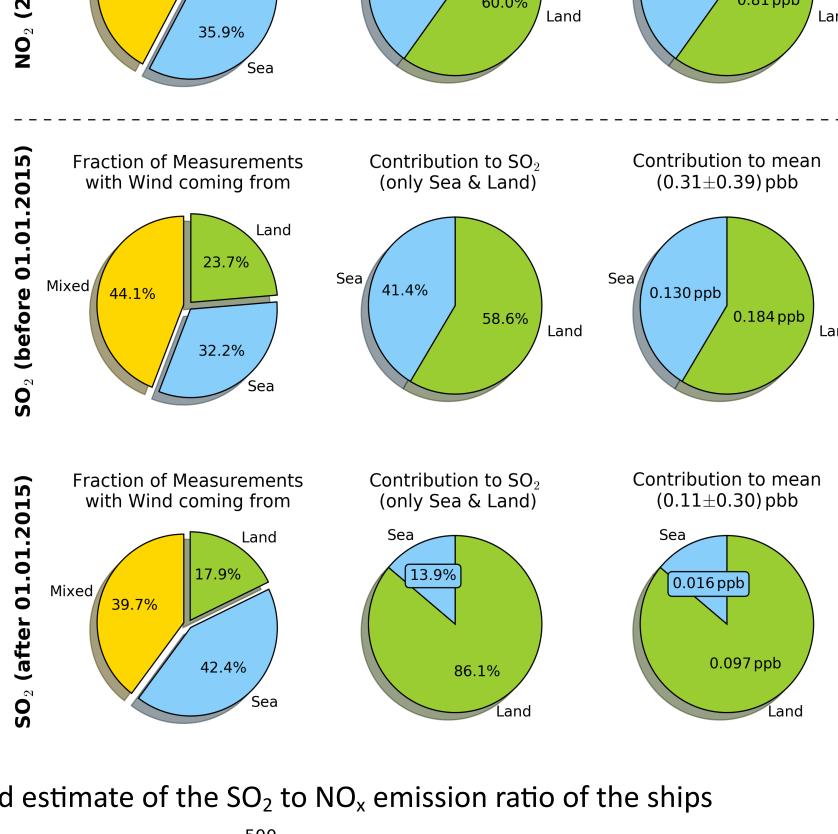

• Blue curve: after 1 January 2015

• Red curve: before 1 January 2015

- NO_2 : No regulations \rightarrow no significant change in emission

• SO₂: Allowed fuel sulfur content

- dropped from 1.0 % to 0.1 % (MARPOL 73/78 Annex VI) \rightarrow significantly lower SO₂ emissions,
- especially from the open North Sea


Contributions of ships vs. land-based pollution sources on coastal air quality on Neuwerk:

with Wind coming from

- To trade ship emissions off against landbased emissions (e.g. industry, road transport), two representative sectors of wind directions have been chosen (blue and green sectors in map above)
- Excluding data with mixed air mass origin, the contribution of shipping sources to pollution on Neuwerk is around 40% for both NO₂ and SO₂ in the years 2013 and 2014, a significant, but surprisingly small fraction
- Since January 2015, the relative contribution of shipping sources was reduced to 14%, the absolute amount decreased by a factor of 8
- Since 2015, the vast majority of SO₂ emissions can be attributed to land sources, ships play only a negligible role

SO₂ to NO₂ ratios in ship plumes

- Emission factors cannot be measured by MAX-DOAS directly
- Ratio of SO₂ to NO₂ in ship plumes gives a good estimate of the SO₂ to NO_x emission ratio of the ships
- More than 2000 individual ship plumes were identified in the data and analyzed for the SO₂ to NO₂ ratio
- Results varied between ships (different sulfur content in fuel) but on average yielded values of about 0.3 for the years 2013/2014 → good agreement with results from other studies (Diesch et al., 2013; McLaren et al., 2012)
- Implementation of stricter sulfur limits in shipping fuel lead to a large reduction in SO_2 to NO_2 ratios \rightarrow good agreement with Kattner et al. (2015), who found that 95% of the ships are sticking to the new limits

(only Sea & Land)

40.0%

Conclusions

300

- MAX-DOAS can measure emission peaks from single ships as well as background pollution
- The overall contribution of ship emissions to pollution levels at the measurement site is large but land based sources still dominate, even in the immediate vicinity of shipping lanes
- Fuel sulfur limit regulations are working: Significant reduction of SO₂ emissions since January 2015

For further information on shipping emission measurements: Comprehensive study of NO₂ and SO₂ from shipping emissions measured with on-shore in-situ instruments, talk by Lisa Kattner, UP 9.4, Wednesday 17:45, GW2 3009

Selected references

Diesch et al. (2013). Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany. ACP, 13(7), 3603–3618. Kattner, L. et al. (2015). Monitoring compliance with sulphur content regulations of shipping fuel by in-situ measurements of ship emissions, ACP, 15.17, pp. 10087–10092. McLaren et al. (2012). A survey of NO2:SO2 emission ratios measured in marine vessel plumes in the Strait of Georgia. Atmospheric Environment, 46(2), 655–658. Seyler, A. et al. (2017). Monitoring shipping emissions in the German Bight using MAX-DOAS measurements, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-1153, in review.

Acknowledgements The research project which facilitated the reported study was funded in part by the German Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und Hydrographie, BSH) and the University of Bremen. The authors thank the Waterways and Shipping Office Cuxhaven (Wasser- und Schifffahrtsamt, WSA) and the Hamburg Port Authority (HPA) for their help and support.