Inhomogeneous scene effects in OMI NO, observations

Andreas Richter, Andreas Hilboll, Abram Sanders, and John P. Burrows Email: Andreas.Richter@iup.physik.uni-bremen.de

Institute of Environmental Physics/Remote Sensing, University of Bremen, FB 1, P.O. Box 330440, D-28334 Bremen, Germany

1 Introduction

- satellite derived tropospheric NO₂ columns are an important source of information on NOx pollution
- retrieval of tropospheric NO₂ is performed in the visible part of the spectrum and reflectivity of scenes varies strongly in the presence of clouds or close to ice or snow covered surfaces
- it is well known that inhomogeneous illumination of the entrance slit of a spectrometer can lead to both wavelength shifts and distorted instrument line shape function compared to what is obtained for homogeneous illumination
- it is therefore expected that larger uncertainties are found for measurements over scenes with strong variability in reflectivity
- the effect will be more pronounced for imaging spectrometers such as OMI or S5P where the ratio between field of view (FOV) and instantaneous FOV is close to one compared to scanning instruments such as GOME or SCIAMACHY where this ratio is larger and inhomogeneities tend to be averaged out

2 OMI Observations

Figure 1: Comparison of NO₂ fitting residuals from OMI and GOME-2A covering a similar area. Both data sets were analysed using the QA4ECV settings

Figure 2: Dependence of OMI NO, fitting residuals on position in the swath. Lines are percentile values, showing the much increased scatter in the central part of the swath.

Figure 3: Dependence of OMI NO₂ fitting residuals on intensity weight within the ground pixel. Intensity weights are computed from small pixel measurements which have higher spatial resolution along track.

Acknowledgements

Comparison of fit residuals to GOME2A

- OMI fitting residuals are expected to be slightly larger than those from GOME2 because of the smaller pixel size
- there are however many fits which are much poorer than expected
- they also do not clearly show the expected dependency on scene intensity

Row Dependency

 fitting residuals are systematically larger in the centre of the swath where pixels are smaller and smaller at the edges where pixels are larger and more averaging happens

Dependence on scene inhomogeneity

- when plotting the fitting residual as function of the intensity centroid within the scene as computed from the small pixel observations which have better spatial resolution along track, a strong and nearly linear dependency is found
- => the large fitting residuals are the result of scene inhomogeneity
- Funding by the University of Bremen, and the EU-FP7 project QA4ECV are acknowledged

Universität Bremen

- GOME2 Iv1 data were provided by EUMETSAT
- OMI NO₂ v003 data was provided by NASA

Co-funded by the European Union

3 Empirical Correction

Figure 4: Empirical cross-sections determined from mean residuals of fits having large positive (top) or negative (bottom) intensity weights

Figure 5: Comparison of NO₂ fitting residuals from with (green) and without the correction

Figure 6: Dependence of OMI NO₂ fitting residuals on intensity weight within the ground pixel for the fit with (green) and without (red) correction

Figure 7: Comparison of the scatter of viewing angle normalised NO₂ slant columns. The blue curve is the NASA product v003.

Figure 8: Effect of inhomogeneous scenes on viewing angle normalised OMI NO₂ slant columns. Left: Standard QA4ECV product, middle: QA4ECV product including the three correction terms, right: NASA v003 product. Data are monthly averages for April 2007 without cloud screening. Cloud related artefacts are clearly visible in the QA4ECV product and the much more noisy NASA data. In the product with correction, only anthropogenic signals such as from the Grasberg mine in New-Guinea remain.

Correction approach

- the mean residual

Effect on residuals

- intensity weight

Effect on scatter of NO₂ columns

has reduced uncertainty

Effect on NO₂ columns

- NASA operational product
- the correction terms
- ships

www.doas-bremen.de

• one orbit over the clean Pacific is used • the mean fitting residual (per row) is determined • NO₂ slant columns are smoothed using alongtrack box-car averaging over 21 points and are prescribed in a second fit which also includes

 residuals from this fit are averaged into two pseudo cross-sections using pixels with large positive and large negative intensity weight these three pseudo cross-sections are added in the new NO₂ evaluation called "with correction"

 in the fit with the additional cross-sections, most outliers in the fitting residuals are removed and overall residuals are reduced

there is nearly no dependency remaining on

• when comparing the NO₂ columns over the tropical clean Pacific, the fit including the correction terms results in less scatter and thus

• while NO₂ column changes are small between the fit with and without correction, systematic changes can be observed over regions with persistent intensity gradients (orographic clouds, ice edges, snow)

• in these regions, artefacts are apparent in both the standard QA4ECV NO₂ product and the

these artefacts are not present in the fits using

• the magnitude of the improvements is small but in the order of magnitude of weak

anthropogenic pollution signals such as from

poster as pdf

4 Separation of effects

Figure 9: Fit factor for the two pseudo cross-sections shown in Fig. 4. The scene is dominated by the contrast between dark water and bright snow and ice on the continent. The two fit parameters differentiate between changes from dark to bright and from bright to dark. OMI flight direction is roughly from South to North.

Separation of positive and negative intensity weights

- dark.

5 Summary & Conclusions

- instrument line function of spectrometers
- inhomogeneous reflectance
- strong scene inhomogeneity from clouds
- columns is reduced
- data of the recent S5P instrument

possibly also S5P data.

Selected references

- doi:10.5194/amt-5-1319-2012, 2012.
- 45. 3652–3658, doi:10.1364/AO.45.003652, 2006.
- Meas. Tech., 2017

EGU2018-9630 **AS3.16 X5.180**

http://www.qa4ecv.eu/

two different cross-sections were created which look very similar (Figure 4) including only one of them leads to clearly poorer results than using both • evaluating the fitting factors, it can be seen that one cross-section corrects changes in intensity from dark to bright and the other one changes from bright to

apparently, these two inhomogeneous illuminations create slightly different effects

• inhomogeneous illumination can affect the wavelength registration and

this leads to poor NO₂ spectral fits in OMI data over scenes having strongly

a simple empirical correction is proposed based on mean residuals of fits with

the correction leads to much reduced fitting residuals for inhomogeneous pixels • in monthly means, some artefacts apparent in NO₂ maps over regions with persistent clouds or ice edges are removed, and overall scatter of the slant

• inhomogeneous scene effects are also present for other OMI trace gases and in

Correction for inhomogeneous scene effects appears to be necessary in OMI and

 Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H., Marchenko, S. V., Bucsela, E. J. Chan, K. L., Wenig, M. and Zara, M.: The version 3 OMI NO2 standard product, Atmos. Meas. Tech., 10(9), 3133–3149, doi:10.5194/amt-10-3133-2017, 2017.

• Noël, S., Bramstedt, K., Bovensmann, H., Gerilowski, K., Burrows, J. P., Standfuss, C., Dufour, E. and Veihelmann, B.: Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals, Atmos. Meas. Tech., 5(6), 1319–1331,

• Voors, R., Dobber, M., Dirksen, R. and Levelt, P.: Method of calibration to correct for cloudinduced wavelength shifts in the Aura satellite's Ozone Monitoring Instrument., Appl. Opt.,

• Zara, M., Boersma, F., De Smedt, I., Richter, A., Peters, E., Van Geffen, J., Beirle, S., Wagner, T., van Roozendael, M., Marchenko, S., Lamsal, L., Eskes, H., Improved slant column density retrieval of nitrogen dioxide and formaldehyde for OMI and GOME-2A from QA4ECV: intercomparison, uncertainty characterization, and trends, submitted to Atmos.