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1. Goal
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Train Deep Neural Networks (DNN) for deriving estimates of
NO2 concentration at the earth‘s surface from:

- NO2 tropospheric vertical column densities (VCDs),

- meteorological data,

- additional information,
e.g. geographical coordinates.

2. Data in South Korea

- NO2 VCDs: Radiances and irradiances, observed by the
Korean Geostationary Environmental Monitoring 
Spectrometer (GEMS)(1), are fed into the IUP NO2 retrieval
algorithm(2) to obtain vertical, tropospheric NO2 columns.
Geostationarity enables hourly measurements!

- Meteorological data: Copernicus ERA5 hourly data(3): 
Evaporation, temperature at 2 m, boundary layer height, 
downward UV radiation at the surface, UV visible albedo for 
direct radiation, total O3 column, total H2O column, skin 
temperature, soil type.

- NO2 at Earth’s surface: In-situ observations from the air
quality network of South Korea.

4. Neural Network

- The neural network is a mapping , where n is the
number of input features. 

- In order to avoid vanishing gradients in deep networks, skip
connections between hidden layers are useful.

3. Strategy

- Collect different data at every in-situ station.

- Split in-situ stations into training and test stations.

- Train DNN only on data corresponding to the training
stations.

- Validate the DNN on the test station data.
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5. First Results

- Both training and test data points from June, July and 
August 2022.

- So far, only nine relevant meteorological input features
were identified and used, see box 2.

- After filtering by qa-value>0.8:
90.000 training data points,
20.000 test data points.

(Enabled by the geostationarity of GEMS)

- Comparison of in-situ NO2 surface measurements and 
prediction of the DNN:

- Pearson correlation for all test data points: 0.65

- Mean relative error over all test data points: 0.35

6. Conclusion and Next Steps
- Increase the performance of the DNN by selecting more, or

more relevant, input features, e.g. population density, 
distance to nearest city, measurement time...

- Model performs best in regions where lots of training data
points are located. Increasing the size of the dataset may lead
to better results.

- Optimize hyperparameters, like number and width of hidden
layers, learning rate, batch size, etc.

- Use multiple, time-contiguous measurements as an input of
the neural network, not only measurements at a single
measurement time.
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