

Developing Deep Learning Methods for Surface NO, Estimation from GEMS Satellite Data (Session AS3.21, X5.82 | EGU23-9309)

Goal

Train Deep Neural Networks (DNN) for deriving estimates of NO₂ concentration at the earth's surface from:

- NO₂ tropospheric vertical column densities (VCDs),
- meteorological data,
- additional information,
- e.g. geographical coordinates.

2. Data in South Korea

- NO₂ VCDs: Radiances and irradiances, observed by the Korean Geostationary Environmental Monitoring Spectrometer (GEMS)⁽¹⁾, are fed into the IUP NO₂ retrieval algorithm⁽²⁾ to obtain vertical, tropospheric NO₂ columns. **Geostationarity enables hourly measurements!**
- **Meteorological data:** Copernicus ERA5 hourly data⁽³⁾: Evaporation, temperature at 2 m, boundary layer height, downward UV radiation at the surface, UV visible albedo for direct radiation, total O₃ column, total H₂O column, skin temperature, soil type.
- NO, at Earth's surface: In-situ observations from the air quality network of South Korea.

3. Strategy

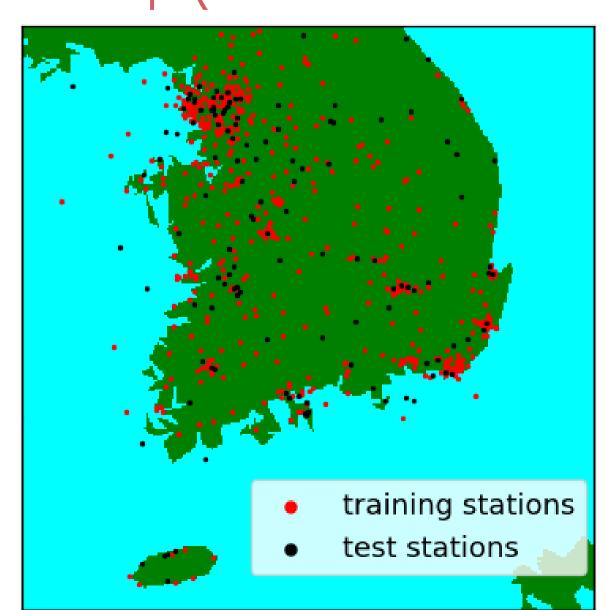
- Collect different data at every in-situ station.
- Split in-situ stations into training and test stations.
- Train DNN only on data corresponding to the training stations.
- Validate the DNN on the test station data.

Janek Gödeke¹, Peter Maaß¹, Andreas Richter², Kezia Lange², Hyunkee Hong³, Hanlim Lee⁴, Junsung Park⁴

¹University of Bremen, Center for Industrial Mathematics, Germany ²Institute of Environmental Physics (IUP), University of Bremen, Germany ³National Institute of Environmental Research, Environmental Satellite Center, South Korea

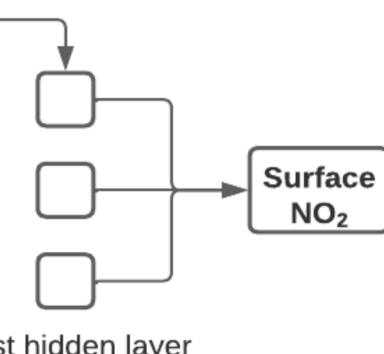
⁴Pukyong National University, South Korea

4. Neural Network The neural network is a mapping $\mathbb{R}^n \longrightarrow \mathbb{R}$, where *n* is the number of input features. In order to avoid vanishing gradients in deep networks, skip connections between hidden layers are useful. Skip connection NO₂ VCD Meteorological Data Additional Information Last hidden laver First hidden layer 6. Conclusion and Next Steps Increase the performance of the DNN by selecting more, or more relevant, input features, e.g. population density, distance to nearest city, measurement time... Model performs best in regions where lots of training data points are located. Increasing the size of the dataset may lead to better results. **Optimize hyperparameters**, like number and width of hidden layers, learning rate, batch size, etc. Use multiple, time-contiguous measurements as an input of the neural network, not only measurements at a single measurement time.



References

- (1) <u>https://nesc.nier.go.kr/</u>
- (2) A. Richter et al. (2005), DOI:10.1038/nature04092.
- (3) H. Hersbach et al. (2023), DOI:10.24381/cds.adbb2d47.

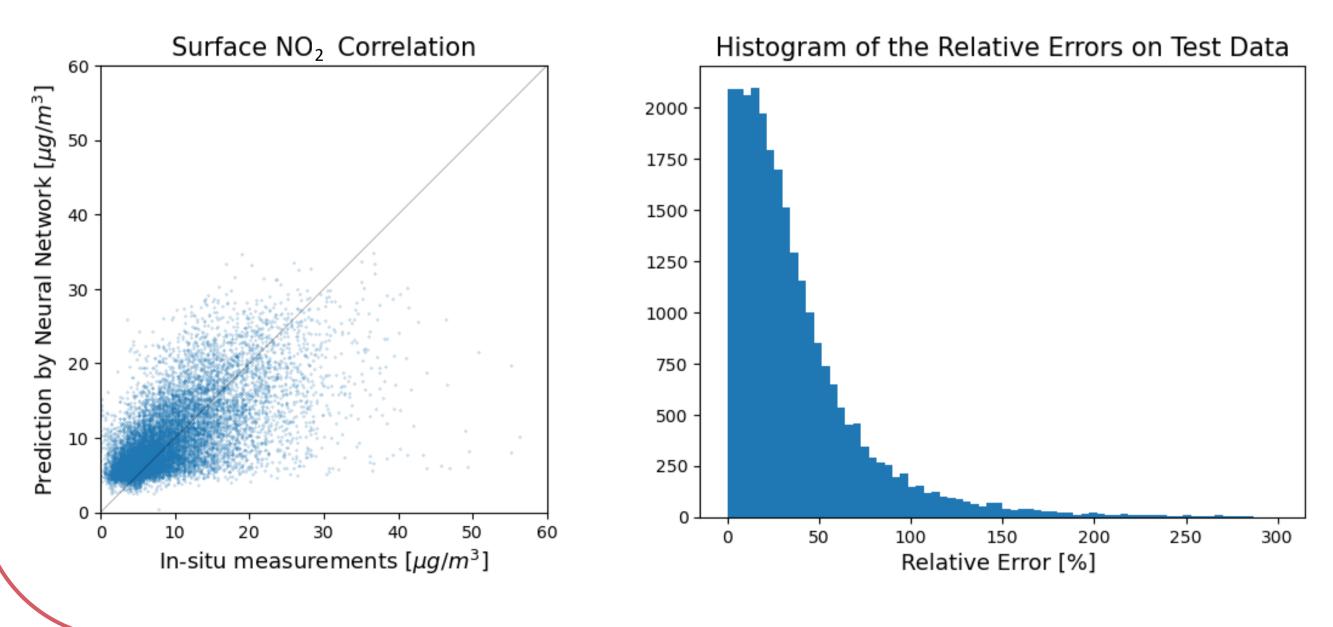


5. First Results

- Both training and tes August 2022.
- So far, only nine rele were identified and
- After filtering by qa-90.000 training da 20.000 test data p (Enabled by the geos
- Comparison of in-sit prediction of the DN



Pearson correlation



S
est data points from June, July and
evant meteorological input features used, see box 2.
-value>0.8: ata points, points. ostationarity of GEMS)
tu NO ₂ surface measurements and NN:
0.05 Mean Relative Errors at Test Stations [%] 0.6 0.6 0.4 0.2 0.0 0.0 0.0
for all test data points: 0.65

Mean relative error over all test data points: 0.35

EGU^{General} 2023