An improved tropospheric NO, product for the GEMS instrument

Andreas Richter¹, K. Lange¹, T. Boesch¹, B. Zilker¹, M. Latsch¹, L. Behrens¹, J. P. Burrows¹, S.-W. Kim², H. Hong³, H. Lee⁴, and J. Park⁴

Email: Andreas.Richter@iup.physik.uni-bremen.de ¹Institute of Environmental Physics, University of Bremen, Bremen, Germany, ²Irreversible Climate Change Research Center, Yonsei University, Seoul, Republic of Korea, ³National Institute of Environmental Research, Incheon, Republic of Korea, ⁴Pukyong National University, Busan, Republic of Korea

1 Introduction

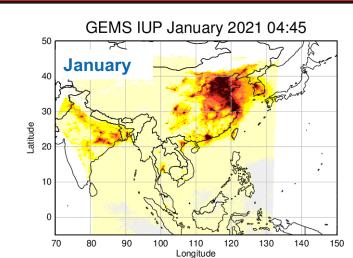
NO₂ in the troposphere

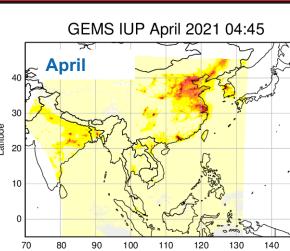
- key pollutant, produced by combustion processes, lightning, soil bacteria
- harmful for human health
- precursor of tropospheric ozone
- leads to aerosol formation and acid rain

Satellite retrievals of tropospheric NO₂

- long time series from GOME, SCIAMACHY, OMI, TROPOMI
- provide spatial distribution, trends, emissions, transport patterns
- so far only from sun-synchronous orbits => one measurement per day

The **GEMS** instrument


- first in a constellation of geostationary instruments (with TEMPO and S4)
- up to 12 measurements per day, 1 hour time resolution
- measurements over Asia, spatial resolution up to 4 x 7 km^2
- launched in February 2020


2 IUP-UB NO₂ retrieval

IUP GEMS NO, retrieval

- DOAS retrieval in a large fitting window (405 485 nm)
- Polarisation correction, destriping
- Stratosphere from STREAM (Beirle et al., 2016)
- NO₂ a priori profiles from TM5
- OMI surface reflectivity
- Cloud correction using GEMS V1 lv2 cloud data
- No aerosol correction
- No BRDF correction

3 Seasonal variation

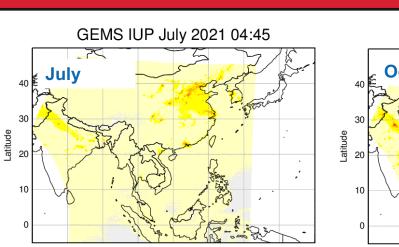
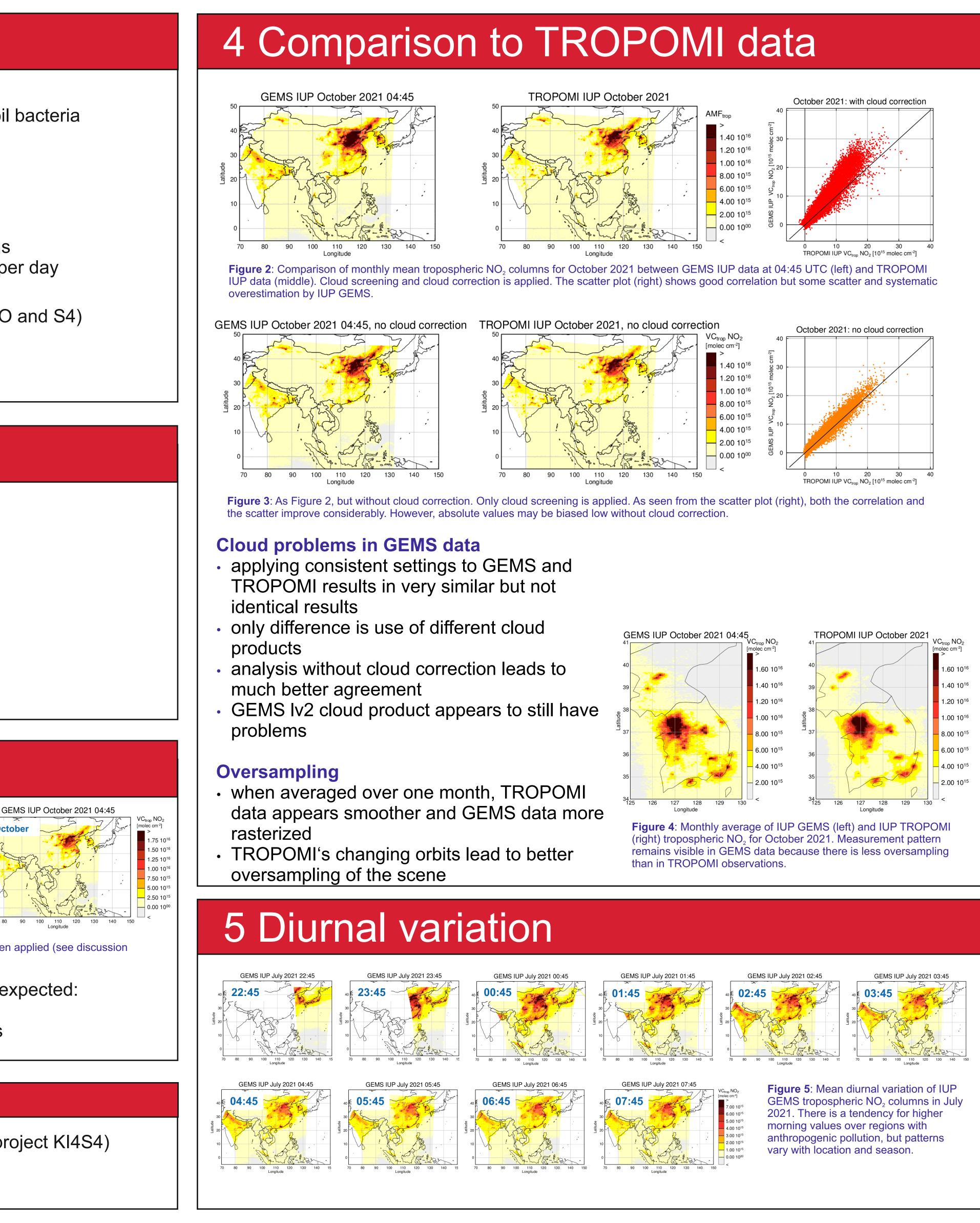


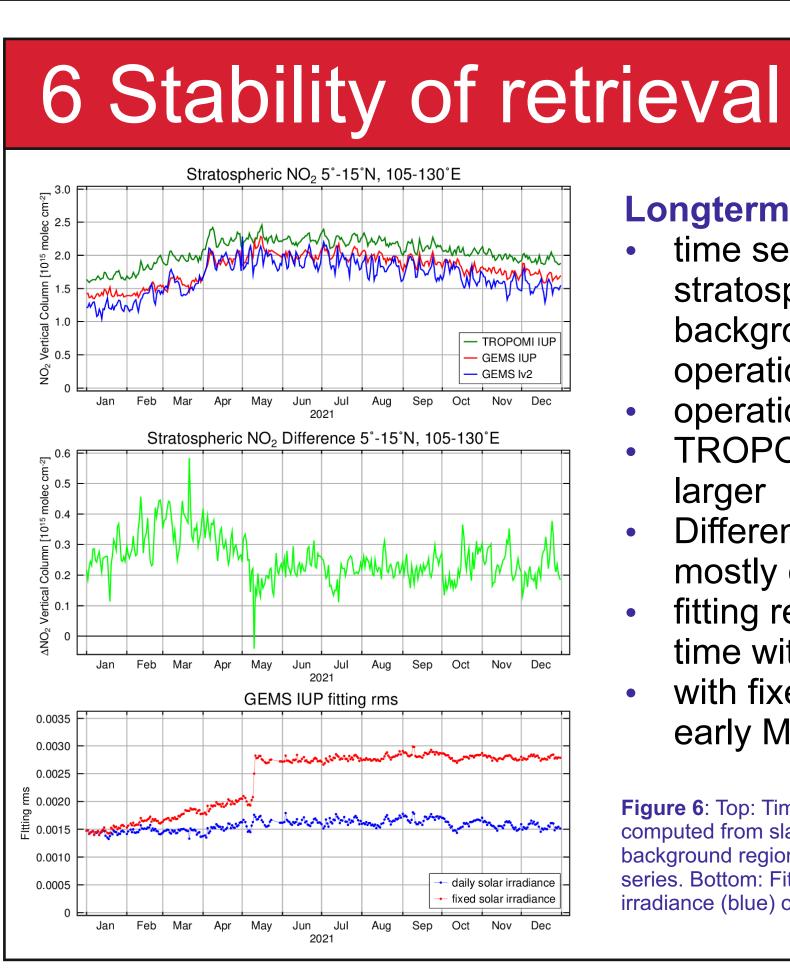
Figure 1: Seasonal variation of IUP GEMS tropospheric NO₂ columns at 04:45 UTC. No cloud correction has been applied (see discussion IN DOX #4).


Seasonal variation of GEMS IUP tropospheric NO₂ columns is as expected:

- higher values in winter, lower values in summer
- Iow background values outside anthropogenic pollution regions

Acknowledgements

- Funding by the University of Bremen and through DLR Bonn (project KI4S4)
- TROPOMI Iv1 and Iv2 data provided by Copernicus
- GEMS lv1 and lv2 data provided by NIER



www.doas-bremen.de

poster as pdf

Summary

- from space
- The IUP GEMS tropospheric NO₂ product shows Iow noise
- the expected seasonal variation
- correction
- oversampling
- good consistency over a full year

Outlook

- More tests with cloud correction are needed
- BRDF effects need to be implemented

Selected references

- doi:10.1175/BAMS-D-18-0013.1, 2020.
- 2011, 2011.

GEMS

EGU2023-8804

AS3.21

X5.83

Longterm evolution of NO₂ fit

- time series of NO₂ vertical columns with stratospheric AMF over the Pacific background region is very similar for operational Iv2 and IUP GEMS products
- operational product shows larger variability **TROPOMI IUP columns are systematically**
- larger Difference between GEMS and TROPOMI is
- mostly constant but larger in February April fitting residuals remain relatively stable over
- time with daily irradiance
- with fixed irradiance, something changes in early May => lv1 change?

Figure 6: Top: Time series of GEMS IUP, GEMS Iv2, and TROPOMI NO₂ data computed from slant columns by applying a stratospheric AMF over a Pacific background region. Middle: Difference between TROPOMI and GEMS IUP time series. Bottom: Fitting residuals of GEMS IUP NO₂ retrieval using a daily solar irradiance (blue) or a fixed irradiance (red) as background spectrum.

7 Summary & Outlook

GEMS is the first geostationary satellite providing hourly tropospheric NO₂ data

 clear diurnal patterns, depending on season and location good agreement with the IUP TROPOMI product, but only without cloud

more impact of measurement pixels than TROPOMI because of less

Effects of different a priori NO₂ profiles need to be evaluated

• Beirle, S., Hörmann, C., Jöckel, P., Liu, S., Penning De Vries, M., Pozzer, A., Sihler, H., Valks, P. and Wagner, T.: The STRatospheric Estimation Algorithm from Mainz (STREAM): Estimating stratospheric NO₂ from nadir-viewing satellites by weighted convolution, Atmos. Meas. Tech., 9(7), 2753–2779, doi:10.5194/amt-9-2753-2016, 2016.

• Kim, J. et al.: New era of air quality monitoring from space: Geostationary environment monitoring spectrometer (GEMS), Bull. Am. Meteorol. Soc., 101(1), E1–E22,

• Richter, A., Begoin, M., Hilboll, A. and Burrows, J. P.: An improved NO₂ retrieval for the GOME-2 satellite instrument, Atmos. Meas. Tech., 4(6), 1147–1159, doi:10.5194/amt-4-1147-