

Folkard Wittrock¹, Andre Daubinet³, Christoph Haisch⁴, Kai Krause¹, Denis Pöhler², Jan Poppe³, Andreas Richter¹, Markus Rieker³, and Stefan Schmitt² ¹Institute of Environmental Physics (IUP), University of Bremen, Germany ²Airyx GmbH, Heidelberg, Germany ³HORIBA Europe GmbH, Oberursel, Germany

EGU25-19146

SEICOR – a Federal Ministry for Economic Affairs and Climate Action (BMWK) funded project (03SX583A) - aims at developing a system will cover all parts of the measurements, from the instrument over data analysis of the emissions. An automated reporting to the authorities, port operators and / or ship owners is planned. Here we present some technical details of the demonstrator and first results of the test campaign which takes place since April 8, 2025 in Wedel at the river Elbe in Germany.

Introduction

- Ship emissions of SO_x and NO_x (sum of NO and NO₂) are a significant source of air pollution
- National and international regulations are in place to limit emissions (see map below) - The following new areas will require ships to comply with reduced emissions limitations: Mediterranean Sea (SO_x) , Canadian Arctic $(NO_x and SO_x)$, Norwegian Sea (NO_x and SO_x)
- Monitoring is challenging and regularly used in situ instruments are dependent on favourable winds and need regular calibration
- Active optical remote sensing such as Differential Optical Absorption Spectroscopy (DOAS) can be used to measure ship emissions independent of wind and without frequent calibration procedures
- The capabilities of active DOAS to measure ship emissions have been shown in *Krause et al. 2021* and SEICOR builds on and improves these methods

Standard Ship Fuel / Emission Control

- The exhaust plume from the ships made its way to the shore with the air flow
- In-situ measuring station determines the increase in pollutants in the exhaust gas plume
- The sulfur content of the ship's fuel, for example, is estimated from the measurement data

Advantage:

- "Standard" in-situ measuring instruments can be used
- Various gases measurable

Disadvantage:

- Dependence on the wind direction \rightarrow small number of measurable ships • Chemical conversion between the emission and the measurement location \rightarrow errors, for example with NOx
- emissions
- influence of other sources
- Only for clearly separated ships

SEICOR - Ship Emission Inspection with Calibration-free Optical Remote sensing

⁴Technische Universität München, Munich, Germany

- downriver of the port of Hamburg

- necessary gas species (NO, NO₂, SO₂, CO₂)

Folkard Wittrock folkard@iup.physik.uni-bremen.de

EGU^{General} 2025