

1. Introduction & Motivation

• The Arctic is warming more rapidly than every other region on the planet. This phenomenon is known as Arctic Amplification (Fig. 1) and it's expected to have drastic ecological consequences • Bromine has a crucial role in the atmospheric composition; In higher latitudes, during polar spring, it is released from young sea ice, blowing snow & frost flowers, and through an autocatalytic natural process known as **BrO explosion** (Fig.2), it **depletes ozone** by creating bromine oxides and consequently changes the oxidizing capacity of the atmosphere • Our goal is to **assess** the changes in the halogen atmospheric composition of the Arctic due to Arctic Amplification and link these changes to meteorological drivers & sea ice conditions

HOBr BrCl 90 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Fig. 1: Annual zonal temperature comparison to 1951 – 1980 mean [4] Fig. 2: The bromine explosion [5]

2. BrO Time-series

• In order to study the evolution of BrO over the Arctic, we use UV – VIS satellite **remote Sensing** instruments

Instrument	Platform	Time Period	Footprint	Equatorial Overpass
GOME	ERS-2	1995 – 2003	320X40 km ²	09.30
SCIAMACHY	Envisat	2002 - 2012	30X60 km² 30X30 km²	10.00
GOME-2A GOME-2B	MetOp – A MetOp – B	2007 – Present 2012 - Present	80X40 km² 40X40 km²	10.30
ΟΜΙ	EOS - Aura	2005 – Present	13X24 km ²	13.30
TROPOMI	Sentinel 5P	2017	7X7 km ²	13.30

• Spring time monthly mean total BrO VCDs lower in 2008 compared to other years both by **SCIAMACHY** and **GOME-2A**:

3. BrO Maps

• Maps provide information not only about the **temporal evolution** of BrO, but also about the **spatial distribution of the BrO**

• We observe changes in the areas where BrO plumes appear in the long run, but also during each year in the **monthly total BrO vertical column maps** below:

	March	April		March	April		March	April
96			05			14		
97		A Contraction of the contraction	06			15		
98			07			16		

 We see that BrO explosion events have become more intense (especially after 2013) in the **22 years daily total BrO vertical columns** figure:

• 1996 – 2002: **GOME** 2003 – 2008: SCIAMACHY • 2009 – 2013: **GOME-2A** • 2014 – 2017: GOME-2B

4. Conclusions & Outlook

- The annual cycle of total BrO vertical columns increased over the last 22 years • Possible causes related to arctic amplification (e.g. sea ice extent decrease, higher temperatures)
- We see more BrO explosion events during April rather than March (combination of more solar radiation and young sea ice)
- Also, the areas of the events change, expanding in the last years

Future Work:

- OMI & S5P instruments should be included in our research
- Derive tropospheric BrO from total BrO VCDs
- Link long term time-series of tropospheric BrO to driving parameters of BrO explosion (e.g. sea ice, blowing snow, temperature, wind speed, cyclone frequency, phytoplankton)

5. References & Acknowledgements

- 1. A.-M. Blechschmidt et al: An exemplary case of a bromine explosion event linked to cyclone development in the Arctic, (2016)
- 2. John P. Burrows et al: The remote sensing of tropospheric composition from *space*, (2011)
- 3. A. Richter et al: GOME measurements of stratospheric and tropospheric BrO, (2002)
- 4. <u>https://data.giss.nasa.gov/gistemp/</u>
- 5. A. E. Jones et al: BrO, blizzards, and drivers of polar tropospheric ozone depletion *events*, (2009)

This work is funded by DFG SFB TR 172, which is gratefully acknowledged