## **SOLAS 2011**

## Satellite observations of Ship emitted NO<sub>2</sub>

A. Richter, F. Wittrock and J. P. Burrows Institute of Environmental Physics/Remote Sensing, University of Bremen, FB 1, P.O. Box 330440, D-28334 Bremen, Germany Email: Andreas.Richter@iup.physik.uni-bremen.de



### Why measure shipping NOx? Results Nitrogen oxides (NOx = $NO_2$ + NO) are important trace gases GOME-2 shipping NO<sub>2</sub> 01.2007 - 10.2011 AMVER Shipping Density VC NO<sub>2</sub> in the troposphere. [molec cm<sup>-2</sup> They are a key component in tropospheric ozone formation. 40 • Through reaction with OH, they form HNO<sub>3</sub> contributing to 8.0 10<sup>13</sup> acidification. 7.0 1013 20 6.0 10<sup>13</sup> Ships emit large amounts of nitrogen oxides into the http://www.hapag-loyd.com/images/press\_and\_media/ marine boundary layer. 5.0 10<sup>13</sup> SCIAMACHY shipping NO<sub>2</sub> 01.2004 - 10.201 photo library/BremenExpress01 print.jpg They change the chemistry in remote regions and create health hazards when operat-4.0 10<sup>13</sup> ing close to coasts. 3.0 10<sup>13</sup> As the amount of goods transported increases, so do emissions from ships. 2.0 1013

Ship emissions are currently not strongly regulated but legislation will change in the coming years.

## Instruments and Retrieval

### **SCIAMACHY:**

- data since August 2002
- 60 x 30 km<sup>2</sup> pixel size
- global coverage in 6 days
- 10:00 LT equator crossing

### GOME-2:

- data since January 2007  $80 \times 40 \text{ km}^2$  pixel size
- global coverage in 1.5 days
- 09:30 LT equator crossing
- OMI:
- data since October 2004
- $13 \times 24 \text{ km}^2 \text{ min. pixel size}$
- global coverage in 1 days
  - 13:40 LT equator crossing

### **DOAS Analysis:**

• 425-450 nm (SCIAMACHY) and 425-497 nm (GOME-2) fitting window

### **Stratospheric Correction:**

reference sector over the Pacific (180° - 220° E)

### **Airmass Factors:**

- assumption of a 600 m well mixed boundary layer with  $NO_2$
- no correction for aerosol impacts

### **Cloud treatment:**

only filtering for values with cloud fraction below 20% using FRESCO data, no further correction

### **Filtering:**

- high pass filter using boxcar smoothing over +/- 1.8° latitude and longitude
- masked to data over water only



Figures: GOME-2 shipping signal (no cloud filtering applied) compared to AMVER ship densities (top right) and SCIAMACHY shipping NO<sub>2</sub> (bottom right).

### **Observations:**

- $NO_2$  from international shipping can be detected as distinct lines of enhanced  $NO_2$  in the GOME-2 observations from Europe through the Mediterranean, the Suez Channel, the Red Sea towards India, Indonesia and then China and Japan. The shipping lane around Africa can also be distinguished as well as shipping emissions in the Black Sea.
- Similar patterns are found in SCIAMACHY (and OMI) data but with larger noise.
- The observed pattern is similar to that reported from the AMVER shipping density. However, interestingly in the most recent AMVER data, the shipping lane to the Persian Gulf is much closer to the coast than suggested by the long-term average of the satellite data

### **Temporal Changes:**

- Changes in shipping emissions are expected in response to varying ship transport volume
- Monthly shipping NO<sub>2</sub> observations in the strongest shipping lane in the Indian Ocean show large variations but good consistency between SCIAMACHY and GOME-2
- A 12 month running average suggests a slow increase from 2004 to 2008 with a sharp decrease towards mid 2009 and a subsequent increase
- This could be related to reduced shipping activities during the economic crisis
- The temporal evolution agrees with OMI data, the





NO<sub>2</sub> Shipping Signal over Inidan Ocean (12 months)

| 6 1 |      |             | 1 |  |  |  |
|-----|------|-------------|---|--|--|--|
| 0   | Π.   |             |   |  |  |  |
| -2] |      | - SCIAMACHY |   |  |  |  |
| ~   | - 11 |             |   |  |  |  |

## Cloud effects

### **Expectation:**

Clouds are expected to have a large impact on the shipping NO<sub>2</sub> signal, mainly by shielding it from the satellite view

### **Analysis**:

Data sets with different cloud fraction thresholds have been compared. FRESCO cloud fraction from the operational GOME-2 Iv1 data was used

### **Observations:**

There is a clear effect but it is not very large for small cloud fractions. Individual measurements are larger without clouds but the average is not much affected.



Figure left: Cloud threshold dependence of area marked in red in figure on the right. The reduction in NO<sub>2</sub> when using all data is only 20%, much less than



GOME-2 shipping NO<sub>2</sub> 2007 - 2009: cc < 20%



latter having smaller absolute values, presumably as result of the noon overpass time

**Figure:** Shipping NO<sub>2</sub> in the Indian Ocean. The difference in NO<sub>2</sub> tropospheric columns between the region from 82°E - 95°E, 5°N - 7°N and the same longitude range but from 4°N - 5°N is shown. OMI data are based on NASA collection 3 total slant columns followed by the same analysis as described for SCIAMACHY and GOME-2 data.

In the lower figure, a 12 month moving average was applied to the data.



## Conclusions and future work

### Conclusions

- GOME-2 NO<sub>2</sub> provides excellent signal to noise for studying ship emissions
- In addition to the ship tracks reported from GOME, SCIAMACHY, and OMI data, the shipping lane from Europe around Africa to Indonesia can now be detected
- There is indication for changes in shipping NOx emissions linked to overall increased transport volume and reduction during the economic crisis but uncertainties are still large
- The effect of clouds on the retrieval appears to be relatively small for cloud fractions below 30%

### **Future work**

More shipping lanes need to be analysed quantitatively, the impact of meteorology and transport needs to be investigated and the striping in GOME-2 and OMI data should be further reduced



thresholds (< 5%, < 20%, no cloud screening). While the improvement in SNR is evident, there is no large reduction in NO<sub>2</sub> signal.

### Acknowledgements

- GOME-2 radiances have been provided by EUMETSAT and DLR
- OMI Slant Columns have been provided by NASA
- AMVER shipping densities have been provided by the US Coast Guard
- This project has been funded by the University of Bremen

# Universität Bremen

### **Selected References**

Beirle, S., et al., Estimate of nitrogen oxide emissions from shipping by satellite remote sensing, Geophys. Res. Lett., **31**, L18102, doi:10.1029/2004GL020312, 2004 Franke, K., et al., Ship emitted NO2 in the Indian Ocean: comparison of model results with satellite data, Atmos. Chem. Phys., 9, 7289-7301, 2009 Koelemeijer, R. B. A., P. Stammes, J. W. Hovenier, and J. F. de Haan, A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment, J. Geophys. Res. 106, 3475-3490, 2001 Marbach, T. et al., Satellite measurements of formaldehyde from shipping emissions, Atmos. Chem. *Phys.*, **9**, 8223-8234, 2009 Marmer, E., et al., What can we learn about ship emission inventories from measurements of air pollutants over the Mediterranean Sea?, Atmos. Chem. Phys., 9, 6815-6831, 2009 Richter, A., et al., Satellite measurements of NO2 from international shipping emissions, Geophys. Res. Lett., **31**, L23110, doi:10.1029/2004GL020822, 2004 Richter, A., Begoin, M., Hilboll, A., and Burrows, J. P.: An improved NO2 retrieval for the GOME-2 satellite instrument, Atmos. Meas. Tech., 4, 1147-1159, doi:10.5194/amt-4-1147-2011, 2011

### see also: www.iup.uni-bremen.de/doas