Seminar Physik und Chemie der Atmosphäre

Freitag, den 10. 1. 2003

Ein verbessertes troposphärisches NO₂ Produkt von GOME

Hendrik Nüß

Institut für Umweltphysik und Institut für Fernerkundung Universität Bremen

Übersicht

Einleitung:

- Bedeutung von NO₂ als Spurengas
- GOME Experiment
- DOAS Methode
- Beobachtungsgeometrie
- Retrieval

Hauptteil:

- Verbesserung des Retrievals
- Block Luftmassen Faktoren
- Ergebnisse
- Ausblick

Troposphärisches NO₂

Quellen

- Emission des Erdreichs
- Blitze
- Verbrennungsprozesse
 - Heizung
 - Verkehr
 - Industrie
 - Biomassenverbrennung

Wirkung

- verursacht sauren Regens (mit SO₂)
- mobilisiert Schwermetalle und Al (als NO₃⁻)
- bildet troposphärisches Ozon (photochemischer Smog)

NO₂ – Messung mit GOME

- Global Ozone Monitoring Experiment an Bord des Satelliten ERS-2
- UV/vis Spektrometer (230 800 nm, Auflösung 0.2 0.4 nm)
- Bodenpixel Größe 40 x 320 km² (40 x 960 km²)
- Globale Bedeckung (äquatorial) alle drei Tage
- Neben Ozon sind auch O₂, H₂O, NO₂, SO₂, HCHO, BrO und OCIO messbar

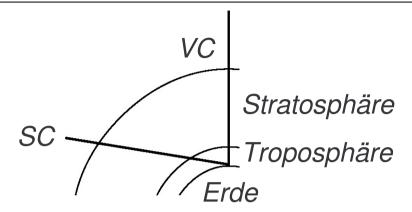
DOAS Methode

Differentielle Optische Absorptions – Spektroskopie

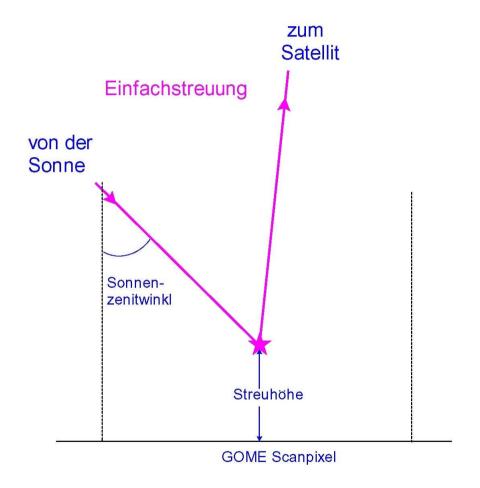
- Nur schmalbandige Strukturen des Spektrums werden für die Bestimmung des Absorbers verwendet
- **Breitbandige** Anteile des Spektrums, die durch Rayleigh- und Mie-Streuung entstehen, werden als Polynom abgezogen

DOAS Gleichung

$$\ln \frac{I_0(\lambda)}{I(\lambda)} = \sum_i \sigma_i(\lambda) \cdot S_i + \sum_{\rho} a_{\rho} \lambda^{\rho}$$

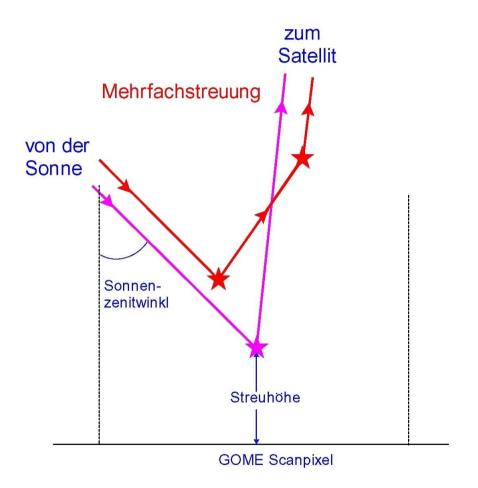

- Die Extinktion von Licht in Materie folgt dem Lambert-Beer-Gesetz
- Die gemessene Intensität $I(\lambda)$ wird mit der eingestrahlten Intensität $I_0(\lambda)$ verglichen
- Das Polynom beschreibt den breitbandigen Anteil des Spektrums
- Die schrägen Säulen (S_i) verschiedener Absorber (mit bekannten Absorptionsquerschnitt σ_i) können parallel bestimmt werden

Strahlungstransfer und vertikale Säulen



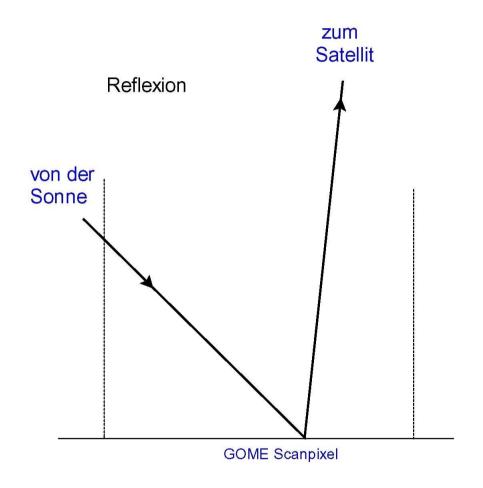
- Der Weg des Lichts durch die Atmosphäre wird mit einem Strahlungstransfer-Modell simuliert
- Ergebnis ist der Luftmassen Faktor, der die Absorption bei verschiedenen Sonnenzenitwinkeln gewichtet
- Die vertikale Säule (VC) ist die vertikale Dichte des Absorbers

$$VC = \frac{SC}{LMF} = \int \rho(z)dz$$


Geometrie

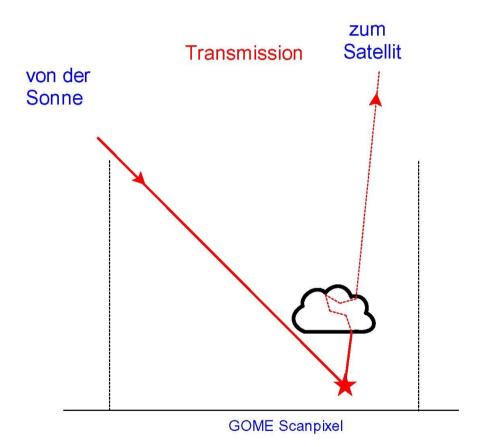
Einflussgrößen auf das Retrieval

Sonnenzenitwinkel



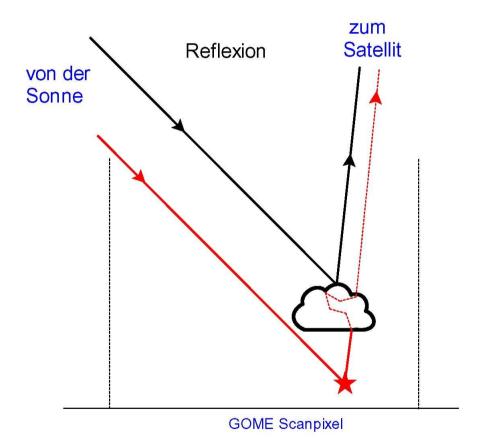
Streuung

- Sonnenzenitwinkel
- Streuhöhe



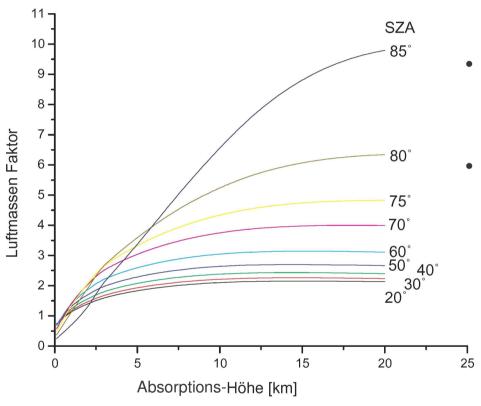
Reflexion

- Sonnenzenitwinkel
- Streuhöhe
- Albedo



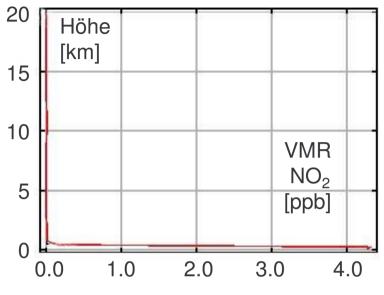
Transmission durch Wolken

- Sonnenzenitwinkel
- Streuhöhe
- Albedo
- Wolkendichte

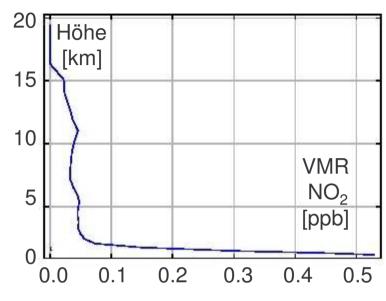

Reflexion an Wolken

- Sonnenzenitwinkel
- Streuhöhe
- Albedo
- Wolkendichte
- Wolkenbedeckung und -höhe

Höhenabhängigkeit der Empfindlichkeit



- Je größer der Sonnenzenitwinkel desto stärker die Höhenabhängigkeit
- In kleinen Höhen geht der Luftmassen Faktor gegen Null – die Empfindlichkeit der Messung auch



Vertikale Verteilung des NO₂

NO₂-Profil über anthropogenen Quellen

NO₂-Profil über natürliche Quellen

Die NO2 Profile sind von den Quellen und ihren Orten abhängig

- anthropogene Quellen: Das gesamte NO₂ ist in den untersten Schichten, dort ist die Messempfindlichkeit klein – kleiner LMF ist erforderlich
- natürliche Quellen: Die Höhenverteilung gleichmäßiger großer LMF erforderlich.

Atmosphärische Modelle

OSLO CTM-2

- globales troposphärisches 3D Chemie- und Transportmodel
- Auflösung: 2.8° x 2.8° mit 40 Schichten
- entwickelt von Universitetet i Oslo, Norge

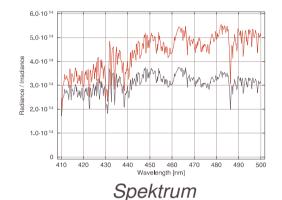
- MOZART (Model of OZone And Related Tracers)
 - globales troposphärisches 3D Chemie- und Transportmodel
 - Auflösung: 2.8° x 2.8° mit 31 Schichten
 - entwickelt von
 - National Center of Atmospheric Research in Boulder, Colorado
 - General Fluid Dynamics Laboratory, Princeton, New Jersey
 - Max-Planck-Institute f
 ür Meteorologie, Hamburg, Deutschland

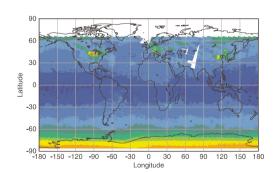
Atmosphärische Modelle

TOMCAT

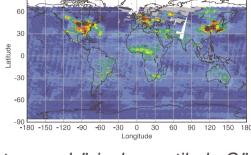
- globales troposphärisches 3D Chemie- und Transportmodel
- Auflösung: 2.8° x 2.8° mit 31 Schichten
- entwickelt von
 - University of Leeds, UK
 - Cambridge University, UK
 - Meteo-France, Tolouse, France.

SLIMCAT

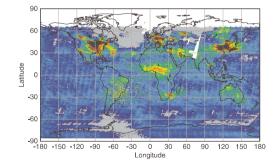

- globales stratosphärisches 3D Chemie- und Transportmodel
- Auflösung: 5° x 7.5° mit 18 Schichten
- entwickelt von
 - University of Leeds, UK
 - Cambridge University, UK
 - Meteo-France, Tolouse, France.



Retrieval


schräge Säule

Abschätzung des stratosphärischen


NO₂ - Anteils

- 1 SZA
- 1 Albedo
- 1 Aerosole
- 1 Wolken

troposphärische vertikale Säule

troposphärische schräge Säule

Standard Luftmassen Faktor

Probleme

- vertikales Profil nicht aus der Messung zugänglich
- 2.5 d Strahlungstransfer-Rechnung für einen Tag mit Modellauflösung auf einem Standard-PC

Daher bisher

Verwendung eines Standard Luftmassen Faktors

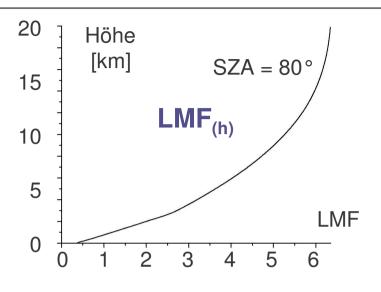
Verbesserung des Retrievals durch

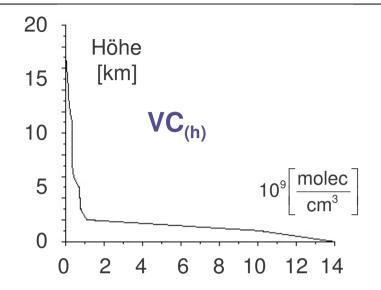
- Profil-Informationen aus Atmosphärischen Modellen
- Ersatz der Strahlungstransfer-Rechnung durch tabellierte Werte, die Block Luftmassen Faktoren

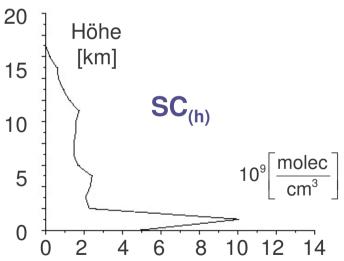
Block Luftmassen Faktor

- Annahme: Die Atmosphäre ist optisch dünn bezüglich des Absorbers
- Die Atmosphäre wird in Schichten zerlegt
- Für jede Schicht wird ein individueller LMF, berechnet
- Für die schräge Säule gilt:

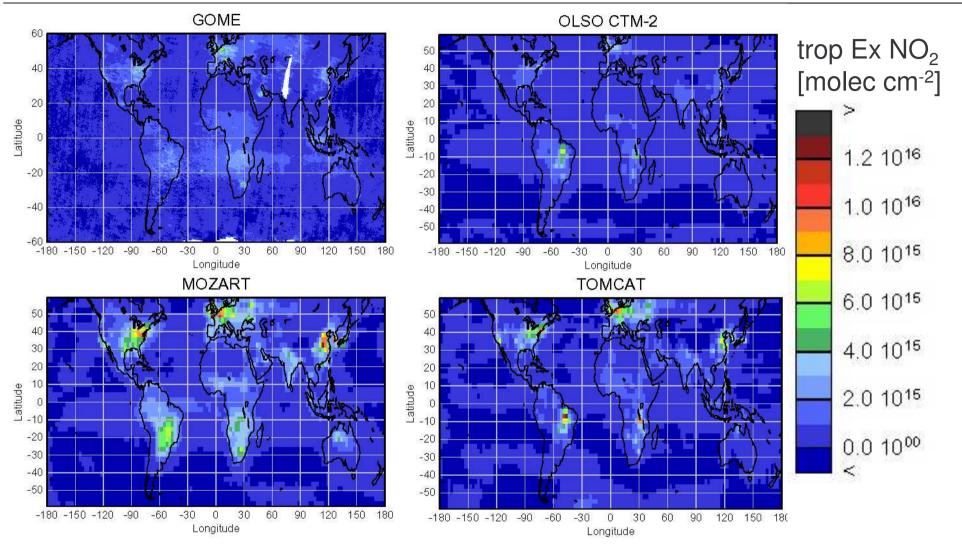
$$SC = \sum_{i} LMF_{i} \cdot VC_{i}$$


- Die LMF_i müssen berechnet für unterschiedliche
 - Bodenhöhen (Karte)
 - Sonnenzenitwinkel (Beobachtungsgeometrie)
 - Aerosole (Modell-Emissionsgebiete)
 - Albeden (GOME-Daten)
 - Wolkenbedeckungen (GOME-Daten, FRESCO)





Block Luftmassen Faktor



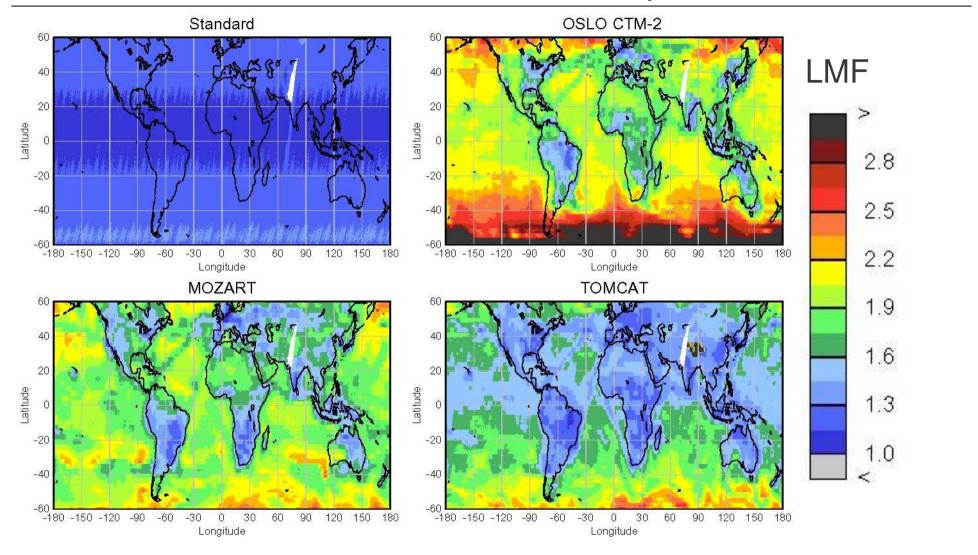
$$LMF = \frac{SC}{VC} = \frac{\sum_{i} VC_{i} \cdot LMF_{i}}{\sum_{i} VC_{i}}$$

Troposphärischer NO₂ – Exzess September 1997

Vergleich Modelle vs. Messung

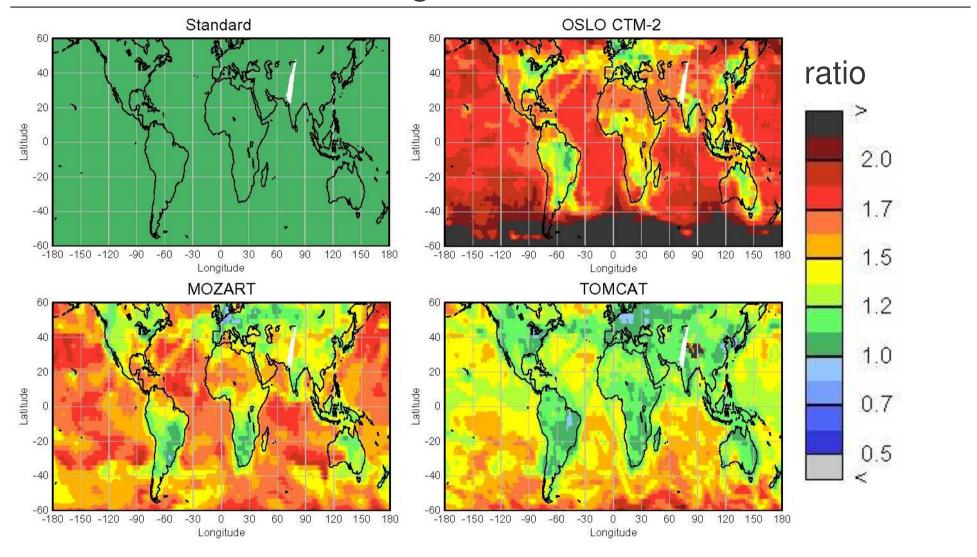
MUSTER

- Modelle gehen von ähnlichen anthropogenen Quellen aus
- OSLO CTM-2 und TOMCAT stimmen auch bei natürlichen Quellen gut überein
 - gleiche Emissionskataster
- Alle Modelle unterscheiden sich vom Standard-Retrieval


WERTE

- Modelle durchgängig höher als GOME
- OSLO CTM-2 zeigt die beste Übereinstimmung mit GOME
- MOZART und TOMCAT doppelt so groß wie GOME
 - halb so hohe Depositions-Geschwindigkeit wie in OSLO CTM-2

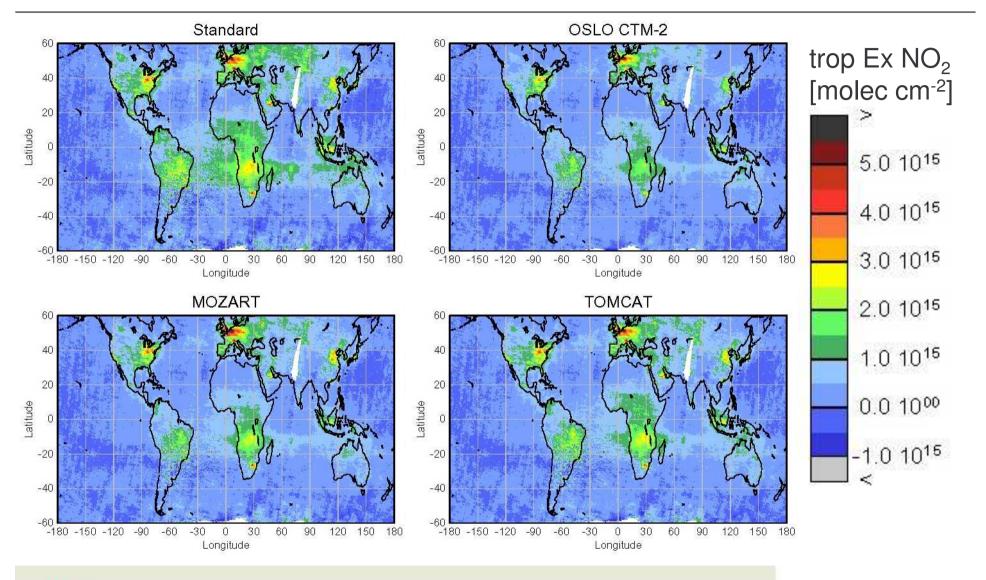
Mittlere Luftmassen Faktoren September 1997


Vergleich der Luftmassen Faktoren

- Block Luftmassen Faktoren über Wasser größer als über Land
- Block LMF im allgemeinen größer als Standard LMF
- Über dem Atlantik sind die Schiffs- und Flugzeugrouten klar auszumachen.
- Oslo CTM-2: Hohe Werte in hohen Breiten haben wenig Einfluss auf das Retrieval, da Flächen klein und zumeist unter das Wolkenkriterium fallen
- Je nach Block LMF sind völlig unterschiedliche Werte zu erwarten, da
 - das Retrieval linear vom LMF abhängt und die
 - Block LMF um bis zu 200% variieren

Relative Änderung der Luftmassen Faktoren

Einfluss des Modells auf den Luftmassen Faktor


Das Retrieval ist abhängig vom jeweiligen Atmosphären-Modell

- Die LMF über Wasser sind stets hoch (geringer Einfluss auf das Retrieval, da über Wasser kaum troposphärisches NO₂)
- Emissionsgebiete haben, je nach NO₂-Profil, unterschiedliche LMF
 - Biomassenverbrennung → große LMF ([NO₂] im Profil verteilt)
 - Verbrennung fossiler Brennstoffe → kleine LMF ([NO₂] bodennah)

Einfluss des Luftmassen Faktors auf das Retrieval

Einfluss des Luftmassen Faktors auf das Retrieval

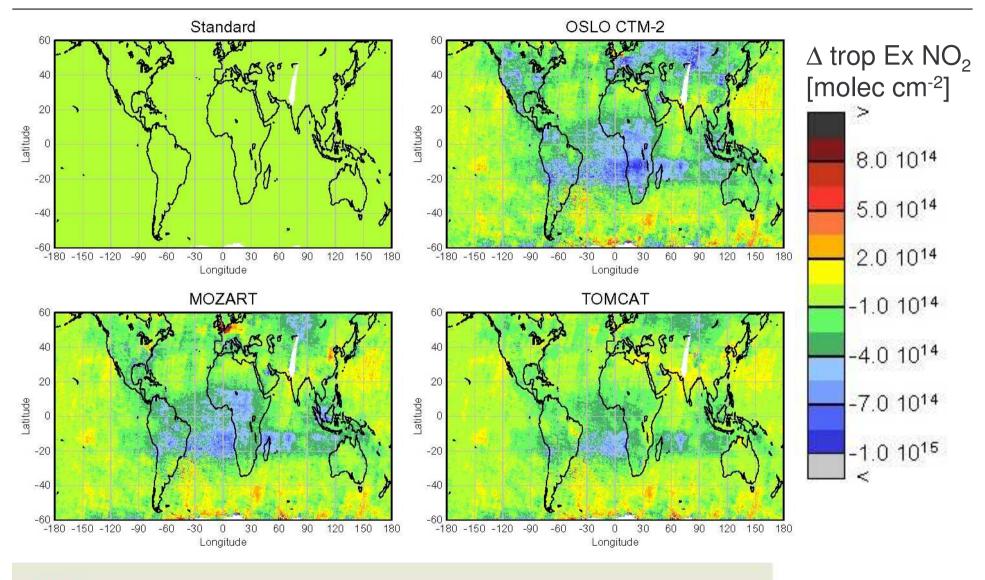
GOME-Retrieval mit Standard Luftmassen Faktor

- höhere Werte über Gebieten mit natürlichen Emissionen
- höhere Werte über Südatlantik und Indischem Ozean

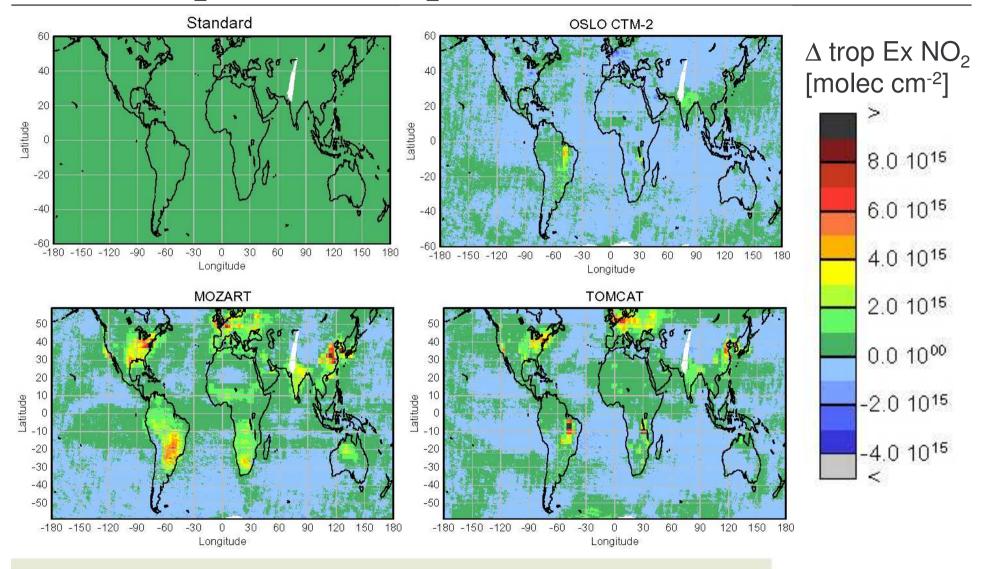
GOME-Retrieval mit MOZART- und OSLO-Block Luftmassen Faktor

- höhere Werte über Gebieten mit anthropogenen Emissionen
- niedrigere Werte über Gebieten mit natürlichen Emissionen
- niedrigere Werte über Südatlantik und Indischem Ozean

GOME-Retrieval mit TOMCAT-Block Luftmassen Faktor


- ähnliche Werte über Gebieten mit anthropogenen Emissionen
- niedrigere Werte über Südatlantik und Indischem Ozean

Δ Retrieval für die LMF



NO₂ Modell – NO₂ Retrieval mit Block LMF

Selbstkonsitenz

OSLO CTM-2 Modell

- allgemein gute Übereinstimmung von Modell und Retrieval
- über anthropogenen Quellen ist das Retrieval höher als das Modell

TOMCAT

 über anthropogenen Quellen ist das Modell wesentlich h\u00f6her als das Retrieval

MOZART

über allen Quellen ist das Modell wesentlich höher als das Retrieval

Ergebnisse

- Für jeden Messpunkt und für jeden Tag wird ein individueller LMF auf Grundlage der Modell Profile bestimmt
- Die globale Bestimmung der LMF f
 ür einen Tag < 1s
- Das Retrieval hängt stark vom verwendeten Modell ab
- Für MOZART und TOMCAT wurden die Daten für 1997 bearbeitet:
 Es zeigt sich ein starker Jahresgang

Ausblick


Urbanes Aerosol nach den Emissions-Katastern der Modelle integrieren

Wolkenbehandlung

- Wolkenhöhe und –bedeckungsgrad mit FRESCO (Fast Retrieval Scheme for Clouds, KNMI, Niederlande) bestimmen
- Block LMF für verschiedene Wolkenhöhen erzeugen
- proportional zum Bedeckungsgrad Block LMF für Wolkenhöhen und Modellgitterpunkt einsetzen

Unterschiedliche Albeden – zusätzliche Dimension für Block LMF neben

- Sonnenzenitwinkel
- Bodenhöhe
- Aerosol-Typ

