Sunrise spectroscopic measurements for tests of radiative transfer models

B. Sierk, S. Solomon, J. S. Daniel, S.I. Gutman, R. W. Portmann, A. Langford

Back in Zurich...

Solar Atmospheric Monitoring Spectrometer SAMOS

... and in Boulder

Ocean Optics S2000

Why is H₂O important ?

1 Significant greenhous gas

– positive feedback on climate change ?

Involved in atmospheric energy transport and conversion processes

- Weather prediction

- **1** Strongest absorber in short-wave region
 - related to anomalous absorption ?

Problems of H₂O radiative transfer in the visible and NIR

1 Water vapor continuum

- additional broadband absorption introduced to match RT model with observations
- Important in spectral window regions (IR)
- What is the physical mechanism: line shapes or water dimer ?
- Do the models reproduce the continuum in the visible?
- Does it matter for DOAS retrievals (at large SZA) ?

1 Spectral line parameters

- Thousands of individual transitions (intensity, halfwidth, etc.)
- What's the accuracy ? Which bands are good for DOAS ?
- How consistent are the parameters for different H_2O -bands?
- Do the errors contribute to anomalous absorption ?

H₂O remote sensing (e.g. DOAS)
Climate studies (Energy budget)

H2O-band 820 nm

SAMOS and model spectra

SAMOS spectra

SAMOS spectra

HITRAN database widely used in atmospheric modeling

Do missing and erroneous line parameters affect

-energy budget studies (climate) ?

- remote sensing retrievals ?

Ł Approach: test the database by comparing DOAS retrievals with independent measurements

Ł Field experiment using direct sunlight (known absorption path) and simultaneous water vapor soundings

Instrumentation

- 1 3 Ocean Optics S2000 spectrometers (DOAS)
 - Fed by Sun tracking telescope
 - Spectral range 420-1010 nm
 - Resolution ~ 1 nm
- 1 6 GPS stations (vertical columns of H₂O)
- 2 Radiosonde stations (vertical profiles P,T and rel. humidity)
- 1 Standard Photometer (Aerosol oprical depth)

DOAS

GPS meteorology

- **§ Differential carrier phase measurements of satellite signals**
- § Simultaneous observations within a multi-station network
- **S** Estimates of total path delay

S "dry" component computed from surface pressure measurement
 S "wet" delay can be transformed into zenith precipitable water (ZPW)
 SAbsolute accuracy < 1kg/m² PW, relative much better

DOAS analysis: RT model

\$ Non-linear fit of RT model to measured spectra \$ Beer's Law

Computing correction factors

Conclusions Part 1

1 Good agreement between DOAS and GPS

- Average bias < 0.5 mm for VC from 940 nm band
- within GPS absolute accuracy

1 H₂O-absorption bands

- used strongest band at 940 nm as reference
- Determined whole-band correction factors for

820 nm band ($3v+\delta$): +21.48 %

720 nm band (4v): + 1.24 %

650 nm band (4v + δ): - 9.57 %

590 nm band (5v): - 8.74 %

- All corrections correspond to 0.6 W/m² flux (overhead Sun)

Part 2: The H₂O continuum

Let's go beyond 80° solar zenith angle to make the weak continuum component detectable...

H₂O-Continuum: line wing theory

- Collision duration results in stronger far line wing absorption
- Excess line wing absorption described by semi-empirical χ -Function
- Foreign and self continuum treated separately
- Coefficients of χ -Function determined by least squares fit to lab data
- Removal of fast spectral component (lorentz shape < 25 cm⁻¹ from v_0)
- Clough et al., 1989; Tipping, Ma, 1995

Hydrogen bonded H2O complex [weak interaction (~5kcal/mol)]

Abundance and cross sections not accurately known

1 We don't know exactly...

- -...how much dimer is there
- -...how much does it absorb

1... so what do we know about them ?

-Vertical distribution profile: abundance scales with square of water monomer

-Spectral shape

Monomer and Continuum

Double Differential Continuum

Check of ray tracing by O2 and O4

The Γ -band test

Diff. Continuum for 940 nm band

980

Conclusions Part 2

1 Conclusions

- CKD model overestimates continuum in 940 nm band by 90 %
- measured spectral shape of the continuum
- unable to distinguish line shape contribution from dimer

1 Outlook

- use measurements to determine continuum model parameters for NIR
- use DOAS measurements to test GPS slant column restrievals
- try to look for dimers in SCIAMACHY data

DOAS analysis: Step 1

Calculation of H_2O absorption cross sections (σ_I)

- Line-by-line RTM
- HITRAN 2000 line parameters
- Lorentzian line shapes
- Line shape cutoff 300 cm⁻¹ (CKD-model 25 cm⁻¹)
- Resolution 0.01 cm⁻¹
- Standard formulas for pressure and temperature dependencies of line parameters
- T, P profiles from radiosonde

DOAS Analysis: Step 2

Computation of look-up table

- 1 Calculation of high resolution spectra at various zentith angles
 - 1 Water vapor profile from RAOB
 - Ray tracing through atmospheric layers (spherical, evenly stratified, homogeneous)
- Convolution of high resolution spectrum with apparatus function (from neon, argon and mercury emission lines)

DOAS Analysis: Step 3

Least squares fit of model spectrum to the observed

- Line up background spectrum to look-up table
 - 1 Use GPS or RAOB measured simultaneous with background
 - 1 Determine shift & stretch of background wavelength scale
- Model scattering effects
 - 1 Rayleigh optical depth from pressure profile
 - 1 Aerosol optical depth derived from MFRSR
- Solve for n+4 fit parameters
 - 1 Slant column amounts of n molecular species
 - $_{\mbox{\tiny 1}}$ Constant & slope of diff. opt. Depth $\tau_{\mbox{\tiny diff}}$
 - 1 Shift & stretch of foreground wavelength scale

DOAS Analysis: Continuum retrieval

- Recalculate the forward model using
 - $_{\mbox{\tiny 1}}$ ZPW $_{\rm FG}$ from radiosondes or GPS
 - ¹ Const., slope, shift and stretch obtained from step 3
- Compute transmission difference between observed and recalculated differential spectrum
 - ₺ Interpreted as a measure of continuum absorption
- Compare with difference between observed and theoretical spectrum including continuum model

The O₄ continuum

- Collision complex of O₂
- Abundance known from ground pressure
- Profile goes with $[O_2]^2$ (known from p,T profile)
- Cross sections well known (Greenblatt et al.,)
- No temperature dependence of cross sections
- Weak, well distinguishable continuum absorption
 - Ł Can be used to check ray tracing algorithm

O₄ retrieval and mapping

