Highlights of SCIAMACHY

5th German SCIAMACHY Validation Team (GSVT) Meeting, Dec 7th, 2004, Bremen

Mesospheric O₃ & SPEs - Observations vs. Model

SCIAMACHY Measurements (G. Rohen)

Reference period: October 20–24, 2003

Model simulations (M. Sinnhuber)

First global stratospheric BrO profile data set

Zonal Average September 2002

September 24, 2002 (43°N,0°E)

BrO volume mixing ratio [pptV]

TRIPLE Balloon: FZ Jülich – SCIAMACHY BrO: IFE/IUP

BrO event close to Spitzbergen

A. Richter

5th German SCIAMACHY Validation Team (GSVT) Meeting, Dec 7th, 2004,

BrO event seen both by groundbased DOAS and SCIAMACHY

- values agree qualitatively
- scatter in SCIAMACHY BrO

CH₄ Sources & Sinks - Comparison with model results

SCIAMACHY Aug-Nov 2003

C. Frankenberg, IUP Heidelberg J.F. Meirink, KNMI, Utrecht

> TM3 KNMI Aug-Nov 2003

German GC-VOS Validation of

CO₂ Sinks & Sources- Comparison with model results

Buchwitz et al., ACPD, 2004

TM3 data: S. Körner, MPI-BGC, Jena

SCIA/WFM-DOASv0.4 versus MPI-BGC/TM3:

SCIAMACHY vs. MOPITT total CO columns February 2004

SCIAMACHY

MOPITT

IMLM algorithm, © SRON 2004

© NCAR MOPITT team: www.eos.ucar.edu/mopitt/

Validation of stratospheric NO₂ profiles

Comparisons of NO₂ profiles from collocated HALOE (black), SAGE (red) and SCIAMACHY (green, IUP Bremen) measurements using a 1-dim chemical model to take the diurnal cycle of NO2 into account.

A. Bracher

Validation of Tropospheric NO₂

Highlights Total and Tropospheric Column Data

 SCIAMACHY yields for the first time global distributions of CO, NO₂, HCHO and SO₂ with a spatial resolution adequate to study air quality from regional to global scales

Global distributions of H₂O over land and ocean

•The very high sensitivity of tropospheric NO_2 data from SCIAMACHY is demonstrated by the detection of enhanced NO_2 along ship tracks in the Red Sea and the Indian Ocean

•CO from biomass burning is detected unambiguously (California, Africa, Siberia) with a high sensitivity to the lowest troposphere

GHG CO₂ and CH₄ are detected down to the surface

Cloud Parameters (cloud top height, optical thickness etc.) are detected in paralelle to the trace gas measurements

Aerosol Optical Thickness over Land and Ocean is progressing

Highlights SCIAMACHY Profiling

 SCIAMACHY yields for the first time global distributions of daytime BrO and NO₂ in the stratosphere from pole-to-pole

O₃ profiles are covering the lower stratosphere up to the mesosphere

OCIO is detected under CI-activation at polar vortex

NO₃ is detected in the SH during night time with the lunar occultation mode

 PSC and NLC can be routinely detected, their optical parameter can be determined

The temperature of the mesopause is determined via OH Meinle band emission (3-1) to an accuracy of a least 5 K

