

Validation of SCIAMACHY trace gas data products by comparison with measurements from other satellite sensors

A. Bracher, K. Bramstedt, M. v. König, J. Meyer, A. Richter, A. Rozanov, C. v. Savigny, M. Weber, J. P. Burrows Institute of Environmental Physics, University of Bremen

Satellite-Validation of GOMOS, MIPAS und SCIAMACHY

Instrument	Data product	Geometry	SCIA product	Cooperations:
SAGE II (10/84)	O_3 profiles NO ₂ profiles H ₂ O profiles*	Occultation	L-IUP,O-IUP L-IUP,O-IUP L-op	MIPAS: IMK (Mathias Milz), DLR, Univ. of Oxford
HALOE (9/91)	O_3 profiles NO ₂ profiles H ₂ O profiles CH ₄ profiles	Occultation	L-IUP,O-IUP L-IUP,O-IUP L-op L-op	SAGE II : L. Thomason (NASA LaRC) HALOE, SABER: J.M. Russell III, E. Thompson (Hampton Univ.)
POAM III (3/98)	O_3 profiles NO_2 profiles	Occultation	L-IUP,O-IUP L-IUP,O-IUP	NRL)
GOME (4/95)	O_3 columns NO ₂ columns O ₃ profiles*	Nadir	N-op N-op,N-IUP L-op, N-IUP	TOMS: E. Hilsenrath, R. Mc Peters (NASA GSFC)
TOMS (7/96)	O ₃ columns	Nadir	N-op	ACE-FTS: P. Bernath, K. Walker (Univ. of Waterloo)
MIPAS (3/02)	O ₃ profile**/*** NO ₂ profiles **	Limb	L-IUP L-IUP	green: first validation
GOMOS SABER (12/01) ACE (8/03)	O_3 profiles NO ₂ profiles H ₂ O profiles CH ₄ profiles	Occultation Limb Occultation	L-op,L-IUP L-op,L-IUP L-op L-op	* = right now data quality to bad for validation ** = MIPAS IMK-Retrieval-Profiles *** = MIPAS operational product

Overview

SCIAMACHY validation results

nadir: operational O₃-columns with GOME and TOMS NO₂-columns operational and retrieved by IUP with GOME

occultation: O₃-profiles retrieved by IUP with SAGEII

limb:O3-profiles retrieved by IUP with HALOENO2-profile retrieved by IUP with HALOEO3-profiles retrieved by IUP with MIPASNO2-profile retrieved by IUP with MIPAS-EConcluding remarks

work plan until end of project

at 2002/10/24

SCIAMACHY 3.53

All O_3 data of time period in 2.5° X 2.5° grids and comparison of SCIAMACHY, TOMS and GOME within the same grid

Comparison of SCIAMACHY NO₂ total columns (VIS) with GOME

Calibration orbits 2509 and 2510

Comparison of NO₂ total columns: (SCIA-GOME)/GOME

Comparison of NO₂ slant columns: (SCIA-GOME)/GOME

- at 70°S –50°N both retrievals show negative offset
- –10% with strong scatter for SCIAMACHY IUP Retrieval
- -30% with strong scatter for SCIAMACHY 4.0
 - → largest contribution to total column error of operational product from AMF

Comparison of NO₂ total columns: (SCIA-GOME)/GOME

much worse than version 4.0 (there in lv1 data: better polarisation correction, sun spectrum)
strong variation with latitude:

-50% at 70°S to +140% at 70°N

variation from 0% at high latitudes to +50% in the tropics
no sun spectrum used, fitted against SCIA spectrum in the tropical Pacific

SCIAMACHY IUP O₃ occultation profiles compared to SAGE II

SAGE SCIA_occultation 6.1017 2.1017 4-1017 O₃ [km⁻¹*cm⁻²] All available SCIA occul. data

(all at 64°N – 66°N) searched for SAGE II within 500 km of SCIA at the same day

Accuracy of SAGE II: 10 – 50 km 10%

Sensitivity of SCIA_IUP occultation at 13 - 50 km

SCIAMACHY IUP O₃ occultation profiles compared to SAGE II

>35 km differences in *a priori* dominating ?

Comparison of SCIAMACHY IUP O₃ and NO₂ limb profiles with HALOE

All available SCIAMACHY Lv-0 and Lv-1 limb from July – December 2002 Criteria for coincidences: HALOE within 500 km of SCIAMACHY at the same day

23 coincidences with HALOE

Rozanov: differential fitting employing Chappuis bands

Savigny: 3 wavelengths of O₃ Chappuis bands Tangent height (TH) corrected –2 km (limb pointing offset)

Rozanov: spectrum of 420 – 490 nm and ratio of limb measurements at different TH (45 km TH as reference)

Comparison of SCIAMACHY IUP limb O₃ profiles with HALOE

Accuracy of HALOE O_3 profiles: 30 - 60 km 6%; 15-30 km 20% Sensitivity of SCIAMACHY_Savigny O_3 profiles at 15 - 35 km Sensitivity of SCIAMACHY_Rozanov O_3 profiles at 15 - 35 km

Comparison of SCIAMACHY IUP limb O₃ profiles with HALOE

Comparison of SCIAMACHY IUP limb NO₂ profiles with HALOE

HALOE NO₂ scaled to SCIAMACHY SZA

using a 1-dim version of SLIMCAT chemistry & photolysis model (Chipperfield 1999) with reaction rates & photolysis cross sections from JPL 2000 data base

Accuracy of HALOE NO₂ profiles: 20 - 45 km 10 - 15%Sensitivity of SCIAMACHY_Rozanov NO₂ profiles at 17 - 40 km

MIPAS-IMK and SCIAMACHY-IUP limb cross validation

O₃ and NO₂ products from both instruments compared from 20. and 23.09.02

Coincidences: MIPAS tangent point within of 650 km of SCIAMACHY tangent point from the same orbit (19) or next orbit (6)

Comparison of SCIA IUP limb O₃ profiles with MIPAS IMK

Both coincidences are outside the polar vortex

Comparison of SCIA IUP limb O₃ profiles with MIPAS IMK

Both coincidences are inside the polar vortex

Comparison of SCIA IUP limb O₃ profiles with MIPAS IMK

Statistics over all coincidences

Comparison of SCIA IUP limb NO₂ profiles with MIPAS IMK

inside the polar vortex

outside the polar vortex

SCIAMACHY nadir products

Total O_3 (3.53 and 4.0):	ca 5% to GOME 3.0
	ca 8% to TOMS V7.0
NO ₂ SCD (4.0):	consistent offset to GOME GDP 3.0
NO ₂ VCD (4.0):	AMF problems –60%- 0%, but version 3.53 much worse

Update of SCIAMACHY Lv-2 equivalent to GOME 3.0
 (with improved NO₂ and O₃ climatologies and iterative air mass factors)
 Incorporation of SCIAMACHY trace gas absorption cross sections in Lv1/2 processing

SCIAMACHY occultation products retrieved at the IUP

 O_3 : good agreement with SAGE II at 15 - 35 km -7 - +15% (+/- 5 - 20%)

SCIAMACHY limb products retrieved at the IUP COMPARISON TO HALOE

- O_3 :good agreement: for O_3 by Savigny at 19 35 km-5 +5% (+/- 15%)for O_3 by Rozanov at 18 38 km-10 0% (+/- 15%)
- NO₂: first results show good profiles can be retrieved from SCIAMACHY limb data

COMPARISON TO MIPAS-IMK

O₃: good results outside polar vortex with slight positive bias of MIPAS to SCIA at 18 - 48 km -1 - +15% (+/- 10 - 20%) comparable data inside polar vortex, but SCIA's large pixel size can't resolve

small scale differences at 23 – 48 km -15 – +10% (+/- 10 – 20%)

NO₂: large deviations between the two instruments. Improvements after reprocessing of MIPAS-IMK NO₂ expected

Mispointing of ENVISAT causes an offset in tangent heights of SCIAMACHY limb and occultation measurements: _____ correction scheme based on engineering and orbit model update has to be set up now!

Work plan until end of project (12/2004)

- 5/03 Cross validation of (operational and scientific) MIPAS, GOMOS and SCIAMACHY (unitl now: only O₃ and NO₂)
- ~8/03 Validation of ESA data produtes after reprocessing First validation of operational SCIAMACHY limb products (only O₃ and NO₂)
- 10/03 ACVE-2 workshop: progress report and recommendations for Lv-1/ Lv-2 algorithm
- ~11/03 Comparison of SCIAMACHY limb and occultation with SABER and ACE-FTS Validation of ESA data produtes after reprocessing
- ~4/04 Progress report and recommendations to ESA
- ~5/04 Comparison of SCIAMACHY limb H₂0 and CH₄ products with SAGE II, HALOE, SABER, ACE-FTS, GOMOS, MIPAS Validation of ESA data products after reprocessing
- ~11/04 Progress report and recommendations to ESA
- 12/04 Final report

References

- A. Bracher, A. Rozanov, C. von Savigny, M. von Koenig, M. Weber, K. Bramstedt, J. P. Burrows, First validation of SCIAMACHY O3 and NO2 profiles with collocated measurements from satellite sensors HALOE, SAGE II and POAM III, poster presentation at EGS-AGU-EUG Joint Assembly, Nice, France, April, 2003
- A. Bracher, M. Weber, M. von Koenig, K. Bramstedt, J. P. Burrows, First validation of MIPAS O3, H2O, and NO2 profiles with collocated measurements from satellite sensors HALOE and SAGE II, poster presentation at EGS-AGU-EUG Joint Assembly, Nice, France, April, 2003
- C. Brühl, S. R. Drayson, J. M. Russell III, P. J. Crutzen, J. M. McInerney, P. N. Purcell, H. Claude, H. Gernandt, T. J. McGee, I. S. McDermid, M. R. Gunson, Halogen Occultation Experiment Ozone Channel Validation, J. Geophys. Res., Vol. 101, 10217-10240, 1996.
- Chipperfield M., Multiannual Simulations with a Three-dimensional Chemical Transport Model, J. Geophys. Res., Vol. 104, 1781-2805, 1999.
- D. M. Cunnold, W. P. Chu, R. A. Barnes, M. P. McCormick, R. E. Veiga, Validation of SAGE II Ozone Measurements, J. Geophys. Res., Vol. 94, 8447-8460, 1989.
- J. E. Harries, J. M. Russell, A. F. Tuck, L. L. Gordley, P. Purcell, K. Stone, R. M. Bevilacqua, M. Gunson, G. Nedoluha, W. A. Traub, Validation of Measurements of Water-vapour from the Halogen Occultation Experiment (HALOE), J. Geophys. Res., Vol. 101, 10205-10216, 10205-10216, 1996.
- Sander S., et al. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling, Supplement to Evaluation 12: Uptake of Key Reactions, JPL Publication, JPL, 2000.
- A. Rozanov, V. Rozanov, H. Bovensmann, K.-U. Eichmann, M. von Koenig, S. Noel, C. von Savigny, J.P. Burrows, Retrieval of SCIAMACHY limb measurements: First results, poster presentation at EGS-AGU-EUG Joint Assembly, Nice, France, April, 2003
- C. von Savigny, B.-M. Sinnhuber, H. Bovensmann, K.-U. Eichmann, J.W. Kaiser, S. Noel, A. Rozanov, J.P. Burrows, The 3D Evolution of the 2002 Ozone Hole Breakup Event: Preliminary stratospheric Ozone Profiles from SCIAMACHY on Envisat, oral presentation at EGS-AGU-EUG Joint Assembly, Nice, France, April, 2003