

Stratospheric trace gas observations by ASUR

during SCIAMACHY validation campaigns

Jayan.Kuttippurath , A. Kleinböhl, H. Bremer, H. Küllmann,A.Rozanov K Künzi, J. Notholt, J. P. Burrows

Institute of Environmental Physics, University of Bremen

GSVT meeting , 7-8 July 2003 , Bremen

Overview

- ∠ The Instrument
- *∠* Campaigns
- ∠ Data Analyses
- \swarrow Validation
- Summary and Outlook

Universität Bremen

The Instrument

Technical Features

- Spectral Coverage : 604 662 GHz
- + Observation Geometry : Up-looking at Zenith angle of 78°
- Acousto-Optical Spectrometer (AOS)
- Chirp Transform Spectrometer (CTS)

Measurement Principle

- ASUR detects thermal emission from rotational lines
- Altitude information comes from pressure broadened lines
- Using Optimal Estimation Method (Rodgers, 78) to retrieve vertical profiles

Measurement capability

- Data Products : Vertical profiles of stratospheric molecules
- Species measured : O_3 , N_2O , HNO₃, CIO, HCI, H₂O, BrO, NO, HOCI, HO₂, HCN, CH₃CI, etc..
- Horizontal resolution : 12 40 km
- Vertical resolution : 05 -12 km

Measurement information

•	Ozone			:	15	-	50	km
•	N ₂ O,	HCI,	HNO ₂	:	15	_	40	km

Page 2

Campaigns

.GSVT meeting , 7-8 July 2003 , Bremen Page 3

Analyses

\checkmark examples of single measurements at high, mid, and low latitudes

Analyses

Page 5

.GSVT meeting , 7-8 July 2003 , Bremen

Analyses

Page 6

Validation

\swarrow Comparison with SCIAMACHY O₃ preliminary data

Mediterranean

Central Africa

Indian Ocean

Page 7

GSVT meeting , 7-8 July 2003 , Bremen

Summary and Outlook

1.ASUR took part in SCIAMACHY validation campaigns and measured a range of stratospheric molecules during all flights, except two flights in February 2003 on southern route.

2. Status

Standard Products : O_3 , N_2O , CIO, HNO_3 , HCI (Good data quality, already been analyzed) Other Molecules of interest : H_2O , NO, BrO, CH_3CI , HO_2 , HCN (Spectral quality is good)

SCIAMACHY Products MIPAS Products

3. Future Plans

Re-evaluation of tropical N_2O and HNO_3 Analyses of other molecules of interest Comparison with SCIAMACHY profiles (operational in 2004) Comparison with other instruments (e.g. MIPAS, GOMOS, ODIN) Validation (in corporation with other groups) Publication of results

Page 8

GSVT meeting , 7-8 July 2003 , Bremen