Balloon-borne DOAS measurements of SCIAMACHY Level 1 and 2 product

K. Pfeilsticker¹, H. Bösch¹, J. Burrows³, A. Butz¹, C. Camy-Peyret², M. Dorf¹, K. Gerilowski⁵, K. Grunow⁴, W. Gurlit³, B. Naujokat⁴, C. von Savigny³, K. Seitz¹, C.

Sioris⁵, A. Rozanov³, and <u>F. Weidner¹</u>

- (1) Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany
- (2) Laboratoire de Physique Molèculaire et Applications (LPMA), Université Pierre et Marie Curie, Paris, France
- (3) Institut für Umweltphysik, University of Bremen, Bremen, Germany
- (4) Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
- (5) Harvard-Smithsonian Center for Astrophysics, Cambridge, USA

Validated SCIAMACHY Products Level 1 and 2 by DOAS (1)

SCIAMACHY Products	Instrument	Precision	Accuracy	Validation Height Range	SCIAMACHY Height Range (ii)	IGOS target RMS error	IGOS target Bias error
т	all payloads	? 0.5 K	? 0.5 K	0 to 30/40 km	0 to 50 km	? 0.5K	n/s
Р	all payloads	?1%	?1%	0 to 30/40 km	0 to50 km	n/s	n/s
0 ₃	DOAS	? 0.3 %	? 0.5 % 10 ¹⁰ molecule/cm ³	5 to 30/40 km	0 to 60 km	?3 %	?5 %
O ₃	LPMA	? 4%	(? 4%,iv) , ? 6%	5 to 30/40 km	0 to 60 km	?3 %	?5 %
0 ₄	DOAS	?4%	? 4 %	5 to 30 km	0 to 25 km	n/s	n/s
NO ₂ (i)	DOAS	? 2.0 %	4.0 %<br ? 10 ⁹ mole/cm ³	5 to 30/40 km	0 to 40 km	? 10 %	? 15 %
NO ₂ (i)	LPMA	? 11.0 %	(? 6.0 %,iv), ? 12.5%	15 to 30/40 km	0 to 40 km	? 10 %	? 15 %
NO ₃ (i)	DOAS		? 12.0 %	5 to 30/40 km	20 to 40 km	? 10 %	? 15 %
BrO (i)	DOAS	? 4.0 %	<mark>? 12.0 % plus</mark> ?5*10 ¹² mole/cm ³	5 to 30/40 km	15 to 35 km	? 80 % UT ? 40 % LT	? 15 %
OCIO (i)	DOAS	? 3.0 %	? 8.0 %	5 to 30/40 km	15 to 35 km	n/s	n/s
CH4	LPMA	?7%	(? 5 %,iv), ? 9 %	10 to 30/40 km	0 to 40 km	? 1% UT/ ? 2% LS	? 2% UT/ ? 5% LS
со	LPMA	? 7 %	(? 2 %,iv), ? 8 %	5 to 30/40 km	0 to 35 km	? 1% UT/ ? 5% LS	? 2% UT/ ? 10% LS
N ₂ O	LPMA	?10	(? 3 %,iv), ? 11 %	5 to 30/40 km	0 to 40 km	? 1% UT/ ? 2% LS	? 2% UT/ ? 4% LS
CO ₂		? 5 %	(? 2 %,iv), ? 6 %	10 to 30/40 km	0 to 60 km	?0.04 ppm UT ?0.5 ppm LT	?0.2ppm,UT ?1.0 ppm LT

Validated SCIAMACHY Products Level 1 and 2 by DOAS (2):

- 1. direct solar irradiance within the 316 to 653 nm wavelength range
- 2. LIMB radiances perpendicular to the Sun's azimuth direction
- 3. NADIR radiance, the latter both parameters in the 320 to 550 nm wavelength range

Successful LPMA/DOAS Flights:

No	Date	Location	Geophysical Condition	Observation Mode
1	Nov. 23, 96	Leon, 42.6° N, 5.7° W	mid-latitude fall	sunset
2	Feb. 14, 97	Kiruna, 67.9°N, 21.1° E	high latitude winter	sunset
3	June 20, 97	Gap, 44.0° N, 6.1 ° E	mid-latitude summer	sunrise
4	March 19, 98	Leon, 42.6° N, 5.7° W	mid-latitude spring	sunset
5	Aug. 19/20, 98	Kiruna, 67.9°N, 21.1° E	high latitude summer	sunset/ sunrise
6	Feb. 10, 99	Kiruna, 67.9°N, 21.1° E	high latitude winter	sunset
7	June 25, 99	Gap, 44.0° N, 6.1 ° E	mid-latitude summer	sunrise
8	Feb. 18, 00	Kiruna, 67.9°N, 21.1° E	high latitude winter	sunset
9	Aug. 21/22, 01	Kiruna, 67.9°N, 21.1° E	high lat. summer	sunset/sunrise
10	March 23, 03	Kiruna, 67.9°N, 21.1° E	high lat. spring	sunset
11	Sept. 2003	Air sur l'Adour	mid-lat fall	sunset
12	March 04	Kiruna, 67.9°N, 21.1° E	high lat. spring	sunset
13	Fall 04	Teresina, 5.1° S, 42.8° W	tropical pipe	sunset/sunrise

previous, already conducted or scheduled within ENVISAT (SCIAMACHY, MIPAS, GOMOS) validation

DOAS Instruments on bord LPMA/DOAS

'Big'- DOAS instrument (direct Sun):

- 2 grating spectrometers in one thermostated (273 K) and evacuated housing
- Cooled photo diode detectors (1024 diodes, T =
- 260 K)
- Wavelength ranges and resolution:
- UV (316 418 nm, ?? = 0.5 nm)
- Visible (418 653 nm, ?? = 1.3 nm)
- Light intake: Solar tracker and glas fibre bundle
- efficient spectrometer stray-light suppression
- Solar occultation
- Total mass 45 Kg
- Total power consumption ~20 W
- Target species: O3, O4, H2O, NO2, OCIO, BrO, IO, OIO, and Mie extinction, solar irradiance

Mini-DOAS instruments (NADIR&LIMB):

- 2 grating spectrometers in one thermostated (273 K) housing
- Cooled linear silicon CCD array
- (2048 pixels, T = 273 K)
- Wavelength range and resolution:
- UV (320 520 nm, ?? = 0.8 nm)
- Light intake: Glas fibre bundles
- NADIR and LIMB (+1 to -5°) observations
- Total mass 5 kg
- Total power consumption ~5 W
- Target species: O3, O4, NO2, NADIR and LIMB radiance, possibly OCIO, BrO

Balloon-borne solar occultation spectroscopy (UV/vis/near IR)

Result 1: Meteorological forecasting by FU-Berlin

(more info is given in the talk of B. Naujokat !)

LPMA/DOAS Flight – balloon ascent in Kiruna, March 23, 03

Trajectories started at the predicted balloon measurement points and colocated LIMB scans of SCIAMACHY start time and altitude

Results 4: NO₂ measurements in direct Sun (DOAS), and LIMB (SCIA, 64°N23°E, 9:30 UT)

K. Pfeilsticker

Results 5: BrO measurements in direct Sun light (DOAS) and LIMB (SCIA, 64°N23°E, 9:30 UT)

K. Pfeilsticker

Results 6: Irradiance and radiance calibration and measurements (more info is given in the talk of W. Gurlit)

<u>Results 7: Box Air Mass Factors for Balloon Ascent, Limb Geometry</u> <u>calculated by Monte Carlo Radiative Transfer Model "TRACY"</u>

Results 8: Ozone measurements LIMB (miniDOAS) and LIMB (SCIA, 64°N23°E, 9:30 UT) on March 23, 03

<u>Results 9: NO₂ measurements LIMB (miniDOAS) and LIMB (SCIA, 64°N23°E, 9:30 UT) on March 23, 03</u>

Summary & Conclusions

- <u>Results:</u> Comparison of our balloon-borne DOAS measurements (March 23, 03) with SCIAMACHY-LIMB retrievals indicate, even though somewhat different air masses (around the vortex edge) were probed,
- O₃ an agreement of typically ± 10 %, mostly coming from uncertainties in the radiative transfer and the vortex edge situation probed
- NO_2 of typically ± 25 % owing to missing photochemical corrections, Tdependence of the NO_2 cross section, uncertainties in the Fraunhofer NO_2 amount, radiative transfer,
- LIMB RT code is validated by mini-DOAS observations of O₃, and NO₂
- BrO of typically < ± 25 % above 20 km and ± 50 % below 20 km mostly coming from uncertainties in the spectral retrieval and RT modeling
- the solar irradiance in the UV < ± 5 %
- 2.) Upcoming activities will include
- improvements of the balloon and SCIA-LIMB retrievals (see above)
- more validation flights (3 ?) at high, mid- and low latitudes
- air mass match calculations necessary due to the mismatch of probed vortex edge air masses for the March 23, 03 flight

