

GOME / SCIAMACHY Workshop Session: GOME Column measurements:

GOME measurements of NO_X production from lightning: A case study

L. Hild, A. Richter, J.P. Burrows

www. doas-bremen.de

GOME / SCIAMACHY Workshop - GOME Column measurements: GOME measurements of NO_x production from lightning: A case study

Used Satellite Experiments

Lightning Imaging Sensor onboard Tropical Rainfall Measuring Mission

Lightning Imaging Sensor onboard Tropical Rainfall Measuring Mission

Scan Geometry: Nadir

Start: the 28th November 1997

Orbit of TRMM: 350 km / 35° inclination

 \rightarrow earth surface coverage: 35°N bis 35°S

with sampling rate 500 frames/sec

Horizontal Resolution: 4 – 7km

Case Study: A Thunderstorm Close To Madagascar

Air Mass Factor for Lightning produced NO₂ (LNO₂)

First German GOME / SCIAMACHY Workshop 25/26 Nov - 2002

Chemical modelling along trajectories

The combination of trajectory analysis via TRAJ/ECMWF and the chemical box modelling via BRAPHO along this trajectories indicates that:

- ${\boldsymbol{\cdot}}$ any NO_2 from pollution has decayed to significant values prior to entering the cloud,
- only limited decay of NO₂ leaving the cloud

NO_X-Production per Flash

Assumptions used for this case study:

Flashrate: 2 flashs per sec for this intra cloud lightning

Based on model-study by [Allen, Pickering 2002]

NO₂ – lifetime: 12 hours

NO₂/NO Ratio: 2

Based on BRAPHO/TRAJ study

Preliminary result:

[NO_X] per Flash = $1 - 4 \times 10^{25}$ molecules per IC-flash