GOME / SCIA Workshop

University of Bremen, November 25/26, 2002

GOME Measurements of Tropospheric SO₂

Andreas Richter, F. Wittrock, and John P. Burrows

Institute of Environmental Physics and Institute of Remote Sensing University of Bremen

SO₂ in the Atmosphere

Atmospheric Relevance:

- SO₂ is oxidized to H_2SO_4 which solved in water acts as aerosol and CCN (\rightarrow link to climate)
- At large concentrations, SO₂ is affecting human health
- Together with HNO₃, H2SO₄ is main reason for Acid Rain

Sources:

- volcanic eruptions
- oxidation of sulphur gases produced by decomposition of plants
- fossil fuel burning, in particular of sulphur rich coal
- emissions of refineries of oil and natural gas
- nonferrous smelting industry

Today, anthropogenic emissions dominate!

1. Determination of SO₂ amount in measurement:

- DOAS (Differential Optical Absorption Spectroscopy)
- fitting window 315 327 nm
- based on work by Eisinger et al. 98 and Holtet et al., 2000

2. Determination of averaged light path

- a priori assumptions on albedo, vertical profile, aerosols, ...
- computation of Airmass Factor

3. Determination of integrated Vertical Column

GOME SO₂ retrieval: Challenges

Challenges:

- Iow signals in the UV (Iow solar output, large atmospheric absorption)
- interference from strong ozone absorption
- low sensitivity to boundary layer (small surface albedo, strong Rayleigh scattering)
- large impact of boundary conditions:
 - surface albedo
 - aerosol type and profile
 - vertical SO₂ distribution
- small absorptions for SO₂ from pollution
 - Ø low signal to noise
 - Ø interference from instrumental artefacts

Dependence of Airmass Factor on Albedo (no aerosols, SZA = 30°):

surface albedo in UV is low

typical values are 0.03 over land, 0.06 - 0.10 over water, up to 0.90 over ice

sea / land change in sensitivity for lowermost layers up to a factor of 2!

sensitivity over snow / ice up to a factor of 10 larger!

\rightarrow for quantitative results, vertical distribution and surface albedo must be known!

GOME SO₂ retrieval: Aerosol Dependence

Dependence of Airmass Factor on Aerosol (albedo 0.03, SZA = 30°):

urban aerosols hide much of the SO_2 in the lowermost 2 km

reflective aerosols can actually enhance the sensitivity in the troposphere

more realistic settings might produce even more complex dependences

\rightarrow in polluted situations, sensitivity to SO₂ in the boundary layer is very small!

GOME SO₂: The Global View

SO₂ retrieval: Basic Scenarios

Two scenarios have been selected: Volcanic and Pollution, both with a surface albedo of 0.03

\rightarrow Qualitative rather than quantitative analysis!

GOME SO₂: Hekla eruption

Universität Bremen Andreas.Richter@iup.physik.uni-bremen.de

9

Hekla eruption: Comparison GOME and TOMS

- good qualitative agreement
- better spatial resolution from TOMS
- larger values from TOMS
 - Øoffset?
 - Øpixel size?

GOME SO₂: Pollution in China

GOME SO₂: Pollution in Eastern US

Comparison with RAMMP in-situ Measurements

RAMMPP 2001: LKU Profile 1509-1538 UT 08/08

- air-borne in-situ measurements from Dickerson et al., University of Maryland
- flight from August 8, 2001
- vertical profile agrees well with assumptions in GOME analysis
- integrated column agrees well with GOME measurements
- more detailed comparisons are under way

Summary:

- GOME measurements can be used to retrieve SO₂ columns with high sensitivity
- Both volcanic eruptions and strong pollution events can be observed
- GOME measurements for the Mt Hekla eruption compare well with TOMS results
- GOME measurements of pollution in the US compare well with airborne measurements
- The sensitivity of space-borne UV measurements towards the boundary layer is low with the exception of high albedo scenarios
- Quantitative results for pollution events can only be obtained if information is available on both the vertical distribution and the aerosol burden

Acknowledgements

- TOMS data have been provided by Arlin Krueger, University of Maryland
- Airborne measurements have been provided by Russ Dickerson, University of Maryland
- GOME data analysis has been building on work done by Michael Eisinger (ESA) and Hans-Inge Holtet and Bill Arlander, NILU
- The GOMETRAN radiative transfer model has been provided by Vladimir Rozanov et al., University of Bremen

