A fast H₂O total column density product from GOME

Thomas Wagner, Michael Grzegorski, Christoph von Friedeburg, Steffen Beirle, Muhammad Fahim Khokhar, Sven Kühl, Mark Wenig, Walburga Wilms-Grabe, and Ulrich Platt

Email: thomas.wagner@iup.uni-heidelberg.de

Institut für Umweltphysik, University of Heidelberg, INF 229, D-69120 Heidelberg, Germany

- H2O from GOME: long time series
- largest uncertainty: clouds
- 'measured' AMF
- Validation with Aircraft measurements

Atmospheric height profiles for H_2O , O_2 , and O_4 . The bulk of the atmospheric O_4 column is located much closer to the earth's surface than that for O_2 . (' H_2O SA' indicates the H_2O profile of the 1976 US standard atmosphere, ' H_2O #6' that of the MINOS flight #6)

In the upper panel a raw spectrum measured by GOME for the wavelength range of the H_2O analysis is shown. Below the results of the spectral evaluation for H_2O and O_4 for this GOME spectrum are presented. Also the result of the simultaneously analysed O_2 are included. The thick lines show the trace gas absorption spectra scaled to the respective absorptions detected in the measured GOME spectrum (thin lines).

Modelling of the non-linearity of DOAS H2O observations

Results of the numerical Simulation of the saturation effect of the H_2O measurements (at 650 nm) from GOME. The non-linearity between the actual H_2O VCD and the observed H_2O VCD from the DOAS analysis is indicated by the blue line.

Saturation effect for GOME measurements of water vopour 620 - 670 nm

Different steps of the GOME H₂O retrieval

Upper panel: the uncorrected H_2O SCDs as derived from the DOAS retrieval.

Middle panel: H₂O SCDs after the correction of the 'saturation effect'

Lower panel: H₂O VCDs after application of the 'measured AMFs'.

Comparison of the GOME H_2O analysis with modelled H_2O VCDs (ECMWF). The same orbit was also analysed by Maurellis et al. (2000) (from whom the model data are taken) and Lang et al. (2002).

Comparison between the H_2O VCD derived from the aircraft (x-axis) and satellite (y-axis). For the cases of good temporal and spatial coincidence good agreement is found. For some cases with a large temporal difference or large spatial gradients the agreement is worse (indicated by red circles).

GOME H₂O maps over the Mediterranean for July 14 (flight #6) and July 19 (flight #10). Also shown are satellite images from METEOSAT (Mannstein, 2002).

Ground based H2O observations, Kiruna, direct moon light

Conclusions

- Fast GOME H2O algorithm
- Measured AMFs (O4)
- Cloud-, albeodo-, and aerosol correction
- Comparison with model results and aircraft measurements