German Atmospheric Research 2000 Programme

http://www.afo2000.de/ 

 

Project

07ATF  42

 

Vertical ozone distributions and stratospheric columns of NO2, OClO, and BrO from GOME and SCIAMACHY nadir satellite data: Data product optimisation and scientific studies of the lower stratospheric chemistry and dynamics (GOMSTRAT)

 

Ozonvertikalverteilungen und stratosphärische Säulen von NO2, OClO und BrO aus GOME und SCIAMACHY Nadir Satellitendaten: Optimierung der Datenprodukte und wissenschaftliche Studien zur Chemie und Dynamik der unteren Stratosphäre


Prinicipal Investigator

Mark Weber, Institut für Umweltphysik, Universität Bremen

mailto:weber@uni-bremen.de

 

Abstract (English version)

The main goal of this project is to derive high quality trace gas distributions, ozone profiles and stratospheric NO2, BrO, O3, and OClO columns, from long-term global  UV/visible nadir spectra measured by GOME and SCIAMACHY. They will be used to statistically analyse certain aspects of chemical and dynamical processes, some of which are relevant to possible climate change.

 

A prerequisite for successful scientific studies using global satellite data is the development of an improved and accelerated algorithm to retrieve ozone profiles. In order to derive BrO and NO2 stratospheric columns a method to separate the tropospheric and stratospheric contributions to the measured total column has to be optimised and implemented.

 

The following tasks are planned:

 

Optimisation of non-standard GOME/SCIAMACHY nadir  trace gas retrieval in order to otain high quality global time series starting in 1995

 

Validation of non-standard GOME trace gas data by comparison with independent measurements

 

Development of methods to separate tropospheric and stratospheric contributions to total columns

 

Comparison of (stratospheric and tropospheric) GOME data with 3D CTMs and primitive coupled climate-chemistry models with particular emphasis on northern hemispheric mid- to high latitudes

 

Creating an updated and improved dynamical O3 climatology using combined satellite and sonde measurements for the use as a-priori information in general trace gas retrieval (airmass factor calculation, optimal estimation) and  for improving  initialisation of CTMs.

 

The new global data set of stratospheric key species are valuable for assessing long-term changes and provide constraints to halogen and nitrogen oxide budget in 3D chemical transport models. Long-term ozone time series of vertical profiles and total columns are complementing other satellite measurements  in the assessment of global trends and possible recovery as a consequence of the Montreal protocol and its amendments.

 

Kurzbeschreibung (deutsche Fassung):

Das Hauptziel dieses Projekts ist die verbesserte Bestimmung von Säulendichten von O3, NO2, BrO, und OClO  aus den Nadirspektraldaten von GOME und SCIAMACHY. Die Langzeitmessungen seit 1995 ermöglichen die Untersuchungen von chemischen und dynamischen Prozessen in der Stratosphäre im Zusammenhang mit möglichen Klimaänderungen. Eine wichtige Voraussetzung für erfolgreiche Anwendungen in wissenschaftlichen Studien ist die Bereitstellung von hochqualitativen Datenprodukten durch verbesserte Algorithmen und, im Fall der globalen Ozonprofilauswertung, durch Einsatz  beschleunigter Verfahren.

 

Die folgenden Arbeiten sind geplant:

 

Optimierung und Verbesserung der GOME Säulendichten und die Bereitstellung der globalen Datensätze ab 1995

 

Adaption der Algorithmen auf die SCIAMACHY/ENVISAT Spektraldaten (ab 2002)

 

Spezielle Untersuchungen zur Trennung von stratosphärischen und troposphärischen Anteilen in der Säulendichte von NO2 und BrO

 

Validierung der nicht standardisierten Datenprodukte durch Vergleich mit unabhängigen Daten

 

Erstellen einer aktualisierten Ozonprofilklimatologie für die Verwendung als A-priori Information im Spurengasretrieval (Optimal  Estimation, Airmassfaktorbestimmung) und für die Initialisierung von Klima und Chemie-Transportmodellen

 

Vergleich der GOME Säulendichten mit 3D Chemie-Transportmodellen und gekoppelten Klimamodellen zur Untersuchung von chemisch-dynamischen Prozeessen in hohen Breiten.

 

 

Globale Messungen von stratosphärischem BrO und NO2 können einen wichtigen Beitrag zur Bestimmung des globalen Halogen- und NOx-Budgets liefern und dienen möglicherweise als Constraint für CTMs und Klimamodelle. Die Langzeitreihen von Ozonsäulendichten und –profile zusammen mit anderen historischen Datensätzen spielen eine wichtige Rolle für weitere Untersuchungen im Zusammenhang zwischen globalem Ozonabbau und dem Klimawandel, insbesondere unter dem Aspekt internationaler Abkommen zum Schutz der Ozonschicht und Klimaerwärmung (Montreal und Kyoto-Protokoll).

 

 

Collaboration:

AWI Potsdam (DYCHO, 07ATC08)

DLR Insitut für Atmosphäre (KODYACS, 07ATF43)

 

 

Progress Report 2001:

During the first year several steps were undertaken to improve and accelerate ozone profile retrieval from nadir GOME spectral data. The extension of the retrieval into the short wave length region (270-290 nm) permit a better characterisation of the upper stratosphere (35-50 km altitude range. This spectral region was difficult to use because of calibration uncertainties. By including  dark current subtraction from solar Fraunhofer line observations in the profile retrieval made this spectral region usable. The new results have been validated with independent ozone sonde measurements and they show particular improvements in the derivation of tropical  ozone profiles.

 

Initial studies on the improved ozone column retrieval using the weighting function DOAS (differential optical absorption spectroscopy) indicate that the quality of the GOME total ozone can be significantly improved as was demonstrated by comparison with ground-based data at selected Antarctic stations. By using different fitting windows for NO2 in the UV and visible spectral range a better separation of the stratospheric and tropospheric contributions to the NO2 total column can be achieved. In the UV region the stratospheric contribution dominates while in the visible spectral region a larger tropospheric contribution to the observed total column is observed. This was verified by comparison with NO2 zenith-sky measurements from the ground, which show only little tropospheric NO2 amounts.

 

The new algorithms that have been developed  are planned  to be used in the  reprocessing of GOME data starting in 1995 and later  to be adapted to SCIAMACHY which was launched aboard ENVISAT in March 2002.

 

 

Progress Report 2002:

During the second year the development of the weighting function DOAS retrieval for GOME total ozone has been continued. Particular attention has been paid into the creation of look-up-tables (reference intensities and weighting functions derived from radiative transfer model calculation) in order to enable processing of global data sets. Comparison with ground-based Dobson and Brewer data from selected mid-latitude stations have shown that the seasonal signature seen in the differences between the official  total ozone version (distributed by the European Space Agency, Version 3) and ground-based data has vanished in the comparison of the new algorithm. It is apparent that the new algorithm represents a significant improvement over previous data versions.

 

From global sonde data (WOUDC data base) and SAGE II and POAM III satellite data covering the nineties an updated ozone profile climatology has been derived. This climatology has been created  for five latitude bands (high latitude, mid-latitude, and tropics in steps of 30°) and mean profiles shapes have been determined for different total column amounts (in steps of 30 DU). In addition a division into  seasons (winter/spring and summer/fall) to account for the differences between low ozone profile shapes related to ozone hole depletion and summer photochemistry has been introduced. This new data set is very valuable for the use as initial guess and a-priori information in ozone retrieval (column and profile retrieval) and can be also used for initialisation of chemical transport models.

 

Using the eight year total ozone (Version 3) and  OClO  column density data record from GOME, inter-annual variability of both trace gases in mid- to high latitude during winter/spring seasons  have been investigated. During winter planetary waves regulate ozone transport into high latitudes through the Brewer-Dobson circulation mechanism. Since planetary waves show large inter-annual variability, particularly in the northern hemispheres, the amount of ozone build-up also varies strongly from year to year. Stratospheric temperatures in polar winter are also strongly influenced by planetary wave forcing. Little planetary wave activity in mid-latitudes leads to polar stratospheric temperatures that are lower and closer to the radiative equilibrium temperature and, therefore,  high ozone destruction related  to heterogeneous chemistry on polar stratospheric clouds are observed. Both, reduced transport and enhanced chemistry contribute then to the low total ozone observed in polar spring. In winters with high dynamical activity, stratospheric temperatures are  higher, as frequently observed in the northern hemisphere, and the increased transport in combination with reduced heterogeneous chemical processing results in higher ozone levels. A very compact relationship between eddy heat flux at 100hPa  (a proxy for the wave energy deposited  into the stratosphere)  and total ozone ratio (March over September mean in NH and September over March mean in SH) as well to the winter integrated  max OClO column density inside the polar vortex (a measure of the chlorine activation succeeding heterogeneous chemistry upon polar stratospheric clouds) were found that underlines the dynamical control of ozone transport and chemistry during winter/spring at high latitudes. The so-called Antarctic anomaly in 2002, where for the first time a major stratospheric warming and a split of the ozone hole was observed in the southern hemisphere, confirmed this close coupling of dynamics and chemistry,  This  important link may be crucial for a better understanding of the connection between  climate change  and stratospheric ozone recovery in the future.

 

 

Publications:

K. Bramstedt, J. Gleason, D. Loyola, W. Thomas, A. Bracher, M. Weber, and J. P. Burrows, Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996-2000, 2002, Atmos. Chem. Phys. Discuss., 2, 1131-1157.

 

M. Coldewey-Egbers, M. Weber, M. Buchwitz, and J.P. Burrows, Application of a modified DOAS method for total ozone retrieval from GOME data at high polar latitudes, 2003, Adv. Space Res., accepted for publication.

 

B.-M. Sinnhuber, M. Weber, A. Amankwah, and J.P. Burrows, Total ozone during the unusual Antarctic winter of 2002, Geophys. Res. Lett. 30, 1850, doi:10.1029/2002GL016798, 2003.

 

A. Richter and J.P. Burrows, Retrieval of tropospheric NO2 from GOME Measurements, Adv. Space Res. 29, 1673-1683, 2002.

 

S. Tellmann, V.V. Rozanov, M. Weber, and J.P. Burrows, Improvements in the tropical ozone profile retrieval from GOME UV/vis nadir spectra, 2003, Adv. Space Res., accepted for publication.

 

M. Weber, S. Dhomse, F. Wittrock, A. Richter, B.-M. Sinnhuber, and J.P. Burrows, Dynamical Control of NH and SH Winter/Spring Total Ozone from GOME Observations in 1995-2002, Geophys. Res. Lett., 30, 1853, doi:10.1029/2002GL016799, 2003.

 

M. Weber, S. Dhomse, F. Wittrock, A. Richter, B.-M. Sinnhuber, and J.P. Burrows, Der Einfluss der Dynamik auf den Ozontransport und die Ozonchemie in hohen Breiten, Ozonbulletin des Deutschen Wetterdienstes, Nr. 93, 25. Juni 2003.

 

 

Data Availability:

 

GOME NO2, BrO, OClO column densities

 

GOME total ozone and ozone profiles

 

Ozone profile climatology 1990-2000 classified by total ozone and climate region (30° latitude bands) and divided into two seasons (winter/spring and summer/fall)

 

see http://www.iup.physik.uni-bremen.de/gome, http://www.doas-bremen.de/