

Valdidation of GOME total ozone retrieved using WF-DOAS

M. Weber, M. Coldewey-Egbers, L. Lamsal, R. de Beek, M. Buchwitz,

J. P. Burrows

Institute of Environmental Physics, University Bremen

and

K. Vanicek

Czech Hydrometerological Institute, Hradec Kralove

www.iup.physik.uni-bremen.de Mark.Weber@uni-bremen.de

Quadrennial Ozone Symposium 2004 (QOS04), Kos, Greece, 1-8 June 2004

Status before QOS04

 \rightarrow Need for improved data version: TOMS/SBUV V8 & GOME V4

Weighting-Function-DOAS (WFDOAS)

$$\ln \frac{I_{obs}}{F_{obs}} = \ln \left(\frac{I}{F}\right)_{mod} + \frac{d \ln (I/F)}{d \text{TOZ}} \int_{mod} \cdot \left(\text{TOZ}_{fit} - \text{TOZ}_{clim}\right) + \dots + P$$

Taylor expansion of optical depth spectrum around climatological total ozone (TOZ_{clim})

- → Modelled radiative transfer quantities: reference OD and weighting function
 - parameterised by : TOZ, eff. albedo, eff. scene height, viewing geometry
- Climatological ozone from TOMS V7 profile shape climatology (Wellemeyer et al. 1997)
- → Main feature of WF-DOAS:
 - Improved Raman correction (accounting for variable ozone dependent contribution to **Ring effect**)
 - temperature weighting function included (ozone temperature correction)
 - Cloud cover and effective scene height from oxygen A-band absorption (Koellemeijer et al. 2001) including ghost vertical column correction
 - Effective UV albedo (surface reflectance) from 377nm
 - Spectral fitting window: 326.6-335nm

Neglect of ozone contribution to Raman correction: up to 10% error for GOME total ozone BREMEN

Global Error Budget

Error Source	Percent Error]
A priori Errors		
profile shape: O_3 and T profile shape (climate zone)	1% below 80°SZA 5% beyond 80°SZA 2% below 80°SZA	Detailed error investigation as
effective albedo effective height	5% beyond 80°SZA ~ 1.5% 1%	part of ESA Project GOTOCORD
LUT Interpolation error albedo	0.30%	
altitude relative Azimuth Angle	0.25% 0.05%	Overall precision of
line-of-sight solar Zenith Angle	0.02% 0.2% below 89°SZA	WFDOAS
ozone	0.1% below 80°SZA 1.5% beyond 80°SZA	$\Rightarrow 3\% \text{ for } < 80^{\circ} \text{SZA}$
Other errors enhanced absorbing aerosol loading polarisation correction error	-1% 0.5% (1)	
enhanced non-absorbing aerosol loading ground Al diffuser plate error	<0.3% ~0.3% (1)	 For more details on algorithm
signal-to-noise ratio pseudo-spherical approximation GVC error w.r.t. GVC	0.3% (1) 0.3% (1) 25%	visit Poster 189 Weber et al.
GVC error w.r.t total ozone	0.15%	
Error impact if not applied in WF-DOAS		
Fraunhofer fit (Kurucz)	~+2%	
Bass-Paur vs. GOME FM98 O3 cross-section	2% (2)	
Ring ozone filling-in I _o effect	+2% (1) -0.2% (2)	de Beek et al. (2003) GDP V3 VALREPORT (2002)

Brewer-Dobson-GOME intercomparison

Ozone temperature correction: Dobson/Brewer

- Standard Dobson/Brewer retrieval (WMO/GAW) uses fixed ozone crosssection temperature (Dobson: 226.9K)
- Brewer & Dobson pair, simultaneous measurements within 10 min
- Ozone weighted temperature determined from sonde ascents at Hohenpeissenberg used in retrieval from simultanous Brewer/Dobson

- Fall/winter correction of up to +4 DU (Brewer) and +8 DU (Dobson) with respect to standard retrieval
- Remaining differences may be due to straylight at high SZA (errors goes in the same direction as ozone temperature error)

8/weber@uni-bremen.de

Hradec-Kralove	mean	1	-	III	IV	-	season
WF-DOAS - Brewer [%]	0,13	0,5	0,3	0,1	-0,4		
WF-DOAS - Brewer T corr [%]	-0,24	-0,2	0,1	0,1	-1,1		
WF-DOAS - Dobson [%]	0,93	1,7	0,7	0,3	1,1		
WF-DOAS - Dobson T corr [%]	0,23	0,4	0,4	0,3	0,3		

- Better agreement with Brewer than with Dobson if no ozone temperature correction is applied (GAW/WMO standard retrieval)
- Excellent agreement with both Dobson and Brewer when correct ozone temperature is used in groundbased retrieval

Comparison of WFDOAS with groundbased data (Brewer/Dobson/SAOZ/M124)

BREMEN

~56 stations

- mid-latitudes and tropics good agreement to within 1% and little seasonal variation (cosine amplitudes below 0.5% in general)
- At polar latitudes differences of up to +4 to +8% in winter (dependent on individual stations)

GOME WFDOAS & TOMS V8

Thanks to H. Claude & Ulf Köhler, MOHp

GOME WFDOAS & TOMS V8

Thanks to Bob Evans, NOAA

region	# stations	mean bias	1σ RMS	max seasonal bias (±1σ)	min seasonal bias (±1σ)
60°N-90°N	5	-0.3%	4.7%	6% (±6%)	-2%(±3%)
25°N-60°N	17	-0.4%	3.9%	0% (±5%)	-1%(±3%)
Europe	8	0.0%	3.7%	0% (±5%)	0%(±3%)
Russia	13	-1.4%	5.3%	2% (±6%)	-3% (±5%)
Tropics	7	0.5%	2.9%		
25°S-60°S	6	0.1%	4.1%	0% (±4%)	0% (±4%)
60°S-90°S	4	1.3%	8.6%	5% (±10%)	0% (±4%)

Halley Bay, Antarctica, 74°S, Dobson

Antarctic observations

- Excellent agreement to within ±1% with groundbased Dobson/Bewer measurements with negligible seasonal variation of less than ±0.5%
- Better agreement with Brewer than Dobson (WMO-GAW standard retrieval) if no ozone temperature correction is applied to groundbased data
- ➔ In polar region and at high solar zenith angle bias of +4% to +8% is observed, about half of the difference may be explained by lack of ozone temperature correction and stray light in ground based data (see TOMS Fairbanks campaign)
- Reprocessing of GOME data for 1995-2004 with WFDOAS until end of summer (watch www.iup.physik.uni-bremen.de/GOME for updates)
- Adaptation of algorithm to SCIAMACHY (2002-present) currently underway

- M. Coldewey-Egbers, M. Weber, L. N. Lamsal, R. de Beek, M. Buchwitz, and J. P. Burrows, A novel total ozone algorithm for backscatter UV using the weighting function DOAS approach, Atmos. Chem. Phys. Discuss., submitted.
- M. Weber, L. N. Lamsal, M. Coldewey-Egbers, K. Bramstedt, J. P. Burrows, Pole-to-pole validation of GOME WFDOAS total ozone with groundbased data, Atmos. Chem. Phys. Discuss., submitted
 - www.iup.physik.uni-bremen.de/~weber/papers
 - www.copernicus.org/EGU/acp/acp.html

Comparison GOME V3 with TOMS V8

19/พอมอเซนเม-มเอเมอม.นอ

year

Comparison of WFDOAS with TOMS V8

20/Weberwuni-biennen.ue

Three GOME algorithms (three ESA studies)

REMEN

WOUDC overview

Analysed WOUDC stations

 56 stations (45 for global statistics + 11 Russian stations)

→ Uneven distribution (NH midlatitude dominates)

➔ regional analysis in 30° wide latitude bands

O NH polar

O NH mid latitudes

O tropics

- O SH mid latitudes
- \odot SH polar
- Separation between Russian (M124) and Europe (Dobson/ Brewer)

Collocation criteria: 300km collocation radius same day