IOMASA Mid-Term Review (MTR)

Welcome to the

IOMASA Mid-Term Review !

At met.no, 10-11May, 2004!

IOMASA – Integrated Observing and Modeling of the Arctic Sea ice and Atmosphere

Georg Heygster

Institute of Environmental Physics, University of Bremen

Table 1: IOMASA Project Planning and Time Table																	
Project Month	1	3	5	7	9	11	13	15	17	19	21	23	25	27 2	29 3	1 33	35
Project Phase	Ι			Π											Ш	Γ	V
Meeting	₩		↓							Ų	L			₩		₩	↓
Management																	
Part 1: Remote sensing of atmospheric parameters (Partner 1)																	
1.1: Data and day 0 algorithms1.2: Atmospheric algorithms1.3: Produce retrieved fields1.4: Validation																	
Part 2: Improving numerical weather prediction models (Partners 4,5)																	
2.1: Prepare NWP activities2.2: Improve Arctic high-resolution NWP2.3: Prepare real time assimilation2.4: NWP Production and validation																	
Part 3: Empirical model for emissisivity and backscatter of sea ice (Partner 2)																	
3.1: Prepare sea ice modeling3.2: Sea ice foreward models3.3: Influence of snow3.4: Validate sea ice foreward models																	
Part 4: Sea ice concentration retrieval (Partner 3)																	
4.1: Prepare sea ice retrieval4.3: Sea ice retrieval algorithm4.3: Produce sea ice fields4.4: Validate sea ice algorithm																	
Part 5: Real time processing and user interface (Partner 2)																	
 5.1: Define interfaces and formats 5.2: — 5.3: Setup of production and interface 5.4: Validate production and interface 																	

Activities within WP 1.2: Atmospheric remote sensing algorithms

- Algorithm for TWV from AMSU-B (C. Melsheimer)
- CLW from SSM/I: no activities to report, continued in July.
- Surface emissivity at AMSU frequencies (Mathew and Heygster)

Other activities:

• Daily ice charts at <u>www.iup.physik.uni-bremen.de</u>

Surface emissivity at AMSU-A frequencies (Mathew and Heygster)

Purposes:

- Improve assimilation of AMSU-A radiances into NWP models (IOMASA)
- Improve temperature profile retrieval near surface

Method: Use

- AMSU-A data,
- colocated radiosonde profiles, and
- Ice concentrations from SSM/I

3 steps:

- 1. Determine bulk emissivity within one AMSU-A footprint
- 2. Dertermine contributions from different surface types
- 3. Determine emissivities of surface types

3 steps to determine surface emissivity

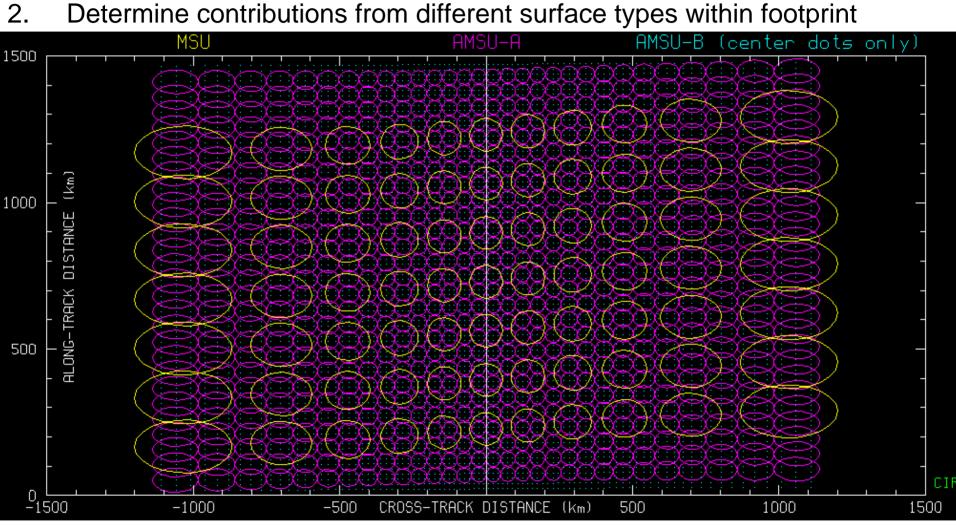
- 1. Bulk emissivity ε within one AMSU-A footprint:
 - RTE for horizontally homogeneous atmosphere

$$T_B = \varepsilon T_s e^{-\tau} + T_u e^{-\tau} + (1 - \varepsilon) T_d (1 - e^{-\tau}) e^{-\tau}$$

• Caculate $_{T_{b,0}}$ and $_{T_{b,0}}$ for $_{\mathcal{E}=0}$ and $_{\mathcal{E}=0}$,resp:

$$\varepsilon = 0: \qquad T_{b,0} = T_u + T_d e^{\tau}$$
$$\varepsilon = 1: \qquad T_{b,1} = T_u + T_s e^{\tau}$$

• Solve for


$$\varepsilon = \left(T_b - T_{b,0}\right) / \left(T_{b,1} - T_{b,0}\right)$$

• All quantities depend on frequency v and incidence angle θ

3 steps to determine surface emissivity

2. Determine contributions from different surface types k = 1,2,3 = 0 OW, FY, MY within one footprint:

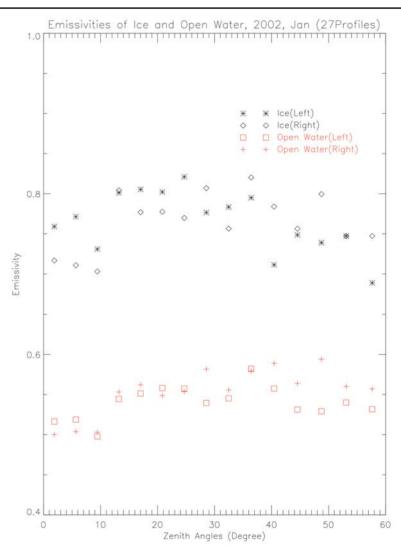
$$\varepsilon = \sum_{i,j} \sum_{k} A_{i,j} P_{i,j,k} \varepsilon_{k}$$

with $A_{i,j}$ antenna weight at SSMI/ pixel (*i*,*j*), $P_{i,j,k}$ fraction of surface constituent *k* at pixel (*i*,*j*) ε_k emissivity of surface type *k*

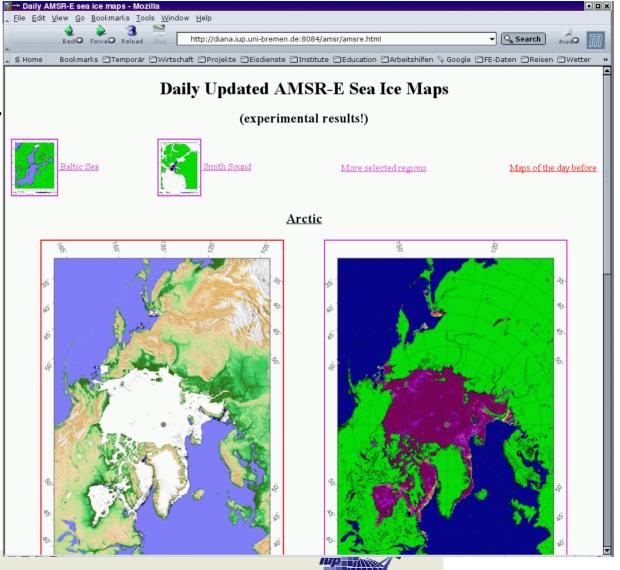
3. Determine emissivities of surface types by solving the linear system in \mathcal{E}_k :

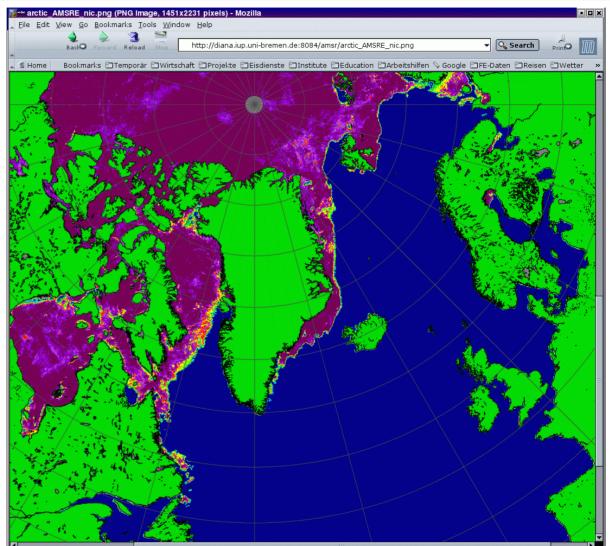
$$\varepsilon = \sum_{i,j} \sum_{k} A_{i,j} P_{i,j,k} \varepsilon_k$$

for many mesurements for each θ and ν of interest separately.

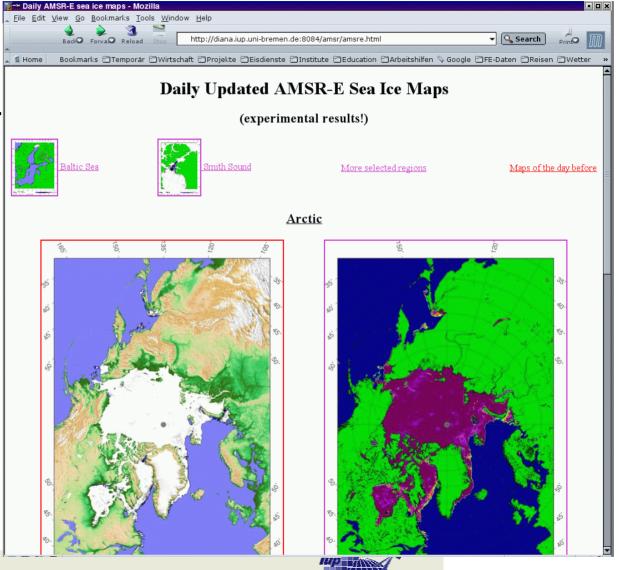


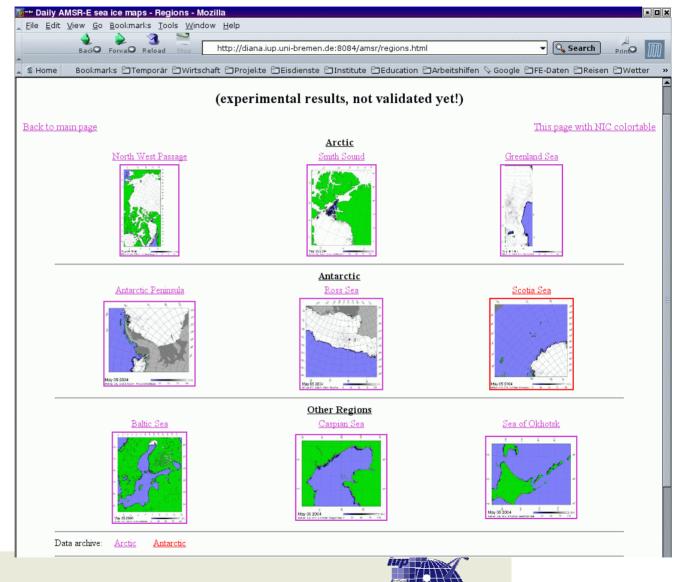
Results

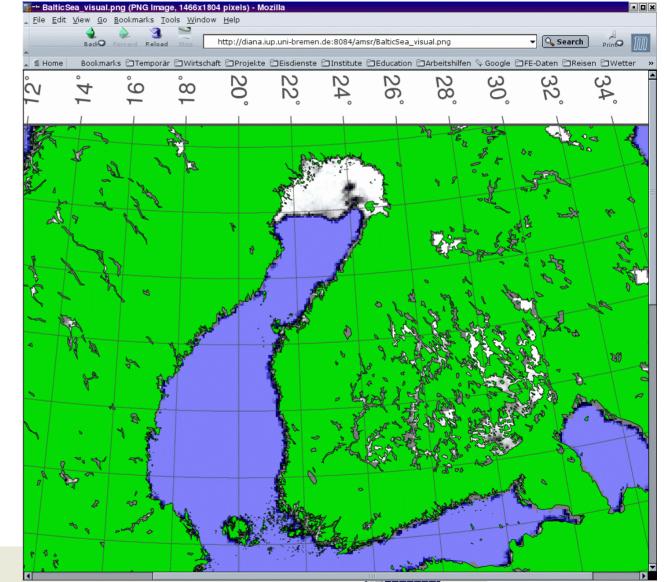

- Radiosonde profiles of R/V Polarstern 1984-2003 provided
- Tool to extract colocations, adjustable tolerances in time (5h) and space (600 km)
- Emissivity at 50.4 GHz, 2 surface types (OW, ice):



- NH + SH
- Resolution 6.25 km..
- More selected regions...






- NH + SH
- Resolution 6.25 km..
- More selected regions...

Regional maps at 3 km

Frequen	Frequency [GHz]		ion [km]				
SSM/I	AMSR(-E)	SSM/I	AMSR(-E)				
-	6.9	-	71x41				
-	10.7	-	46x25				
19	18.7	69x43	25x15				
22 V	23.8	50x50	23x14				
37	36.5	37x29	14x8				
85	89	15x13	6x4				
-	50.3 V	-	12x6				
-	52.8 V	-	12x6				

All channels H + V polarisation if not indicated otherwise. Channels near 50 GHz on AMSR only.

Desired?

What to propose?

Possibilities:

- IPY-CARE
- ICEMON
- other ??

IPY-CARE

IPY-CARE - Climate of the Arctic and its Role for Europe – a European component of the International Polar Year

- CARE 2003 unsuccessful IP under Global changes and Ecosystems – Hot spots in the earth system
- Running SSA to prepare IPY-CARE
- 6 modules /expert groups in SSA-CARE / WPs of CARE:
 - M1: Processes determining Arctic climate variability and changes
 - M2: Marine biological processes in response to climate changes
 - M3: Air-sea-ice meso-scale processes and climate variability
 - M4: Past climate variability
 - M5: Remote sensing & new techn for data provision
 - M6: Assessment of Arctic climate changes, European impacts and socio-economic consequences
- New module? Name?
- Open IPY symposium for IPY-CARE science plan
- SSA-CARE expert meetings for IPY-CARE science plan

- ICEMON Sea ice monitoring for marine operational safety, climate research, environmental management and resource exploitation on Polar Regions
- Implement a coherent European operational oceanography system for the high latitudes, consisting of sea ice, meteorological and ocenaographic services
- Part of GMES Services Global Monitoring for Environment and Security
- 17 partners, UB new in 2004

