IOMASA UAG2

Rasmus Tonboe Søren Andersen Thomas Bøvith DMI

Goals for IOMASA Sea Ice

Overall Goal:

Improve description and quantification of leads and polynias in daily hemispheric analyses.

Benefits are expected also in the low concentration ranges/ice edge area due to improved description of ice properties (e.g. thin ice).

- Better accounting for sea ice/snow properties.
- Improved use of multiple sensors for concentration retrieval.
- Improved use of and better atmospheric fields over consolidated sea ice.
- Improved use of high resolution information/channels.
- Extensive validation/testing

Status

Results likely to enter operations soon Ice/snow emission modelling Concentration algorithm evaluation AMSR processing Routine SAR classification for validation Longer operational scope Book-keeping Thermodynamic model Ice concentration system

Temporary melt in Baffin Bay December 2001

Temporary melt in the Arctic Ocean December 2002

A recent example OSI-SAF NH analyses

No such changes are found in available SAR imagery for the period

Observations April 2004

 NT2 is very stable

 Some long lasting 85 GHz depressions not noticed earlier

Surface

Melt detection

Ice surface melt is common in in winter especially along the ice edge The ice emissivity and backscatter changes are long lived (< 3 months)

Emission modelling

MEMLS obtained from C. Mätzler Added sea ice module (->MEMLSI) In-situ ice profiles from Polarstern March 2003 and collocated AMSR Tbs through DTU Grain sizes poorly defined Snow described qualitatively at best Lacks snow/ice density data for many stations Representativeness/varying spatial scales? Initial sensitivity study Draft report in progress

First-try, simulating AMSR measurements using MEMLSI and *in situ* observations, 23.03.2003 near 76.26°N, 23.28°E

Thick snow (36cm) profile on FY ice:

14 cm soft wind slab

0.1 cm thin icy layer

16 cm hard wind slab

6 cm depth hoar

First year ice, S: 4-13.6 psu.

Thin snow (7cm) profile on FY ice:

4 cm hard wind slab

3 cm depth hoar

First year ice, S: 4.4-13.5 psu.

Profile used to initialise MEMLSI in sensitivity studies

Туре	T[K]	Density [kg/m3]	Thickne ss [cm]	PCI [mm]	S [psu]	Snow/ice
Nearly new snow	253.0	260	7.0	0.05	0	Snow
Hard densified slap	257.0	410	5.0	0.08	0	Snow
Coarse grains	261.0	320	1.0	0.14	0	Snow
FY se <mark>a ice</mark>	262.0	920	2.0	0.18	7.0	Ice
FY se <mark>a ice</mark>	262.5	920	100.0	0.15	5.0	Ice

Important snow parameters:Density contrast between layersCorrelation length (grain size)

MEMLSI simulations of ice concentration

NASA Team: sensitive to layer contrast. Comiso frequency: moderately sensitive to scattering.

Near 90 GHz: moderately sensitive to deep scattering, sensitive to layer contrast.

NASA Team

Comiso frequency

Near 90GHz

07/03/2005

MEMLSI simulations of ice concentration

Comiso pol

A closer look at NT2

Meier (accepted TGRS 2004) found good agreement with AVHRR data

NT2

January 2004 Bootstrap

07-03-2005

NT

Arctic section

dmi.dk

NT2 atm. and partial conc. Type A/B conc. Atm. number

AMSR-E 89 GHz

- BUFR data available from NESDIS (2-3h delay)
- BUFR and HDF L1 data match within 0.5 K (max deviation)
- L1 and L2 differ more -> RSS is doing something to data
- Calibration mismatch between A and B horn in level 1 and 2
- Low pol. obs. match better
- Bias may be adjusted against SSMI

4×10

2×105

Validation

Validation is to use classified SAR data 30 scenes completed, 20 to be completed through April Matchup with SSM/I or AMSR data relatively simple Result will help in final algorithm selection

SAR validation data

Examples of results:

- Original data with training areas
- Resulting classification
- Masking of unreliable areas

Accuracy test

- Two independent operators:
 - Ice/water 2.1 %
 - Ice/ice 3.1 %

Basic conclusions

The following findings can be directly transferred to operations after validation:

- OSI-SAF algorithm needs maintenance
 - Bootstrap and/or NT2
 - Possibly Near 90 GHz with SSMIS (not really an iomasa finding)
 - To be confirmed in validation against SAR data
- Algorithm pros and cons so far:

90 GHz pol	Bootstrap	NT	NT2
Resolution	Weather insensitive	Temperature insensitive	Surface insensitive (seemingly)
Weather, Surface/snow	Temperature	Surface/snow	Some weather, surface- atmosphere confusion

Advanced developments

More experimental developments with uncertain operational scope : Book-keeping model Thermo-dynamic model Ice concentration system Could be considered e.g. in next phase of OSI-SAF

Sea-ice book-keeping model

- Todays ice conc. is measured by satellite: c
- Yesterdays ice is updated by satellite drift: *uc*
- The measured (*c*) and simulated (*uc*) ice are compared to keep track of new-ice formation and ice melt/ridging
- The model can track:
 - -ice age distribution
 -surface melt history
 -deformation/ridging

Oct. 1 - Dec. 31, 2000

Thermodynamic model Application example using a backscatter model

The meteorological record from the GreenIce camp in the Lincoln Sea 2004 is used in the coupled thermodynamic mass and backscatter model. The thermodynamic mass model ensures a realistic description of the snow/ ice profile under different meteorological forcing.

The simulated backscatter coefficient [dB](dotted line), liquid water content of the upper snow layer [%](dash-dotted line) and penetration depth [cm](dashed line) using a modified meteorological record from the GreenIce camp in the Lincoln Sea May 2004 and the multiyear ice profile in Appendix I. The air temperature [°C] is marked by the solid line and precipitation events on day 134, 135 and 136 of 5kg/m² are marked by vertical pins. The original meteorological record had persistent cold (about -10° C) conditions during the entire 10 day period and both backscatter and snow/ice parameters variability was small. In order to study the effect of different meteorological conditions the three precipitation events were added and 10°C and 20w/m² were added to the air temperature and incoming long-wave radiation respectively after day 137.

Ice concentration system

- Combine virtues of 89 GHz and low resolution Algorithms
- Atmospheric data from other space platforms should be integrated via assimilation in NWP model
- Flags to describe surface and/or atmospheric conditions such as:
 - R-factor
 - History from book-keeping and/or
 - Emissivity anomaly from thermodynamic model
- No general merging method exists for all applications:
 - Make an optimal level4a dataset based on comparison to SAR data
 - do our best with level4b
- All green blocks exist but need to be integrated

NWP data History Present (Assimilated AMSU)

AMSR (SSMI) data Level 1B

Level4a High res. (Sealion/ASI) Low res. (Bootstrap/nt2) Flags

Level4b Merged High/Low resolution Flags

Overall results

Likely impacts on OSI-SAF operations Revised OSI-SAF algorithm Higher resolution Use of 85/89 GHz Improved understanding of surface radiative processes Better sea ice retrieval Foundation for improving a range of parameters retrieved over sea ice

Thank you!