

Rasmus Tonboe Søren Andersen Thomas Bøvith DMI

Where are we now?

Results

Melt-refreeze analysis Emissivity modelling and sensitivity studies Thermodynamic model Book keeping model AMSR-E OSISAF processing chain Deliverables Day 0 data and reports (4.1) Ice concentration algorithm (4.2) ✓ Method(s) ok, report to be delivered Firm conclusions need reference data, therefore we retain OSISAF algorithm until d4.4 Sea ice dataset for investigation period (4.3) Validation and final conclusions (4.4) ✓ Synthesis of the various theoretical and observed characteristics Method used in 4.2 is not necessarily the final recommendation

Validation methods

Ship/in-situ observations

+Excellent ice type distinction possible

-Problematic viewing geometry and subjectivity

Area observed no more than 1-2 km

Aerial observations

+Relatively good observation geometry

-Subjective concentration estimates, clouds, possible surface type ambiguities Satellite VIS/IR

+Objective ice concentration estimates and good resolution

-Clouds, ice type ambiguities (thin ice)

Satellite SAR

+all-weather, semi-objective classification, excellent resolution

-ice type ambiguities (thin ice)

High res. Ice dynamics (RGPS)

+Independent method, allows estimation of ice age spectra

-Uncertainties in ice growth parameterisations, not snapshots

Kaleschke vs. Meier

Kaleschke dissertation

▶ Comparison of Polarstern ice concentations ($C = 87 \pm 13$ %) and SSM/I ice concentrations based on 54 days of about eight observations each day

Algorithm	Differenc	e [%] Correlation
ARTIST (ASI3)	-4 ± 12	0,66
NASA-TEAM	12 ± 15	0,20
NASA-TEAM-2	-3 ± 17	0,04

Summer data agreement 0 correlation for NT2

CV and N2 show best results during winter and high IC due to overshoot

Possible conclusion: IC>~90 best approximated by const.

Meier 2005

TABLE VII SUMMER REGIONAL BREAKDOWN OF SSM/I ICE CONCENTRATION ERROR (PERCENT)

Region	# 25 km		Mean			St. Dev./RMS			
	pixels	BT	CV	N2	NT	BT	CV	N2	NT
Baffin	777	-14.6	-1.4	-7.6	-13.4	13.5/19.9	14.7/14/8	8 13.4/15.4	14.9/20.0
Barents	2670	-4.4	4.7	-2.7	-11.3	13.6/14.3	17.3/17.5	15.7/15.9	15.6/19.3
Greenland	678	-3.2	9.0	3.6	-4.2	15.9/16.2	16.0/18.4	16.2/16.6	16.9/17.4
								-	-

TABLE VIII WINTER REGIONAL BREAKDOWN OF SSM/I ICE CONCENTRATION ERROR (PERCENT)

Region	# 25 km	Mean			St. Dev./RMS				
	pixels	BT	CV	N2	NT	BT	CV	N2	NT
Baffin	2386	-2.8	1.9	0.1	-4.3	12.1/12.4	12.3/12.4	12.1/12,1	12.5/13.2
Barents	2951	-3.4	1.8	0.3	-4.1	11.1/11.6	11.2/11.3	12.2/12.2	13.9/14.5
Greenland	4435	-7.3	-0.6	-1.5	-13.4	12.5/14.5	12.9/12.9	13.2/13.3	12.8/18.5

TABLE IX SSM/I ICE CONCENTRATION ERROR (PERCENT) FOR AVHRR CONCENTRATION RANGES

AVHRR	# 25 km		<u>M</u>	1074			St. Det	/RMS	
Conc. Range (%)	pixels	BT	CV	N2	NT	BT	CV	N2	NT
90-100	10639	-7.3	-1.2	-4.0	-11.7	8.9/11.5	7.8/7.9	7.8/8.8	10.1/15.5
0-90	3258	0.9	11.5	7.9	-0.3	20.1/20.1	22.6/25.4	22.3/23.7	21.7/21.7
50-100	13228	-6.6	0.5	-2.7	-10.6	10.7/12.6	11.3/11.3	10.4/10.7	11.5/15.6
0-50	669	19.9	26.9	28.7	22.4	23.1/30.5	29.5/39.9	28.7/40.6	27.1/35.2

RGPS divergence fields

3-day gridded RGPS data (almost undocumented) Divergence (threshold 0.02) vs. ice concentration decreases Correlations are erratic and mostly low

04-07-05

Correlations

04-07-05

Contingency analysis

bri	falling	rising
Divergence:	46	54
Convergence:	47	53
nt2	falling	rising
Divergence:	51	49
Convergence:	50	50
nt	falling	rising
Divergence:	52	48
Convergence:	48	52

cf	falling	rising
Divergence:	49	51
Convergence:	46	54
cp	falling	rising
Divergence:	46	54
Convergence:	49	51
n90	falling	rising
Divergence:	47	53
Convergence:	49	51
tud Divergence:	falling 47	rising 53

Divergence results probably dependent on thin ice sensitivity Convergence situations show more similar performance Area is known to be favorable for the NT algorithm

04-07-05

Raw RGPS deformations

Correlation between area change and concentration change (07012000-01022000), min $\Delta T = 2.9d$

	2.9 < ∆T < 3.5 NP=3522	3.5 < ∆T < 7 NP=2888
Bri	0.01	-0.02
NT2	0.02	-0.02
NT	-0.11	-0.04
CF	-0.05	-0.04
СР	0.04	-0.01
N90	0.05	0.00
TUD	0.02	0.00

What is next

Coupled thermodynamic and emissivity model Analyse SAR validation dataset Use Polarstern ice diaries **RGPS** raw deformation analysis? Analyse RGPS age spectra or summer backscatter dataset? Conclude/Report Coupled thermodynamic and emissivity model paper Validation/algorithm comparison paper Book-keeping and sea ice morphology **OSISAF** reanalysis November