IOMASA WP 1.2: Development of algorithms for retrieval of atmospheric parameters

Christian Melsheimer Georg Heygster Nizy Mathew

IUP, University of Bremen, Germany

IOMASA Progress Meeting 4, Oslo, 16–17 June, 2005

Outline

TWV retrieval from AMSU-B

- Basic TWV Algorithm
- Results
- Validation
- Data Production

2 Surface Emissivity at Temperature Sounding Frequencies

- Emissivity Algorithm
- Current Status
- Results

Outline

TWV retrieval from AMSU-B

- Basic TWV Algorithm
- Results
- Validation
- Data Production

Surface Emissivity at Temperature Sounding Frequencies

- Emissivity Algorithm
- Current Status
- Results

T_b at 3 different frequencies *i*, *j*, *k* at which ground emissivity ε is similar but water vapour absorption different; κ_i < κ_j < κ_k:

$$extsf{TWV} \sec heta = C_0 + C_1 \ln \left(rac{T_{b,i} - T_{b,j} - F_{ij}}{T_{b,j} - T_{b,k} - F_{jk}}
ight)$$

- 4 calibration parameters C_0 , C_1 , F_{ij} , and F_{jk} determined from regressions with radiosonde data and simulated T_b s
- Channels 3,4,5 for low TWV (< 1.5 kg/m²)
- Channels 2,3,4 for higher TWV (< 6 to 7 kg/m²)

our no.	1	2	3	4	5
Freq. [GHz]	89.0	150.0	182.31±7	182.31±3	182.31±1
AMSU channel	16	17	20	19	18

T_b at 3 different frequencies *i*, *j*, *k* at which ground emissivity ε is similar but water vapour absorption different; κ_i < κ_j < κ_k:

$$extsf{TWV} \sec heta = extsf{C}_0 + extsf{C}_1 \ln \left(rac{ extsf{T}_{b,i} - extsf{T}_{b,j} - extsf{F}_{ij}}{ extsf{T}_{b,j} - extsf{T}_{b,k} - extsf{F}_{jk}}
ight)$$

- 4 calibration parameters C_0 , C_1 , F_{ij} , and F_{jk} determined from regressions with radiosonde data and simulated T_b s
- Channels 3,4,5 for low TWV (< 1.5 kg/m²)
- Channels 2,3,4 for higher TWV (< 6 to 7 kg/m²)

our no.	1	2	3	4	5
Freq. [GHz]	89.0	150.0	182.31±7	182.31±3	182.31±1
AMSU channel	16	17	20	19	18

T_b at 3 different frequencies *i*, *j*, *k* at which ground emissivity ε is similar but water vapour absorption different; κ_i < κ_j < κ_k:

$$extsf{TWV} \sec heta = extsf{C}_0 + extsf{C}_1 \ln \left(rac{ extsf{T}_{b,i} - extsf{T}_{b,j} - extsf{F}_{ij}}{ extsf{T}_{b,j} - extsf{T}_{b,k} - extsf{F}_{jk}}
ight)$$

- 4 calibration parameters C_0 , C_1 , F_{ij} , and F_{jk} determined from regressions with radiosonde data and simulated T_b s
- Channels 3,4,5 for low TWV (< 1.5 kg/m²)
- Channels 2,3,4 for higher TWV (< 6 to 7 kg/m²)

our no.	1	2	3	4	5
Freq. [GHz]	89.0	150.0	182.31±7	182.31±3	182.31±1
AMSU channel	16	17	20	19	18

T_b at 3 different frequencies *i*, *j*, *k* at which ground emissivity ε is similar but water vapour absorption different; κ_i < κ_j < κ_k:

$$extsf{TWV} \sec heta = extsf{C}_0 + extsf{C}_1 \ln \left(rac{ extsf{T}_{b,i} - extsf{T}_{b,j} - extsf{F}_{ij}}{ extsf{T}_{b,j} - extsf{T}_{b,k} - extsf{F}_{jk}}
ight)$$

- 4 calibration parameters C_0 , C_1 , F_{ij} , and F_{jk} determined from regressions with radiosonde data and simulated T_b s
- Channels 3,4,5 for low TWV (< 1.5 kg/m²)
- Channels 2,3,4 for higher TWV (< 6 to 7 kg/m²)

our no.	1	2	3	4	5
Freq. [GHz]	89.0	150.0	182.31±7	182.31±3	182.31±1
AMSU channel	16	17	20	19	18

T_b at 3 different frequencies *i*, *j*, *k* at which ground emissivity ε is similar but water vapour absorption different; κ_i < κ_j < κ_k:

$$extsf{TWV} \sec heta = extsf{C}_0 + extsf{C}_1 \ln \left(rac{ extsf{T}_{b,i} - extsf{T}_{b,j} - extsf{F}_{ij}}{ extsf{T}_{b,j} - extsf{T}_{b,k} - extsf{F}_{jk}}
ight)$$

- 4 calibration parameters C_0 , C_1 , F_{ij} , and F_{jk} determined from regressions with radiosonde data and simulated T_b s
- Channels 3,4,5 for low TWV (< 1.5 kg/m²)
- Channels 2,3,4 for higher TWV (< 6 to 7 kg/m²)

our no.	1	2	3	4	5
Freq. [GHz]	89.0	150.0	182.31±7	182.31±3	182.31±1
AMSU channel	16	17	20	19	18

- TWV > 6 to 7 kg/m² ⇒channel 4 saturated as well: No TWV retrieval with the algorithm as is (upper 4 channels)
- Use channels 1 (89 GHz), 2 (150 GHz), 3 (183 \pm 7 GHz), but: channel 1 emissivity \neq other emissivities
- $\Rightarrow \text{ Algorithm not independent of emissivity any more}$ $W \sec \theta = C_0 + C_1 \log \tilde{\eta}_c$ where $<math>\tilde{\eta}_c = \frac{r_2}{r_1} \left[\frac{T_{b,1} - T_{b,2} - b_{12}}{T_{b,2} - T_{b,3} - b_{23}} + 1 \right] - 1$ $and <math>r_c = 1 - \epsilon_c$ (reflectivity)

- TWV > 6 to 7 kg/m² ⇒channel 4 saturated as well: No TWV retrieval with the algorithm as is (upper 4 channels)
- Use channels 1 (89 GHz), 2 (150 GHz), 3 (183 \pm 7 GHz), but: channel 1 emissivity \neq other emissivities
- ⇒ Algorithm not independent of emissivity any more $W \sec \theta = C_0 + C_1 \log \tilde{\eta}_c$ where $\tilde{\eta}_c = \frac{I_2}{I_1} \left[\frac{T_{b,1} - T_{b,2} - b_{12}}{T_{b,2} - T_{b,3} - b_{23}} + 1 \right] - 1$ and $r_i = 1 - \varepsilon_i$ (reflectivity)

- TWV > 6 to 7 kg/m² ⇒channel 4 saturated as well: No TWV retrieval with the algorithm as is (upper 4 channels)
- Use channels 1 (89 GHz), 2 (150 GHz), 3 (183 \pm 7 GHz), but: channel 1 emissivity \neq other emissivities
- \Rightarrow Algorithm not independent of emissivity any more:

```
W \sec \theta = C_0 + C_1 \log \tilde{\eta}_c
where
\tilde{\eta}_c = \frac{r_2}{r_1} \left[ \frac{T_{b,1} - T_{b,2} - b_{12}}{T_{b,2} - T_{b,3} - b_{23}} + 1 \right] - 1
and r_i = 1 - \varepsilon_i (reflectivity)
```

< 回 > < 三 > < 三 >

- TWV > 6 to 7 kg/m² ⇒channel 4 saturated as well: No TWV retrieval with the algorithm as is (upper 4 channels)
- Use channels 1 (89 GHz), 2 (150 GHz), 3 (183 \pm 7 GHz), but: channel 1 emissivity \neq other emissivities
- ⇒ Algorithm not independent of emissivity any more: $W \sec \theta = C_0 + C_1 \log \tilde{\eta}_c$

where $\tilde{\eta}_{c} = \frac{r_{2}}{r_{1}} \left[\frac{T_{b,1} - T_{b,2} - b_{12}}{T_{b,2} - T_{b,3} - b_{23}} + 1 \right] - 1$ and $r_{i} = 1 - \varepsilon_{i}$ (reflectivity)

< 回 > < 三 > < 三 >

- TWV > 6 to 7 kg/m² ⇒channel 4 saturated as well: No TWV retrieval with the algorithm as is (upper 4 channels)
- Use channels 1 (89 GHz), 2 (150 GHz), 3 (183 \pm 7 GHz), but: channel 1 emissivity \neq other emissivities
- ⇒ Algorithm not independent of emissivity any more: $W \sec \theta = C_0 + C_1 \log \tilde{\eta}_c$ where $\tilde{\tau} = \frac{T_2 \left[T_{b,1} - T_{b,2} - b_{12} + 4 \right]}{T_{b,1} - T_{b,2} - b_{12} + 4}$

$$\tilde{\eta}_c = \frac{r_2}{r_1} \left[\frac{r_{b,1} - p_{b,2} - r_{1,3}}{T_{b,2} - T_{b,3} - b_{23}} + 1 \right] - 1$$

and $r_i = 1 - \varepsilon_i$ (reflectivity)

- TWV > 6 to 7 kg/m² ⇒channel 4 saturated as well: No TWV retrieval with the algorithm as is (upper 4 channels)
- Use channels 1 (89 GHz), 2 (150 GHz), 3 (183 \pm 7 GHz), but: channel 1 emissivity \neq other emissivities
- $\Rightarrow \text{ Algorithm not independent of emissivity any more:}$ $W \sec \theta = C_0 + C_1 \log \tilde{\eta}_c$ where $\tilde{\eta}_c = \frac{r_2}{r_1} \left[\frac{T_{b,1} - T_{b,2} - b_{12}}{T_{b,2} - T_{b,3} - b_{23}} + 1 \right] - 1$ $and <math>r_i = 1 - \varepsilon_i$ (reflectivity)

A (10) A (10)

- For the T_b simulations (for deriving calibration parameters C_0 , C_1, b_{12}, b_{23}), ε_{89} as a function of ε_{157} needed
- For the retrieval, only the reflectivity ratio $r_2/r_1 = (1 \varepsilon_{157})/(1 \varepsilon_{89})$ needed
- \Rightarrow Constant r_2/r_1 would be good (so we don't need emissivity maps)
- If ε₈₉ reaches 1.0 before ε₁₅₇: r₂/r₁ has a singularity (→ ∞) that makes retrieval fail.
- If $\varepsilon_{89}(\varepsilon_{157} = 1) = 1$ (physical meaning: ...), r_2/r_1 is constant

- For the T_b simulations (for deriving calibration parameters C_0 , C_1, b_{12}, b_{23}), ε_{89} as a function of ε_{157} needed
- For the retrieval, only the reflectivity ratio $r_2/r_1 = (1 \varepsilon_{157})/(1 \varepsilon_{89})$ needed
- \Rightarrow Constant r_2/r_1 would be good (so we don't need emissivity maps)
- If ε₈₉ reaches 1.0 before ε₁₅₇: r₂/r₁ has a singularity (→ ∞) that makes retrieval fail.
- If $\varepsilon_{89}(\varepsilon_{157} = 1) = 1$ (physical meaning: ...), r_2/r_1 is constant

- For the T_b simulations (for deriving calibration parameters C_0 , C_1, b_{12}, b_{23}), ε_{89} as a function of ε_{157} needed
- For the retrieval, only the reflectivity ratio $r_2/r_1 = (1 \varepsilon_{157})/(1 \varepsilon_{89})$ needed
- \Rightarrow Constant r_2/r_1 would be good (so we don't need emissivity maps)
 - If ε₈₉ reaches 1.0 before ε₁₅₇: r₂/r₁ has a singularity (→ ∞) that makes retrieval fail.
 - If $\varepsilon_{89}(\varepsilon_{157} = 1) = 1$ (physical meaning: ...), r_2/r_1 is constant

- For the T_b simulations (for deriving calibration parameters C_0 , C_1, b_{12}, b_{23}), ε_{89} as a function of ε_{157} needed
- For the retrieval, only the reflectivity ratio $r_2/r_1 = (1 \varepsilon_{157})/(1 \varepsilon_{89})$ needed
- \Rightarrow Constant r_2/r_1 would be good (so we don't need emissivity maps)
 - If ε₈₉ reaches 1.0 before ε₁₅₇: r₂/r₁ has a singularity (→ ∞) that makes retrieval fail.

• If $\varepsilon_{89}(\varepsilon_{157} = 1) = 1$ (physical meaning: ...), r_2/r_1 is constant

- For the T_b simulations (for deriving calibration parameters C_0 , C_1, b_{12}, b_{23}), ε_{89} as a function of ε_{157} needed
- For the retrieval, only the reflectivity ratio $r_2/r_1 = (1 \varepsilon_{157})/(1 \varepsilon_{89})$ needed
- \Rightarrow Constant r_2/r_1 would be good (so we don't need emissivity maps)
 - If ε₈₉ reaches 1.0 before ε₁₅₇: r₂/r₁ has a singularity (→ ∞) that makes retrieval fail.
 - If $\varepsilon_{89}(\varepsilon_{157} = 1) = 1$ (physical meaning: ...), r_2/r_1 is constant

Emissivity Data

From SEPOR/POLEX campaign, emission of various surface types in winter was determined for frequencies needed here (89 GHz, 157 GHz)

• Linear regression to get $\varepsilon_{89}(\varepsilon_{157})$, but adding point (1, 1) with large weight to emissivity data to get close to condition $\varepsilon_{89}(\varepsilon_{157} = 1) = 1$

< 回 > < 回 > < 回 >

Emissivity Data

- From SEPOR/POLEX campaign, emission of various surface types in winter was determined for frequencies needed here (89 GHz, 157 GHz)
- Linear regression to get $\varepsilon_{89}(\varepsilon_{157})$, but adding point (1, 1) with large weight to emissivity data to get close to condition $\varepsilon_{89}(\varepsilon_{157} = 1) = 1$

A B F A B F

A .

Emissivity Data

- From SEPOR/POLEX campaign, emission of various surface types in winter was determined for frequencies needed here (89 GHz, 157 GHz)
- Linear regression to get $\varepsilon_{89}(\varepsilon_{157})$, but adding point (1, 1) with large weight to emissivity data to get close to condition $\varepsilon_{89}(\varepsilon_{157} = 1) = 1$

A (10) A (10) A (10)

Putting together all 3 sub-algorithms

Applying "high" algorithm only over sea ice; ice information from,

A (10) A (10) A (10)

Putting together all 3 sub-algorithms

"low" ch. 3,4,5 – TWV $< 1.5\,kg/m^2$

"medium" ch. 2,3,4 – 1.5 kg/m² < TWV <7.0 kg/m² "high" ch. 1,2,3 – 7.0 kg/m² < TWV <12.0?? kg/m²

• Applying "high" algorithm only over sea ice; ice information from, e.g., ASI (ARTIST sea ice) algorithm data.

A (10) A (10) A (10)

Putting together all 3 sub-algorithms

"low" ch. 3,4,5 – TWV $< 1.5\,kg/m^2$

"medium" ch. 2,3,4 – 1.5 kg/m² $< TWV < \! 7.0 \, kg/m^2$

"high" ch. 1,2,3 – 7.0 kg/m² < TWV < 12.0?? kg/m²

• Applying "high" algorithm only over sea ice; ice information from, e.g., ASI (ARTIST sea ice) algorithm data.

< 回 > < 三 > < 三 >

• Putting together all 3 sub-algorithms

"low" ch. 3,4,5 – TWV $< 1.5\,kg/m^2$

"medium" ch. 2,3,4 – 1.5 kg/m² $< TWV <\! 7.0\,kg/m^2$

"high" ch. 1,2,3 – 7.0 kg/m² < TWV < 12.0?? kg/m²

• Applying "high" algorithm only over sea ice; ice information from, e.g., ASI (ARTIST sea ice) algorithm data.

< 回 > < 三 > < 三 >

Putting together all 3 sub-algorithms

"low" ch. 3,4,5 – TWV $< 1.5\,kg/m^2$

"medium" ch. 2,3,4 – 1.5 kg/m² < TWV < 7.0 kg/m²

"high" ch. 1,2,3 – 7.0 kg/m² < TWV < 12.0?? kg/m²

• Applying "high" algorithm only over sea ice; ice information from, e.g., ASI (ARTIST sea ice) algorithm data.

< 回 > < 回 > < 回 >

TWV map from Full Algorithm

TWV from AMSU, 18 Feb, 2001

э

TWV map from Full Algorithm

270

280

190' 180' 170' 160' 150' 180' 180' 170' 160' 150' 180. kg/m² 52 260 100 ŝ 290 ġ, 370. · 330. 340. 350. 0. 10 20 Ó 30

TWV from AMSU, 18 Feb, 2001

NCEP TWV, same day

220 210 200

- Calibration parameters C_{Ω} and C_1 are determined from linear fit of log $\tilde{\eta}_c$ which contains simulated T_b s based on radiosonde data.
- Plot the regression line

- Calibration parameters C_{Ω} and C_1 are determined from linear fit of log $\tilde{\eta}_c$ which contains simulated T_b s based on radiosonde data.
- Plot TWV from radiosonde vs. corresponding log $\tilde{\eta}_c$ (various emissivities)
- Plot the regression line

- Calibration parameters C_{Ω} and C_1 are determined from linear fit of log $\tilde{\eta}_c$ which contains simulated T_b s based on radiosonde data.
- Plot TWV from radiosonde vs. corresponding log $\tilde{\eta}_c$ (various emissivities)
- Plot the regression line $C_0 + C_1 \log \tilde{\eta}_c$

A B F A B F

A

- Calibration parameters C_{Ω} and C_1 are determined from linear fit of log $\tilde{\eta}_c$ which contains simulated T_b s based on radiosonde data.
- Plot TWV from radiosonde vs. corresponding log $\tilde{\eta}_c$ (various emissivities) - crosses
- Plot the regression line $C_0 + C_1 \log \tilde{\eta}_c$ – white line

Channels 1,2,3, near-nadir

E 5 4 E

Channels 2,3,4, near-nadir

Channels 3,4,5, near-nadir

< ロ > < 回 > < 回 > < 回 > < 回</p>

Validation

"Internal" Validation B

- Divide radiosonde (RS) randomly into two groups: regression group and test group
- from test group:

< 回 > < 三 > < 三 >

- Divide radiosonde (RS) randomly into two groups: regression group and test group
- from regression group: get calibration parameters
- from test group:

< 回 > < 三 > < 三 >
"Internal" Validation B

- Divide radiosonde (RS) randomly into two groups: regression group and test group
- from regression group: get calibration parameters
- from test group:
 - calculate TWV directly from RS data

Validation

"Internal" Validation B

- Divide radiosonde (RS) randomly into two groups: regression group and test group
- from regression group: get calibration parameters
- from test group:
 - calculate TWV directly from RS data
 - simulate AMSU T_bs and calculate TWV using the calibration parameters determined from regression group

< 回 > < 回 > < 回 > -

"Internal" Validation B

- Divide radiosonde (RS) randomly into two groups: regression group and test group
- from regression group: get calibration parameters
- from test group:
 - calculate TWV directly from RS data
 - simulate AMSU T_bs and calculate TWV using the calibration parameters determined from regression group
- Compare simulated-AMSU TWV to RS TWV

A (10) A (10)

Validation 3,4,5-Algorithm

Simulated-AMSU TWV vs. RS TWV

C. Melsheimer (IUP)

Atmospheric parameters

PM 4, 16–17 June, 2005 13 / 28

Validation 2,3,4-Algorithm

Simulated-AMSU TWV vs. RS TWV

C. Melsheimer (IUP)

PM 4, 16-17 June, 2005 14/28

Validation 1,2,3-Algorithm

Simulated-AMSU TWV vs. RS TWV

C. Melsheimer (IUP)

< ロ > < 回 > < 回 > < 回 > < 回</p>

Validation

"External" Validation: GPS-derived TWV)

 Compared GPS-derived TWV data from some Antarctic stations (TU Dresden, S. Vey) to AMSU-derived using our algorithm. Here: Casey and Davis:

< 回 > < 三 > < 三 >

"External" Validation: GPS-derived TWV)

• Compared GPS-derived TWV data from some Antarctic stations (TU Dresden, *S. Vey*) to AMSU-derived using our algorithm. Here: Casey and Davis:

C. Melsheimer (IUP)

Atmospheric parameters

PM 4, 16–17 June, 2005 16 / 28

< 6 k

"External" Validation: GPS-derived TWV)

• Compared GPS-derived TWV data from some Antarctic stations (TU Dresden, *S. Vey*) to AMSU-derived using our algorithm. Here: Casey and Davis:

Slight bias

C. Melsheimer (IUP)

THE 1 1

"External" Validation: Regression

Regression GPS-derived versus AMSU-B-derived TWV

- High correlation
- More comparison ongoing

"External" Validation: Regression

Regression GPS-derived versus AMSU-B-derived TWV

- High correlation
- More comparison ongoing

"External" Validation: Regression

Regression GPS-derived versus AMSU-B-derived TWV

- High correlation
- More comparison ongoing

Further validation

- Compare with statistical retrieval data from AMSR (IOMASA Ice Browser IIB at DTU)
- Compare with measured TWV (radiosonde stations or Polarstern soundings)

A (10) A (10)

Further validation

- Compare with statistical retrieval data from AMSR (IOMASA Ice Browser IIB at DTU)
- Compare with measured TWV (radiosonde stations or Polarstern soundings)

< 回 > < 三 > < 三 >

 TWV (up to about 7 kg/m²) can be calculated from AMSU-B swath data in form of

- swath data (ASCII or binary), i.e. table with 3 columns (longitude, latitude, TWV), one value for each AMSU "pixel"
- daily averages, monthly averages
 - maps (i.e., images: PostScript, PNG)
 - grid files (GMT output in NetCDF format),
 - more standard NetCDF (can be read, e.g., by GrADS)
- Swath TWV data (up to 7 kg/m²) for investigation period available at IUP and DTU
- TWV being calculated daily from current AMSU data ("real time") in IIB@DTU

 TWV (up to about 7 kg/m²) can be calculated from AMSU-B swath data in form of

- swath data (ASCII or binary), i.e. table with 3 columns (longitude, latitude, TWV), one value for each AMSU "pixel"
- daily averages, monthly averages
 - maps (i.e., images: PostScript, PNG)
 - * grid files (GMT output in NetCDF format),
 - * more standard NetCDF (can be read, e.g., by GrADS)
- Swath TWV data (up to 7 kg/m²) for investigation period available at IUP and DTU
- TWV being calculated daily from current AMSU data ("real time") in IIB@DTU

 TWV (up to about 7 kg/m²) can be calculated from AMSU-B swath data in form of

- swath data (ASCII or binary), i.e. table with 3 columns (longitude, latitude, TWV), one value for each AMSU "pixel"
- daily averages, monthly averages
 - maps (i.e., images: PostScript, PNG)
 - grid files (GMT output in NetCDF format),
 - more standard NetCDF (can be read, e.g., by GrADS)
- Swath TWV data (up to 7 kg/m²) for investigation period available at IUP and DTU
- TWV being calculated daily from current AMSU data ("real time") in IIB@DTU

 TWV (up to about 7 kg/m²) can be calculated from AMSU-B swath data in form of

- swath data (ASCII or binary), i.e. table with 3 columns (longitude, latitude, TWV), one value for each AMSU "pixel"
- daily averages, monthly averages
 - ★ maps (i.e., images: PostScript, PNG)
 - * grid files (GMT output in NetCDF format),
 - more standard NetCDF (can be read, e.g., by GrADS)
- Swath TWV data (up to 7 kg/m²) for investigation period available at IUP and DTU
- TWV being calculated daily from current AMSU data ("real time") in IIB@DTU

 TWV (up to about 7 kg/m²) can be calculated from AMSU-B swath data in form of

- swath data (ASCII or binary), i.e. table with 3 columns (longitude, latitude, TWV), one value for each AMSU "pixel"
- daily averages, monthly averages
 - ★ maps (i.e., images: PostScript, PNG)
 - * grid files (GMT output in NetCDF format),
 - ★ more standard NetCDF (can be read, e.g., by GrADS)
- Swath TWV data (up to 7 kg/m²) for investigation period available at IUP and DTU
- TWV being calculated daily from current AMSU data ("real time") in IIB@DTU

 TWV (up to about 7 kg/m²) can be calculated from AMSU-B swath data in form of

- swath data (ASCII or binary), i.e. table with 3 columns (longitude, latitude, TWV), one value for each AMSU "pixel"
- daily averages, monthly averages
 - maps (i.e., images: PostScript, PNG)
 - grid files (GMT output in NetCDF format),
 - more standard NetCDF (can be read, e.g., by GrADS)
- Swath TWV data (up to 7 kg/m²) for investigation period available at IUP and DTU
- TWV being calculated daily from current AMSU data ("real time") in IIB@DTU

 TWV (up to about 7 kg/m²) can be calculated from AMSU-B swath data in form of

- swath data (ASCII or binary), i.e. table with 3 columns (longitude, latitude, TWV), one value for each AMSU "pixel"
- daily averages, monthly averages
 - maps (i.e., images: PostScript, PNG)
 - grid files (GMT output in NetCDF format),
 - more standard NetCDF (can be read, e.g., by GrADS)
- Swath TWV data (up to 7 kg/m²) for investigation period available at IUP and DTU
- TWV being calculated daily from current AMSU data ("real time") in IIB@DTU

Outline

TWV retrieval from AMSU-B

- Basic TWV Algorithm
- Results
- Validation
- Data Production

2 Surface Emissivity at Temperature Sounding Frequencies

- Emissivity Algorithm
- Current Status
- Results

< 回 > < 回 > < 回 >

Emissivity Algorithm (work by Nizy Mathew)

 Total brightness temperature measured by satellite sensor like AMSU-A (viewing angle θ, frequency ν):

$$T_b(heta,
u) = c_1 + c_2 \varepsilon_s T_s + (1 - \varepsilon_s) c_3$$

where

 $c_1 = T_u(\nu, \theta)$, upwelling radiation from atmosphere $c_2 = e^{-\tau(0) \sec \theta}$, $\tau(0) = opacity$ of atmosphere $c_3 = T_d(\nu, \theta)e^{-\tau(0) \sec \theta}$, downwelling radiation from atmosphere T_s = physical temperature of the surface ε =emissivity of the surface

$$\varepsilon = (T_b - c_1 - c_3)/(c_2T_s - c_3)$$

A (10) A (10)

Emissivity Algorithm (work by Nizy Mathew)

 Total brightness temperature measured by satellite sensor like AMSU-A (viewing angle θ, frequency ν):

$$T_b(\theta,\nu) = c_1 + c_2\varepsilon_s T_s + (1-\varepsilon_s)c_3$$

where

 $\begin{array}{l} c_1 = T_u(\nu, \theta), \text{ upwelling radiation from atmosphere} \\ c_2 = \mathrm{e}^{-\tau(0)\sec\theta}, \, \tau(0) = \mathrm{opacity} \text{ of atmosphere} \\ c_3 = T_d(\nu, \theta) \mathrm{e}^{-\tau(0)\sec\theta}, \, \mathrm{downwelling \ radiation \ from \ atmosphere} \\ T_s = \mathrm{physical \ temperature \ of \ the \ surface} \\ \varepsilon = \mathrm{emissivity \ of \ the \ surface} \end{array}$

$$\Rightarrow$$

$$\varepsilon = (T_b - c_1 - c_3)/(c_2T_s - c_3)$$

•
$$\varepsilon = (T_b - c_1 - c_3)/(c_2 T_s - c_3)$$

- For $\varepsilon = 0$: $T_b(\varepsilon = 0) = c_1 + c_3$
- For $\varepsilon = 1$: $T_b(\varepsilon = 1) = c_1 + c_2 T_s$
- $\Rightarrow \varepsilon = [T_b T_b(\varepsilon_s = 0)] / [T_b(\varepsilon_s = 1) T_b(\varepsilon_s = 0)]$
- This means: Emissivity at given ν can be determined from measured (AMSU-A) T_b if we simulate T_b(ε = 0) and T_b(ε = 1) for ν
- Here: MWMOD (MicroWave radiative transfer MODel). Input: Atmospheric profile from
 - Measurements during Polarstern cruises; Problem: only in summer, only few locations
 - ECMWF model profiles

•
$$\varepsilon = (T_b - c_1 - c_3)/(c_2 T_s - c_3)$$

• For
$$\varepsilon = 0$$
: $T_b(\varepsilon = 0) = c_1 + c_3$

- For $\varepsilon = 1$: $T_b(\varepsilon = 1) = c_1 + c_2 T_s$
- $\Rightarrow \varepsilon = [T_b T_b(\varepsilon_s = 0)] / [T_b(\varepsilon_s = 1) T_b(\varepsilon_s = 0)]$
- This means: Emissivity at given ν can be determined from measured (AMSU-A) T_b if we simulate T_b(ε = 0) and T_b(ε = 1) for ν
- Here: MWMOD (MicroWave radiative transfer MODel). Input: Atmospheric profile from
 - Measurements during Polarstern cruises; Problem: only in summer, only few locations
 - ECMWF model profiles

•
$$\varepsilon = (T_b - c_1 - c_3)/(c_2T_s - c_3)$$

• For
$$\varepsilon = 0$$
: $T_b(\varepsilon = 0) = c_1 + c_3$

- For $\varepsilon = 1$: $T_b(\varepsilon = 1) = c_1 + c_2 T_s$
- $\Rightarrow \varepsilon = [T_b T_b(\varepsilon_s = 0)] / [T_b(\varepsilon_s = 1) T_b(\varepsilon_s = 0)]$
- This means: Emissivity at given ν can be determined from measured (AMSU-A) T_b if we simulate T_b(ε = 0) and T_b(ε = 1) for ν
- Here: MWMOD (MicroWave radiative transfer MODel). Input: Atmospheric profile from
 - Measurements during Polarstern cruises; Problem: only in summer, only few locations
 - ECMWF model profiles

•
$$\varepsilon = (T_b - c_1 - c_3)/(c_2 T_s - c_3)$$

• For
$$\varepsilon = 0$$
: $T_b(\varepsilon = 0) = c_1 + c_3$

• For
$$\varepsilon = 1$$
: $T_b(\varepsilon = 1) = c_1 + c_2 T_s$

$$\Rightarrow \varepsilon = [T_b - T_b(\varepsilon_s = 0)] / [T_b(\varepsilon_s = 1) - T_b(\varepsilon_s = 0)]$$

- This means: Emissivity at given ν can be determined from measured (AMSU-A) T_b if we simulate T_b(ε = 0) and T_b(ε = 1) for ν
- Here: MWMOD (MicroWave radiative transfer MODel). Input: Atmospheric profile from
 - Measurements during Polarstern cruises; Problem: only in summer, only few locations
 - ECMWF model profiles

•
$$\varepsilon = (T_b - c_1 - c_3)/(c_2 T_s - c_3)$$

• For
$$\varepsilon = 0$$
: $T_b(\varepsilon = 0) = c_1 + c_3$

• For
$$\varepsilon = 1$$
: $T_b(\varepsilon = 1) = c_1 + c_2 T_s$

$$\Rightarrow \varepsilon = [T_b - T_b(\varepsilon_s = 0)] / [T_b(\varepsilon_s = 1) - T_b(\varepsilon_s = 0)]$$

- This means: Emissivity at given ν can be determined from measured (AMSU-A) T_b if we simulate T_b(ε = 0) and T_b(ε = 1) for ν
- Here: MWMOD (MicroWave radiative transfer MODel). Input: Atmospheric profile from
 - Measurements during Polarstern cruises; Problem: only in summer, only few locations
 - ECMWF model profiles

•
$$\varepsilon = (T_b - c_1 - c_3)/(c_2 T_s - c_3)$$

• For
$$\varepsilon = 0$$
: $T_b(\varepsilon = 0) = c_1 + c_3$

• For
$$\varepsilon = 1$$
: $T_b(\varepsilon = 1) = c_1 + c_2 T_s$

$$\Rightarrow \varepsilon = [T_b - T_b(\varepsilon_s = 0)] / [T_b(\varepsilon_s = 1) - T_b(\varepsilon_s = 0)]$$

- This means: Emissivity at given ν can be determined from measured (AMSU-A) T_b if we simulate T_b(ε = 0) and T_b(ε = 1) for ν
- Here: MWMOD (MicroWave radiative transfer MODel). Input: Atmospheric profile from
 - Measurements during Polarstern cruises; Problem: only in summer, only few locations
 - ECMWF model profiles

•
$$\varepsilon = (T_b - c_1 - c_3)/(c_2 T_s - c_3)$$

• For
$$\varepsilon = 0$$
: $T_b(\varepsilon = 0) = c_1 + c_3$

• For
$$\varepsilon = 1$$
: $T_b(\varepsilon = 1) = c_1 + c_2 T_s$

$$\Rightarrow \varepsilon = [T_b - T_b(\varepsilon_s = 0)] / [T_b(\varepsilon_s = 1) - T_b(\varepsilon_s = 0)]$$

- This means: Emissivity at given ν can be determined from measured (AMSU-A) T_b if we simulate T_b(ε = 0) and T_b(ε = 1) for ν
- Here: MWMOD (MicroWave radiative transfer MODel). Input: Atmospheric profile from
 - Measurements during Polarstern cruises; Problem: only in summer, only few locations
 - ECMWF model profiles

•
$$\varepsilon = (T_b - c_1 - c_3)/(c_2 T_s - c_3)$$

• For
$$\varepsilon = 0$$
: $T_b(\varepsilon = 0) = c_1 + c_3$

• For
$$\varepsilon = 1$$
: $T_b(\varepsilon = 1) = c_1 + c_2 T_s$

$$\Rightarrow \varepsilon = [T_b - T_b(\varepsilon_s = 0)] / [T_b(\varepsilon_s = 1) - T_b(\varepsilon_s = 0)]$$

- This means: Emissivity at given ν can be determined from measured (AMSU-A) T_b if we simulate T_b(ε = 0) and T_b(ε = 1) for ν
- Here: MWMOD (MicroWave radiative transfer MODel). Input: Atmospheric profile from
 - Measurements during Polarstern cruises; Problem: only in summer, only few locations
 - ECMWF model profiles

- Alternative algorithm proposed by Leif at PM3 is similar: Uses ratios of differences of measured and modelled T_bs.
- Uses additional approximations:
 - isothermal atmosphere
 - nadir view
 - negligible effect of water vapour

ヘロト ヘ回ト ヘヨト ヘヨト

- Alternative algorithm proposed by Leif at PM3 is similar: Uses ratios of differences of measured and modelled T_bs.
- Uses additional approximations:
 - isothermal atmosphere
 - nadir view
 - negligible effect of water vapour

- Alternative algorithm proposed by Leif at PM3 is similar: Uses ratios of differences of measured and modelled T_bs.
- Uses additional approximations:
 - isothermal atmosphere
 - nadir view
 - negligible effect of water vapour

A (10) A (10)

- Alternative algorithm proposed by Leif at PM3 is similar: Uses ratios of differences of measured and modelled T_bs.
- Uses additional approximations:
 - isothermal atmosphere
 - nadir view
 - negligible effect of water vapour

A (10) A (10)
Difference IUP and DTU Emissivity Algorithms

- Alternative algorithm proposed by Leif at PM3 is similar: Uses ratios of differences of measured and modelled T_bs.
- Uses additional approximations:
 - isothermal atmosphere
 - nadir view
 - negligible effect of water vapour

< 回 > < 三 > < 三 >

Algorithm is implemented and running

- Comparing emissivities of open water retrieved with algorithm and modelled by FASTEM (state-of-the-art sea surface emissivity model
- Emissivity maps etc. being produced
- Correlations between emissivities at different frequencies being investigated

< 回 > < 回 > < 回 >

- Algorithm is implemented and running
- Comparing emissivities of open water retrieved with algorithm and modelled by FASTEM (state-of-the-art sea surface emissivity model
- Emissivity maps etc. being produced

A (10) A (10)

- Algorithm is implemented and running
- Comparing emissivities of open water retrieved with algorithm and modelled by FASTEM (state-of-the-art sea surface emissivity model
- Emissivity maps etc. being produced

A (10) A (10)

- Algorithm is implemented and running
- Comparing emissivities of open water retrieved with algorithm and modelled by FASTEM (state-of-the-art sea surface emissivity model
- Emissivity maps etc. being produced
- Correlations between emissivities at different frequencies being investigated

< 回 > < 三 > < 三 >

Comaparison with FASTEM

Modelled and retrieved emissivity. Left: Arctic, right: Antarctic

< 🗇 🕨

Results

Seasonal Variation

Seasonal variation of emissivity over multi-year ice in the Arctic. Note: lowest at 50.3 GHz

< 一型

PM 4, 16-17 June, 2005

26/28

Results

Emissivity, Antarctic, 25 Apr 2002, AMSU

C. Melsheimer (IUP)

Atmospheric parameters

PM 4, 16-17 June, 2005 27 / 28

Correlation of Emissivities

Correlation of emissivity between the various window channel frequencies of AMSU-A and B, one-day average. Up to 3 clouds of data points: open water, sea ice, land ice