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Abstract

The majority of climate models underestimate the decline of Arctic sea ice
extent. The melting rate of Arctic sea ice in summer is strongly influenced by
melt ponds. However, the accurate representation of melt ponds in climate
models is an ongoing challenge. In this work, we investigate the new Melt Pond
Detector (MPD) algorithm for retrieval of melt pond fraction on Arctic sea
ice from the optical satellite sensor MERIS. It is found that the built-in cloud
filtering is not sufficient to eliminate the strong influence of cloud contamination
in the melt pond product. This is resolved using the MODIS cloud fraction data
for additional screening of the gridded product and by developing a Bayesian
cloud detection scheme for MERIS swath data that shows a reliable perfomance
over summer sea ice. The MPD melt pond fractions are compared to an
independent product derived from MODIS observations. Daily maps of the
central Arctic agree remarkably well (RMSD = 0.04, R = 0.95). A similarly
good agreement is found for maps with Arctic-wide coverage (RMSD = 0.06,
R = 0.85), if relative melt pond fraction and melt pond area fraction are
compared. This indicates that at least one of the products is influenced by
open water. A linear dependency of melt pond fraction on open water fraction
is found in the MODIS dataset. However, we also found that MPD yielded
higher values for lower sea ice concentrations when comparing MPD to high
resolution satellite images from the Global Fiducials Library. A good agreement
is found in this comparison for fully ice covered regions (RMSD = 0.09, mean
R = 0.61). Therefore, we conclude that the MPD dataset offers a possibility to
better understand and model the influence of melt ponds on Arctic sea ice.





Zusammenfassung

Die Ausdehnung von arktischem Meereis zeigt seit Jahren einen rückläufigen
Trend, der von Klimamodellen nicht korrekt wiedergegeben wird. Die Schmelz-
rate von arktischem Meereis im Sommer wird durch Schmelztümpel auf der
Oberfläche stark beeinflusst. Andererseits stellt die Darstellung der Schmelz-
tümpelbedeckung in Modellen nach wie vor eine große Herausforderung dar. In
dieser Arbeit wird die Ableitung der Schmelztümpelbedeckung auf arktischem
Meereis aus Beobachtungen des optischen Satellitensensors MERIS mittels des
neu entwickelten Melt Pond Detector (MPD) Algorithmus untersucht. Es wird
gezeigt, dass die abgeleitet Schmelztümpelbedeckung durch Wolken beeinflusst
ist, die von MPD nicht korrekt ausgefiltert werden. Von MODIS abgeleitete
Daten über die Wolkenbedeckung werden für eine zusätzliche Filterung der
Schmelztümpelbedeckung verwendet. Ausserdem wird ein Verfahren zur De-
tektion von Wolken in MERIS Schwaden entwickelt und gezeigt, dass dieses
Verfahren über Meereis zuverlässig funktioniert. Weiterhin wird MPD mit
einem unabhängigen Verfahren zur Herleitung der Schmelztümpelbedeckung
aus MODIS-Daten verglichen. Tägliche Karten für die zentrale Arktis zei-
gen eine bemerkenswert gute Übereinstimmung (RMSD = 0.04, R = 0.95).
Der Vergleich von Karten der ganzen Arktis liefert ähnlich gute Ergebnisse
(RMSD = 0.06, R = 0.85), solange die relative Schmelztümpelbedeckung mit
dem Flächenanteil der Schmelztümpel verglichen wird. Dies deutet darauf hin,
dass mindestens eines der Verfahren von dem Anteil offenen Wassers zwischen
den Eisschollen beeinflusst wird. In dem MODIS-Datensatz wird ein linearer
Zusammenhang zwischen der Schmelztümpelbedeckung und dem Anteil von
offenem Wasser aufgezeigt. Allerdings zeigt der Vergleich mit hochauflösenden
Satellitenbildern aus der Global Fiducials Library auch, dass der MPD Algo-
rithmus mit zunehmendem Anteil von offenem Wasser höhere Werte liefert.
Für Gebiete ohne offenes Wasser wird hingegen eine gute Übereinstimmung
(RMSD = 0.09, R = 0.61) gefunden. Daher bietet der mittels MPD abgeleitete
Datensatz über die Schmelztümpelbedeckung eine Möglichkeit, um den Einfluss
von Schmelztümpeln auf den Rückgang des arktischen Meereises besser zu
verstehen und zu modellieren.
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Chapter 1

Introduction

The Arctic sea ice extent has been declining over the past four decades. Using
remote sensing techniques, this development can be quantified and we can
state that the perennial ice extent decreases approximately by 10% per decade
(Comiso et al., 2008). We also understand that the increasing greenhouse gas
load in the atmosphere is responsible for a global increase of air temperature
and, therefore, we expect to see a further decline of Arctic sea ice. However,
the reasons for this rapid decline are still unclear and debatable. The majority
of global climate models underestimate the observed rate of sea ice loss in
the Arctic (Stroeve et al., 2007). Thus it is important to obtain accurate
information about Arctic summer sea ice and study the mechanisms of melt in
detail. The only way to daily survey the vast region of Arctic sea ice, varying
with season between 16 and 4 · 106 km2, is with satellite observations. During
the freezing seasons the observation with passive microwave sensors is quite
reliable, but melt ponds occurring on Arctic sea ice in summer are the main
contributions to a high uncertainty in the summer sea ice observations.

In this work, we investigate a melt pond fraction product derived from
optical satellite observations. Melt ponds are formed by snowmelt on top of
sea ice during spring and summer months. They lower the surface albedo
considerably (e.g. Grenfell and Maykut (1977); Polashenski et al. (2012))
leading to an additional heat uptake due to increased absorption of short-wave
radiation. This again leads to 2–3 times faster melting rates beneath melt ponds
(Fetterer and Untersteiner, 1998) and, hence, melt ponds play an important
role in summer melt of Arctic sea ice. A recent result indicates that the spring
melt pond fraction might even be decisive for the extent of the sea ice minimum
in September (Schröder et al., 2014).

The spectral albedo of melt ponds and ice (Fig. 1.1) shows lower albedo
of melt ponds especially in the red and near infrared wavelengths. Moreover,
the albedo of melt ponds and sea ice is variable. The albedo of melt ponds is
not strongly influenced by their depth but by the optical thickness of the ice
underneath (Zege et al., 2015). Light blue ponds are more likely to be found on
thick multiyear ice while dark ponds are observed to correspond to thinner ice.

1



2 1. Introduction

Figure 1.1: Measured spectral albedo of different ice surfaces and melt ponds. (a)
snow covered ice, (b) dry white ice, (c) melting ice, (d) light blue pond and (e) dark
pond (Istomina et al., 2013).

.

The albedo of the ice depends on the state of the surface. The highest values
are found for snow covered ice, followed by dry white ice that is formed by
draining melt water after melt onset. If the ice itself starts to melt, we see an
albedo close to light ponds in the blue range of the spectrum, but considerably
higher values for greater wavelengths.

The melt pond fraction has a high spatial and temporal variability. We
find that up to 70% of the ice surface might be covered with melt ponds five
days after the onset of pond formation (Fig. 1.2). The surface fraction, as well
as the temporal development, depend on ice type. A moderate increase and
maximum values around 40% melt pond fraction is observed on multiyear ice as
well as a prolonged duration of pond coverage. On the one hand, this is caused

Figure 1.2: Compilation of in situ observations of melt pond fraction. Image from
(Polashenski et al., 2012).
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by differences in the surface topography. First-year ice has a comparatively
flat surface and melt ponds are shallow but cover a greater area fraction of the
surface. The surface of multiyear ice is formed during the previous melt seasons
resulting in a rougher topography with hummocks and depressions. Melt ponds
therefore tend to be deeper but cover a smaller fraction of the surface. On the
other hand, the prolonged ponding period is caused by the higher survivability
of multiyear ice. Ponds drain earlier on fist-year ice as the ice becomes thinner
quicker and disintegrates.

Both the variability of the spectral albedo and its temporal variability
makes the retrieval of melt pond fraction from optical sensor observations a
challenging task, especially from medium resolution sensors with Arctic-wide
coverage like the Medium-Resolution Imaging Spectrometer (MERIS) or the
Moderate-Resolution Imaging Spectroradiometer (MODIS). Therefore it is
crucial to investigate the performance of the retrieval algorithms and to name
the advantages as well as the possible flaws as accurately as possible.



Chapter 2

Data Used

2.1 Multi-spectral Radiances from MERIS

The Environmetal Satellite (ENVISAT) was launched by the European Space
Agency (ESA) in the beginning of 2002 and continued to operate until early
2012. MERIS is one of the satellites main instruments. It is a multi-spectral
sensor with fifteen bands in the visible and near infrared (Tab. 2.1). MERIS
consists of five cameras that scan the surface of the earth in push-broom mode
with a 68.5◦ wide swath and data is collected globally with a spatial resolution
of 1040× 1200 m at nadir. However, land and coastal regions are sampled in
high resolution mode with 260 × 300 m per pixel. In this work, we use the
Level 1B product that holds calibrated and georeferenced top of atmosphere
radiances.

Table 2.1: Spectral configuration of MERIS. Given are the central wavelength and
the bandwidth for each band.

Band # Wavelength (nm) Band # Wavelength (nm)

1 412.50± 10.0 9 708.75± 10.0
2 442.50± 10.0 10 753.75± 7.5
3 490.00± 10.0 11 760.63± 3.5
4 510.00± 10.0 12 778.75± 15.0
5 560.00± 10.0 13 865.00± 10.0
6 620.00± 10.0 14 885.00± 10.0
7 665.00± 10.0 15 900.00± 10.0
8 681.25± 7.5

2.2 Gridded Cloud Fraction from MODIS

Data from the MODIS has been used to retrieve a variety of atmospheric
parameters for over a decade. Many of these parameters are included in the

4



2.3. Cloud Mask from AATSR 5

MOD08 D3 product which is provided by the National Aeronautics and Space
Administration (NASA)1. It is a Level 3 product holding daily data with global
coverage. The data is gridded to a constant angle grid with 1× 1◦ resolution.
From the various parameters in the dataset only the daytime mean cloud
fraction is used. Figure 2.1 shows an example for the polar regions. The mean
cloud fraction is derived from the MODIS binary cloud mask that has proven
to be reliable in the Arctic region during daytime (Ackermann et al., 2008).

Figure 2.1: The mean daytime cloud fraction for the Arctic region from the
MODIS MOD08 D3 atmosphere product for 23rd of June 2009.

2.3 Cloud Mask from AATSR

Cloud mask derived from the Advanced Along-Track Scanning Radiometer
(AATSR) measurements are used to develop and validate a cloud screening
algorithm for MERIS. The AATSR instrument has been launched together
with MERIS aboard ENVISAT and both sensor observe the same surface at
almost the same time. However, AATSR has a smaller field of view and covers
only the central half of a MERIS swath. The cloud screening algorithm has
been invented for an aerosol optical thickness retrieval and is presented in
Istomina et al. (2010). It exploits knowledge about the spectral shape of snow
in visible, near infrared and thermal infrared bands of AATSR. The result
is a binary mask for cloud free snow and ice. Open water is screened out in
the data product. Validation against various independent datasets has proven
the reliability of the algorithm the Arctic region (Istomina et al., 2010). The
dataset used here has been created especially for this work (Istomina, private
communication, 2015). All AATSR swaths from May to September 2009 have

1See ladsweb.nascom.nasa.gov

ladsweb.nascom.nasa.gov
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Table 2.2: Reflectances for the three surface classes. λk is the wavelength of the
corresponding MODIS channel and r(λk) the reflectance. Data from Tschudi et al.
(2008).

λk Pond rm(λk) Snow/Ice ri(λk) Open Water rw(λk)

620-670 nm 0.16 0.95 0.08
841-876 nm 0.07 0.87 0.08
459-479 nm 0.22 0.95 0.08

been processed and co-located to the corresponding MERIS swaths using a
nearest neighbour algorithm.

2.4 ICDC Melt Pond Fraction from MODIS

Data

The first-ever melt pond fraction dataset with Arctic-wide coverage is presented
in Rösel et al. (2012). It is based on data from MODIS and covers melt-cycles
from 2000 to 2011. The maps are available for download at the Integrated
Climate Data Center (ICDC, 2012).

2.4.1 Input Data

The melt pond fraction retrieval uses the MODIS data product MOD09A1
provided by NASA. This product holds reflectances with a spatial resolution of
500 m and is a composite of observations from an 8-day period. The data from
the best overflight in terms of clear sky condition, nadir observation and aerosol
load is taken for each grid cell. It is therefore a mixture of single observations
from different dates and not an 8-day average. The reflectance data is corrected
for atmospheric scattering and absorption and a correction for the bidirectional
reflectance distribution function is applied.

2.4.2 Spectral Unmixing

The core of the retrieval is an spectral unmixing approach similar to the one
presented in Tschudi et al. (2008). It is assumed that the surface can be
represented by a three class model with the classes snow/ice, melt pond and
open water2. Three MODIS channels in the visible and near infrared are used
for the retrieval and a corresponding set of reflectance values is defined to
represent each surface class (Tab. 2.2). They are chosen a-priori and do not
have a spatial or temporal dependency. The spectral unmixing is done by

2An additional white ice class is assumed in Tschudi et al. (2008).
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optimizing the linear system

Awrw(λ1) + Amrm(λ1) + Airi(λ1) = R(λ1) (2.1)

Awrw(λ2) + Amrm(λ2) + Airi(λ2) = R(λ2)

Awrw(λ3) + Amrm(λ3) + Airi(λ3) = R(λ3)

Aw + Am + Ai = 1 .

Here, A denotes the surface fraction of a class with w, m and i indicating open
water, melt pond and snow/ice. The values r(λ) denote the a-priori reflectance
values for each class and R(λ) is the measured reflectance for each channel.
To retrieve to surface fractions from the linear system (2.1), Rösel et al. first
introduce a sigmoid cost function to deal with the restriction for the fractions.
This also enhances the condition of the equation system which is necessary
because the surface fractions of open water and melt ponds are almost linearly
dependant (Rösel et al., 2012). They utilize a quasi-Newton optimization
method to produce a dataset that is again used to train an artificial neural
network. It performs better in terms of computation time and it is shown, that
it reproduces the results of the quasi-Newton approach with good accuracy.

2.4.3 Gridding and Conversion to Relative Melt Pond
Fraction

The result of the spectral unmixing is gridded to the polar stereographic grid
of the National Snow & Ice Data Center (NSIDC)3 with 12.5 km resolution.
The internal cloud mask of the MOD09 product is used for cloud screening
and the number of usable pixels per grid cell is included into the final product.
This number can be used to ensure a high data quality by neglecting every
grid cell with a great amount of cloud covered pixels. Such a clear sky product,
with all grid cells masked out that contain more than 10% cloudy pixels, is
already included in the dataset. Furthermore, the melt pond area fraction Am
is converted to the relative melt pond fraction Ãm during the gridding process.
The relative melt pond fraction is the fraction of sea ice that is covered by
melt ponds. Figure 2.2 illustrates the difference to the melt pond area fraction.
However the corresponding equation in Rösel et al. (2012) contains a typo as it
has been confirmed through personal communication with Rösel (Norwegian
Polar Institute). The conversion is done by dividing the area fraction Am by
the sea ice concentration Ac and not by multiplying Am and Ac as given in the
publication. The correct equation is

Ãm =
Am
Ac

with Ac = 1− Aw . (2.2)

3See nsidc.org/data/polar_stereo/ps_grids.html

nsidc.org/data/polar_stereo/ps_grids.html
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Figure 2.2: Melt pond area fraction and relative melt pond fraction. The diagram
shows a satellite pixel with 50% open water, 25% bare sea ice and 25% melt ponds
on top of sea ice. The melt pond area fraction is 25% in this case. However, the
relative melt pond fraction is 50% since half of the sea ice is covered by melt ponds.

2.4.4 Quality of the Dataset

The dataset has been validated against aerial and in situ observations resulting
in a RMSD between 0.04 and 0.11 melt pond fraction (Rösel et al., 2012).
However, it is currently assumed that the melt pond fraction dataset has a
positive bias of 0.08. This is stated in the description of the dataset on the
ICDC download page (ICDC, 2012). Moreover, it is assumed that the open
water fraction has a positive bias of 0.03 (Kern, University of Hamburg, private
communication, 2015).

Little is known about a spatial or temporal dependency of this bias. Some
of the observations, that have lead to the assumption of a bias, are presented in
Mäkynen et al. (2014). The melt pond fraction dataset is compared to various
other observations for a region north of Greenland and in Fram Strait in 2009.
They find that the melt pond fraction should be close to zero in the first half
of June with winter or early melt conditions in the study area. However, the
ICDC melt pond dataset gives values between 0.05 and 0.15 for the same time
period and Mäkynen et al. conclude that the pond fraction is overestimated by
approximately the same amount.

2.4.5 Daily Data

In addition to the publicly available 8-day composite maps, a set of daily
melt pond fraction data is available for this work. It was provided by Kern
(University of Hamburg) and covers mostly multiyear ice in the central Arctic
from June to August 2009. The daily product MOD09GA is used as input for
the spectral unmixing algorithm and the result is gridded to a spatial resolution
of 50× 50 km. The technical details of the gridding process are not published,
yet the coordinates of the grid cells match the coordinates from the NSIDC
polar stereographic grid. The number of cloudy pixels per grid cell as well as
the sea ice concentration are provided in the product.
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2.5 MPD Melt Pond Fraction from MERIS

Data

Recently, the new algorithm to retrieve the melt pond fraction on Arctic sea ice
Melt Pond Detector (MPD) was designed to work without the need of a priori
fixed reflectances to represent the different surface classes. Instead, a forward
model estimates the optical properties of the ice surface and melt ponds. The
algorithm retrieves the albedo of sea ice as well (Zege et al., 2015). Extensive
validation efforts and temporal trends are presented in Istomina et al. (2014).

2.5.1 Scope of Application

The intended scope of the MPD algorithm is limited both spatially and tem-
porally. The temporal limitation is based on the assumption that the surface
consists of so called white ice and melt ponds. White ice is sea ice that appears
white because of a scattering layer on top of the ice. This layer consists of
small ice fragments and is formed by draining melt water well after melt onset.
Therefore MPD is designed for sea ice in an advanced melting state. Snow
on top of the sea ice before onset of pond formation as well as freshly fallen
snow might cause an underestimation of the melt pond fraction. This is shown
by the results of an internal verification effort based on numerical simulation
(Tab. 2.3). The spatial limitation of MPD is connected to the color of the

Table 2.3: Results of an internal verification effort using simulated reflectances.
The true melt pond fraction is 0.40 in all cases. The retrieval error is the difference
between retrieved and simulated melt pond area fraction. Data from (Zege et al.,
2015)

Surface State Retrieval Error

White ice and light ponds 0.01
Snow covered ice and light ponds -0.07
White ice and dark pond -0.16
Snow covered ice and dark pond -0.23

ponds. The retrieval underestimates the melt pond fraction if the ponds appear
dark as shown by the internal verification. The color of melt ponds mainly
depends on the optical thickness of the ice underneath the ponds (Zege et al.,
2015). They are lighter on thick ice and darker on thin ice, hence, the main
scope of MPD is thick (multiyear) ice with light ponds well after melt onset.

2.5.2 Outline of the Algorithm

The implementation of MPD processes top of atmosphere reflectance data from
MERIS L1B swaths. The algorithm uses ten different channels and is able to
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process both reduced resolution and full resolution swaths. The work flow of
the algorithm can be separated in four steps. First, the atmospheric reflectance
and transmittance is calculated with respect to the observation geometry of
each pixel. Default models for the aerosol content and the constitution of the
atmosphere are used if the user does not provide additional data. Secondly,
a series of thresholds is applied to mask cloudy pixels. In the third step, the
optical properties of ice and melt ponds as well as their surface fractions are
estimated. This is done in iterative way using the forward model and including
the atmospheric corrections. The last step is to calculate of the albedo at
several wavelengths and to estimate of the retrieval uncertainty.

2.5.3 Gridding

MERIS reduced resolution swaths from the period May to September 2002
to 2011 are processed by MPD to obtain maps of the daily melt pond area
fraction. The results are collected for each day and gridded to the NSIDC
polar stereographic grid with 12.5 km resolution. Cloud covered or dark pixels,
as flagged by MPD, are excluded and the mean melt pond area fraction is
calculated for each grid cell as well as the standard deviation. Grid cells with
more than 50% excluded pixels are removed from the final product. However,
the equal treatment of cloudy and dark pixels is problematic. Dark pixels
usually represent regions with low sea ice concentration and should be included
into the calculation of the mean melt pond area fraction since the exclusion of
dark pixels wrongly increases the mean pond fraction.

2.6 GFL High Resolution Satellite Images

In 2009, the U.S. Geological Survey released a collection of high resolution
satellite images called the Global Fiducials Library (GFL). It was built as a
joint effort of research institutes and the U.S. Intelligence Community with the
aim to create a long-time record of data for selected sites all over the world.
They began collecting images in the late 90s and this process is still on going.
The set of selected sites includes several fixed locations in the Arctic Ocean as
well as the position of buoys deployed on sea ice. Therefore the library contains
several hundred of high resolution images showing Arctic sea ice. An overview
over the number of available images and the locations in the Arctic Ocean can
be found in Kwok (2014).

The images can be viewed and downloaded from http://gfl.usgs.gov/

free of charge. All of them are 8-bit grayscale images with a spatial resolution
of 1 × 1 m. They are georeferenced and some metadata is provided such as
sun zenith and azimuth angles. However, there is no information about the
sensors that retrieved the images and, therefore, no information about the
spectral wavelength used. In addition, no precise acquisition timestamps are
given and only the day of acquisition is known. But despite the general lack

http://gfl.usgs.gov/
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of information, the images can be used to gain high resolution insight about
the sea ice concentration and the state of the ice surface. In particular, it is
possible to determine the melt pond fractions (Kwok, 2014). Melt ponds are
much darker than the surrounding sea ice and cover usually more than one
square meter. Figure 2.3 shows an ice floe broken up as an example, and one
can clearly identify sea ice with melt ponds and pressure ridges as well as open
water between the floes.

Figure 2.3: High resolution satellite image from GFL showing sea ice, melt ponds
and open water. The picture is a 1470× 840 m cutout of an image covering roughly
20× 20 km taken in the Beaufort Sea at the beginning of July 2009.

In order to create an independent set of melt pond fractions, two images
have been selected from the GFL. The selection process included a manual
check for clear sky conditions and for availability of MERIS full resolution
data. Both images are from the same day and almost the same location in
the Beaufort Sea, but do not overlap. It is likely that they originate from the
same satellite overflight since sun zenith and azimuth angles are almost equal.
Table 2.4 gives an overview about the available metadata and Figure 2.4 shows
downsampled versions of the images. Image number one (Fig. 2.4 (a)) consists
of big ice floes and open water, while image number two (Fig. 2.4 (b)) contains
a large area with broken up sea ice in the center. Close inspection reveals that
the predominant ice type seems to be multiyear ice in both images. The surface
appears to be rough and the distribution of melt ponds does not follow any
patterns. The ponds itself seems to be well developed and therefore the state
of the ice surface coincides with the expectations for this date and latitude.
However, some slightly darker areas not visible in the down-sampled images
indicate a thin cloud cover, and a detailed look at the MERIS data confirms
this. Nevertheless, the pond fraction can be retrieved from the selected images
and, hence, they can be used for a comparison with other retrieval algorithms.
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(a) GFL #1 (b) GFL #2

Figure 2.4: Downsampled versions of the two selected images. They are not in
scale with each other. Refer to Table 2.4 for exact sizes.

Table 2.4: Available data for the two selected GFL images. The acquisition time
has been estimated from the given solar angles and position using the online tool
www.esrl.noaa.gov/gmd/grad/solcalc/ and is a rough approximation. Image
width and height include areas of invalid data.

Image acronym GFL #1 GFL #2

Center latitude 72.677172 N 72.868152 N
Center longitude 135.93236 W 135.87069 W
Date 2009-07-09 2009-07-09
Image height (km) 26.5 32.7
Image width (km) 21.1 19.7
Area with valid data (km2) 259 348
Solar zenith (◦) 53 53
Solar azimuth (◦) 142 143
Approx. acquisition time (UTC) 20:05 20:05

www.esrl.noaa.gov/gmd/grad/solcalc/
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2.7 Buoy Webcam Images and Air Tempera-

ture

Over the past decade, the North Pole Environmental Observatory (NPEO)
deployed buoys on the Arctic sea ice that are equipped with a webcam. The
webcam is mounted approximately 1.5 m above ground level and looks at the
horizon. An example image is presented in Figure 2.5 (b). Melt ponds are
clearly visible on the images and it is possible to observe the evolution of melt
ponds and the sea ice condition over time. However, it is difficult to estimate
the actual pond fraction due to the viewing angle and the limited field of view.

In 2009, one of the buoys drifted into a region with satellite retrieved
melt pond fraction available (Fig. 2.5 (a)). It was deployed in mid-April and
transmitted data until late September. Data from this buoy is also analysed in
Mäkynen et al. (2014) to assess the usability of the ICDC melt pond product
to investigate the estimation of the melt pond fraction from Synthetic Aperture
Radar (SAR) images. There are more than 800 webcam images available4.
However, for several time periods the webcam was covered by snow or did
not transmit images for other reasons. Position and air temperature data is
available5 for the whole period.
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(a) Drift track (b) Webcam image

Figure 2.5: In (a) the position of the buoy from beginning of May to end of
August 2009 is shown. The buoy drifts from north to south. Figure (b) shows an
example image taken by the buoy webcam.

4see http://www.arctic.noaa.gov/npole/gallery_np_selectall.php
5downloaded from ftp://psc.apl.washington.edu/NPEO_Data_Archive/

http://www.arctic.noaa.gov/npole/gallery_np_selectall.php
ftp://psc.apl.washington.edu/NPEO_Data_Archive/


Chapter 3

Methodology

3.1 Cloud Screening using MODIS Cloud

Fractions

The MODIS atmosphere product MOD08 D3 (Sec. 2.2) is used to investigate
the influence of clouds on the MPD melt pond fraction maps. The daytime
mean cloud fraction is co-located to the MPD maps using a nearest-neighbour
algorithm and all grid cells with a cloud fraction larger than a threshold tc are
screened out. This operation is done for all maps from 2009 and tc is varied
to assess the sensitivity of the Arctic-wide mean melt pond fraction to this
threshold. The same scheme is used for additional cloud screening of all MPD
maps with a constant threshold tc. This is a rough approach, mainly because of
the coarse spatial and temporal resolution of the MOD08 D3 product. However,
this coarse resolution only hides the general problem of co-locating data from
different satellites with different overflight times and field of views. Clouds
are moving and it is difficult to achieve an accurate cloud mask using such
an approach. If we e.g. assume a wind speed of 6 m/s, clouds travel 21.6 km
within one hour, which approximately corresponds to eighteen MERIS reduced
resolution pixels.

3.2 Bayesian Cloud Screening for MERIS

A cloud screening algorithm based on MERIS swath data is developed in order
to improve the scheme presented in the previous paragraph. The aim is an
algorithm that performs well over summer sea ice. We call this algorithm
MECOSI (MERIS Cloud screening Over Sea Ice). It is based on a Bayesian
scheme presented in Hollstein et al. (2014). In general, Bayes’ theorem allows
to reverse joint probabilities via

P (a, b) =
P (b, a) · P (a)

P (b)
. (3.1)

14
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Here, P (a, b) denotes the occurrence probability of a under the condition of the
occurrence probability of b. Now, if F is a vector of features derived pixel-wise
from satellite data and if C denotes cloudy conditions, the probability to see a
cloudy pixel under the occurrence of F can be calculated using

P (C,F) =
P (F, C) · P (C)

P (F)
. (3.2)

The occurrence probability of F can be expressed by the occurrence probability
under cloudy conditions C and under clear sky conditions C (Hollstein et al.,
2014). This leads to the equation

P (C,F) =
P (F, C) · P (C)

P (F, C) · P (C) + P (F, C) (1− P (C))
. (3.3)

Hollstein et al. assume a probability P (C) = 1/2 to avoid circular arguments if
the cloud screening itself is used to retrieve P (C). However, we do not intend
to calculate P (C) using the MECOSI algorithm and P (C) is much higher than
1/2 in the Arctic ocean. Therefore we do not assume P (C) = 1/2 here.

3.2.1 Estimation of P (C), P (F, C) and P (F, C)

In order to use equation (3.3) in a cloud screening algorithm, the probabilities
P (F, C) and P (F, C) must be known as well as the overall probability for
clouds P (C). Following the approach described in Hollstein et al. (2014) as
naive Bayesian, we assume that the probabilities for the components Fi of the
feature vector F are statistically independent. This allows it to write P (F, C)
as product of the probabilities for each component

P (F, C) =
∏
i

P (Fi, C) (3.4)

and analog for P (F, C). In this way, the probability for each feature Fi can
be calculated separately. We accomplish this by utilising the AATSR cloud
mask presented in Section 2.3. For each feature Fi, we calculate two relative
frequency histograms, one for all pixels flagged cloudy in the AATSR mask
and one for all clear sky pixels. Pixels outside of the AATSR swath are not
used in this analysis.

3.2.2 Features

Hollstein et al. used a random search algorithm to find a set of features Fi that
performs best in global application. Here, however, the features are selected
manually to find a set that performes equally well over snow covered ice and
darker, ponded ice. Additionally, correction algorithms are developed to avoid
dependencies on the cross-track pixel position which could arise from different
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satellite view angles or sensor specific properties. Such a dependecy would not
allow to extend the probability P (Fi, C) from the narrow AATSR swath to the
full MERIS swath. An overview over all features is given in Table 3.1. The
index function used for two features is defined via

idx(a, b) =
a− b
a+ b

, a, b ∈ R . (3.5)

A brief description of each feature and the corrections is given in the following.

Table 3.1: Features used in the Bayesian cloud screening MECOSI. A definition
of the index function idx(· , ·) is given in equation (3.5).

Feature Symbol Description

bnir Brightness in near infrared
w Overall whiteness
rox O2-A ratio
c45 GLCM correlation 45 degree angle
idx(r1, r3) Index function of bands 1 and 3
idx(r12, r13) Index function bands 12 and 13
m MODIS MOD08 daytime mean cloud fraction

O2-A Absorption Ratio

Two spectral bands of MERIS are dedicated to the measurement of the O2-A
absorption. Radiances from band 10 are not affected by the oxygen absorption
while the center wavelength of band 11 is located at the absorption line.
Therefore we can use the ratio

rox :=
r11
r10

(3.6)

to measure the absorption by oxygen. The idea of using this ratio in a cloud
screening algorithm is that the absorption depends on the distance light has
to travel trough the atmosphere in order to reach the sensor. Clouds present
a reflective surface that is located higher than sea ice and the optical path
through the atmosphere is shorter. In addition, the atmospheric pressure
increases towards sea level. Thus we expect to see an extenuated absorption if
clouds are present in a scene.

The usefulness of rox for a cloud detection algorithm is shown e.g. in Gómez-
Chova et al. (2007). Two different correction schemes for rox are presented
in the publication. First, the observational geometry needs to be taken into
account since the optical path length depends on sun and satellite view zenith
angles. Secondly, one needs to correct for the so called Smile-effect. The central
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wavelength of a MERIS channel depends on the pixel’s position in the detector
array. This spectral shift is caused by small misalignments in the sensor. It
is visible especially at the transitions between the five cameras that built up
MERIS. The spectral shift is roughly 2 nm at its maximum and can be neglected
in many applications. However, the O2-A absorption line is very narrow and a
small variation of the central wavelength greatly affects the ratio rox. Possible
ways to correct the O2-A ratio for the Smile-effect are shown in Gómez-Chova
et al. (2007) and Jäger (2013). The lookup table presented by Jäger (2013)
is available for this work and it is used during the development of the cloud
screening algorithm. It greatly improves the usability of rox; however, it also
raised the question if the spectral shift is constant over time. The correction
works well for the year 2009 but it gives significantly worse results for other
years. This is also stated in Jäger (2013).

The decision was made to develop a correction scheme that can be easily
recalculated for each year. It is based on the assumption that all possible
surface types are visible at each detector position if a large amount of different
swaths is considered, and that it is possible to estimate the influence of the
Smile-effect and the dependency on the observational geometry by averaging
over this data. For each pixel in the ratio rox, the sun zenith angle αs and the
sensor viewing zenith angle αv are given in the metadata of the MERIS L1B
swaths as well as the detector index nd, which corresponds to the position of
the pixel in the detector array. Thus we have a set of data vectors

M = {(rox, αs, αv, nd)i} , i ∈ I . (3.7)

The set I denotes the indices of all pixels in one swath. Pixels with the same
detector index nd are selected from the set M and corresponding subsets are
built

M j = {(rox, αs, αv, nd) ∈M | nd = j} . (3.8)

These subsets M j are then processed separately. The sum of the sun and
satellite view zenith angles is calculated and the ratio is binned using this sum

Rj
α =

{
rox | (rox, αs, αv, nd) ∈M j, α ≤ αs + αv < α + δ

}
. (3.9)

The bin width δ is set to 1/4 degree. The sets Rj
α are calculated for a large

number of swaths K, typically all summer data of one year. Then the mean
value of rox is calculated for each one of these sets

rjα = mean
{
rox | rox ∈

K⋃
k

(
Rj
α

)
k

}
. (3.10)

Finally, a 5th order polynomial is fitted to the averaged values for each separate
detector index j to achieve smooth and continuous correction functions f j

f j = fit
α

{
rjα
}
. (3.11)
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The f j are functions of the angle sum αs + αv. The correction is applied
pixelwise by evaluating f and subtracting the resulting value from the O2-A
ratio

(r̃ox)i = (rox − fnd(αs + αv))i , i ∈ I . (3.12)

The corrected ratio r̃ox is then used as a feature in the cloud screening algorithm.

Index Function of Bands 12 and 13

The index function of the reflectances r12 and r13 at 779 nm and 865 nm is
known as the MERIS Differential Snow Index. It exploits the drop in reflectance
of snow and ice at the given wavelengths and is also used in the MPD algorithm
to separate clouds from sea ice. No correction is applied to the feature in the
MPD algorithm. However, visual inspection of swath data shows that the index
function is affected by the Smile-effect. The cross-track differences are not
as pronounced as for the O2-A ratio and no dependency to the observational
geometry is detectable. Hence we use a simplified correction scheme. The mean
value of idx(r12, r13) is calculated for each detector index using swaths from
one summer. Clear sky pixels that show open water are excluded during this
step. To apply the correction, the mean values are subtracted from idx(r12, r13)
for each detector index.

Index Function of Bands 1 and 3

The index function idx(r1, r3) (Eq. 3.5) is introduced into the algorithm to
exploit the increase in Rayleigh scattering caused by clouds. It is corrected in
the same way as the differential snow index idx(r12, r13) although we do not
find pronounced residues of the Smile-effect. Instead, we find a dependency on
the satellite view angle with higher values close to the edges of the swath.

Brightness and Whiteness

Many types of clouds have a higher reflectance than snow in near infrared and
they usually show a white spectrum. The usefulness of these two features to
detect clouds is shown in Gómez-Chova et al. (2007) and the same definitions
are used here. The brightness b is a spectral integral over the reflectance and is
calculated by numerical integration of the measured reflectance

b =
1

λmax − λmin

∑
i∈I

ri+1 + ri
2

(λi+1 − λi) . (3.13)

Here, λ denotes the center wavelength of a MERIS band and I is the set of
used bands. The absorption bands 11 and 15 are excluded from the calculation,
hence, we use I = [1, 14] \ {11} to calculate the overall brightness b. The
brightness in near infrared bnir is calculated using only bands in the near
infrared, I = {10, 12, 13, 14}. The whiteness of the spectrum is measured by
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the deviation of the radiances from the brightness b. With ei = |ri − b|, the
equation is

w =
1

λmax − λmin

∑
i∈I

ei+1 + ei
2

(λi+1 − λi) . (3.14)

Note that small values for w correspond to a flat and therefore white spectrum.

MODIS Cloud Fractions

The daytime mean cloud fraction from the MODIS atmosphere product MOD08
(Sec. 2.2) is the only feature in the algorithm that is not calculated from MERIS
data. It is introduced as an experimental feature because we think that it is
difficult to detect semi-transparent clouds over snow using MERIS reflectances
alone. For this purpose, the MERIS bands do not extend far enough into the
infrared. Cloud screening is achieved by co-locating the daily MODIS cloud
fraction to the MERIS swath. The co-location includes a bi-linear interpolation
based on the orthodromic distance from the MERIS pixels to the closest grid
cells in the MOD08 product.

Correlation of the Gray-level Co-occurrence Matrix

This feature uses textural information based on the correlation of the Gray-Level
Co-Occurrence Matrix (GLCM). The GLCM is a well known texture matrix
frequently used in image texture recognition and classification. This feature
was invented to detect the noise-like pixel to pixel variations that are caused
by semi-transparent clouds and it is an experminental feature in its current
state. The GLCM is calculated for boxes of 20 × 20 pixels for an 45◦ angle
and a step size of two pixels. The latter was done to avoid problems with
duplicated (cosmetic) pixels in the MERIS swaths. They appear next to each
other, hence, a step size of two pixels ensures that the GLCM is calculated
using indepedent pixels. Furthermore, the scope of this filter is truncated to
negative correlation values since positive values showed a tendency to wrongly
screen out areas with sea ice broken up. Boxes with a positive correlation are
set to the background cloud probability P (C) and therefore do not affect the
result of the cloud screening algorithm.

3.2.3 Preprocessing of MERIS L1B Swath Data

The MERIS L1B swaths are preprocessed using the software package Beam1.
Beam was developed on behalf of ESA and offers methods to view and ma-
nipulate data from various instruments, including MERIS and AATSR. The
preprocessing script makes use of the graph processing tool gpt.sh and each
step is described in the following.

1See www.brockmann-consult.de/cms/web/beam/. Version 5.0 is used here.

www.brockmann-consult.de/cms/web/beam/
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1. The region north of 65◦N is cut out from each orbit using the module
Subset.

2. The metadata in the L1B swaths is given in a grid with reduced resolution
and needs to be interpolated in order to have the data available for each
pixel. This is done using the BandMath module. The coordinates as well
as sun zenith and the view zenith angles are interpolated.

3. The top of atmosphere (TOA) radiances are corrected and converted to
reflectances using the module Meris.CorrectRadiometry. The correc-
tion includes an equalization to reduce detector-to-detector differences
and a scheme to reduce the Smile-effect in all but the absorption bands
number 11 and 15.

3.2.4 Binary Cloud Masks and Gridding

Binary masks are derived from the cloud probability in order to create a cloud
screened melt pond product from MPD swath data. The masks are created by
applying a threshold tr ∈ [0, 1] to the cloud probability P (F, C). After that,
two iterations of morphological opening remove isolated cloud pixels. This
operation is followed by eight iterations of morphological closing to remove
isolated clear sky pixels and to enlarge the cloud mask. The latter is done
to cover the edges of clouds properly but excludes small clear sky regions
as well. Invalid pixel and clear sky open water pixel are tracked during the
morphological operations to avoid an enlarged land or open water mask.

The binary cloud masks are the used to filter out clouds in the MPD
swaths. No co-location or interpolation is neccessary for this step because
both algorithms, the MECOSI cloud screening and MPD, process identical
MERIS swaths. Finally, all swaths from one day are collected and a nearest-
neighbour approach is used to assign each pixel to a grid cell of the NSIDC
polar-stereographic grid with 12.5 km spatial resolution. After this step the
mean melt pond area fraction, the total number of input pixels, the fraction of
clear sky pixels and the melt pond fraction standard deviation is calculated for
each grid cell and the result is written to a file in HDF5 format.

3.3 Comparison of MPD and ICDC Melt Pond

Fraction

3.3.1 Bias Correction in the ICDC Datasets

The supposed biases of the ICDC melt pond fraction and sea ice concentration
(Sec. 2.4.4) are corrected in the comparison. A value of 0.08 is subtracted
from the relative melt pond fraction Ãm and negative values are set to zero
in order to compensate the positive bias of 0.08. The sea ice concentration
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Ac is corrected by adding 0.03 and limiting the maximum value to one. This
compensates the positive 0.03 bias of the open water fraction Aw (compare
Eq. 2.2).

3.3.2 Converting Relative Melt Pond Fractions to Area
Fractions

The ICDC datasets hold the relative melt pond fraction while MPD retrieves
the melt pond area fraction. In order to compare the two datasets, the ICDC
relative melt pond fraction is converted to the melt pond area fraction unless
otherwise noted. In theory, the conversion can be done via

Am =
Am
Ac
· Ac = Ãm · Ac , (3.15)

with Am the melt pond area fraction, Ãm the relative fraction and Ac the sea
ice concentration. However, the ICDC dataset is a gridded product with each
grid cell representing the mean relative melt pond fraction of i input pixels and
the conversion is therefore not straightforward. If A

(i)
m denotes the melt pond

area fraction and A
(i)
c the sea ice concentration of overflight i, the relation for

a single grid cell with N pixels is

1

N

N∑
i

A(i)
m 6=

(
1

N

N∑
i

A
(i)
m

A
(i)
c

)
·

(
1

N

N∑
i

A(i)
c

)−1
. (3.16)

The left term is the correct mean melt pond area fraction. The term on the
right side show the conversion applied to the gridded product with the mean
relative melt pond fraction and the mean sea ice concentration. The conversion
is correct only if we suppose A

(i)
c = const for all i. Hence it is applicable to

regions with homogeneous ice concentration but it introduces an error in other
regions that is difficult to estimate because the ICDC data product includes no
information about the variability of A

(i)
c .

3.3.3 Masks to Ensure High Data Quality

Some data is excluded from both ICDC and MPD datasets in order to ensure
a high data quality. The criteria are slightly different for each dataset and
presented in the following.

Mask for ICDC Datasets

The scheme presented in Rösel et al. (2012) is applied to ensure a high data
quality of the ICDC 8-day composite maps. All grid cells with less than 50%
valid input pixels are excluded from the comparison. A higher threshold of 90%
valid input pixels, as suggested by Kern (University of Hamburg), is applied
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to the set of daily melt pond fractions. In addition, regions with low sea ice
concentration are screened out. The sea ice concentration within the ICDC
datasets is used for this purpose. It is derived from the open water fraction that
is estimated by the spectral unmixing algorithm (Eq. 2.2). The threshold value
depends on the application and is specified in the corresponding paragraphs.
Grid cells with less than 15% sea ice concentration are already screened out in
the original datasets.

Mask 1 for MPD Data

Different masks are used for the MPD melt pond fraction maps. The cloud
screening method presented in Section 3.1 is used for the comparison to the
ICDC 8-day composites. The threshold for the maximum cloud fraction is set
to tc = 0.25. Grid cells with less than 50% usable input pixels are already
excluded by the gridding routine. Additionally, grid cells with a standard
deviation greater than 0.15 area fraction are screened out. This removes a
negligible amount of grid cells with questionable high values, mainly before
melt onset.

Mask 2 for MPD Data

The cloud screening algorithm MECOSI (Section 3.2) is used to built a high
quality data product for the comparison to daily ICDC maps. All MERIS
swaths from the beginning of May to the end of July 2009 are processed and the
resulting binary cloud masks are used. The number of valid (clear sky) input
pixels is included into the final product and a threshold of at least 75% valid
pixels per grid cell is applied. The effectiveness of this threshold is confirmed
by visual inspection. A higher value leads to the exclusion of valid data in
several cases.

3.3.4 Comparison of Daily Data from 2009

The daily ICDC melt pond fractions are gridded to a spatial resolution of 50 km.
In order to compare this dataset to daily MPD melt pond fractions with a
spatial resolution of 12.5 km, each grid cell of the ICDC dataset is co-located
to the corresponding MPD map and the MPD data is interpolated bi-linearly
to match the 50 km spatial resolution. A ICDC grid cell must match at least
75% valid MPD grid cells to be included into the comparison. For June and
July, gridded MPD maps are used with the MECOSI cloud screening applied.
Hence Mask 2 is used to ensure the quality of the MPD data. In August, the
simple cloud screening is used and Mask 1 is applied. The threshold for the
sea ice concentration is set to 90% in order to avoid influence of open water.
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3.3.5 Comparison of MPD Daily Maps to ICDC 8-day
composites

The ICDC 8-day composites and the daily MPD maps use the same grid
definition and no spatial interpolation or co-location is needed for a comparison.
Yet the temporal matching of the two datasets is difficult. One grid cell of
the ICDC dataset might contain observations from a single day or a mixture
of observations from several days. In theory, it is possible to build matching
8-day composites from MERIS swaths since the acquisition date is given in the
MOD09A1 product. However, we would need to re-run MPD for several years
to obtain the MPD swath data that is currently only available for the year
2009. Therefore we use a simplified approach. Temporal averages are build
from the daily gridded MPD maps in order to compare them to the ICDC
8-day composites. To accomplish this, Mask 1 is used to ensure a high quality
of the daily MPD maps first. Then average maps are build from the daily
maps using data from the same 8-day period as the ICDC composites use data
from. Finally, we compare each grid cell of the 8-day average maps to the
ICDC 8-day composites. Thus we compare observations from a single day to
an 8-day average (in worst case) and have to expect an artificially increased
scatter in the comparison. However, if we look at average differences for maps
from several years, the influence of this temporal mismatch should become
negligible.

8-day average maps are build from the daily MPD product for the years 2003
to 2011 and the difference to the corresponding ICDC composite is calculated
for each map and grid cell. The mask presented in Section 3.3.3 is used to
ensure the quality of the ICDC dataset and only grid cells with valid data from
both products are included. This difference data is then collected for all years
and scatter plots or maps of the mean difference are build either for the whole
melt period or for groups of four successive maps. Grid cells with less than
eight data points are screened out in the difference maps to avoid a strong
influence of temporal mismatches.

3.4 Analysis of Buoy Images and Comparison

to Melt Pond Fraction

Air temperature data and webcam images from a buoy (Sec. 2.7) are used in a
case study to assess the temporal evolution of melt ponds in the ICDC and
MPD datasets. The images are closely inspected for the presence of melt ponds
to determine the onset of pond formation as well as the end of the melt season.
Only well defined ponds with a blueish appearance are considered. Drained
or snow covered melt ponds are not taken into account. Figure 3.1 presents
an example for both cases. We can clearly detect bluish melt ponds in July
(Fig. 3.1 (a)). In August (Fig. 3.1 (b)), however, we find only some slightly
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darker areas at the previous location of melt ponds that are not classified as
ponds in this study.

The GPS position of the buoy is used to obtain ICDC and MPD melt pond
fractions for the same location. The ICDC pond fraction is taken from the daily
dataset with 50 km resolution and the scheme presented in Section 3.3.3 is used
to assure a high data quality. The sea ice concentration threshold is lowered
to 80% in order to include more data from August. No spatial interpolation
around the exact buoy position is done, but the grid cell with the smallest
distance from the center of the grid cell to the buoy location is selected, if this
distance does not exceed 25 km. The coordinates of the grid cell center are
then used to obtain the MPD melt pond fraction and the MPD maps with
12.5 km resolution are bi-linearly interpolated to match the spatial resolution
of the ICDC dataset. The same MPD data is used as in the comparison of
the daily melt pond fraction and the same quality assurance method is applied
(Mask 2 Sec. 3.3.3).

(a) 13th of July 2009

(b) 20th of August 2009

Figure 3.1: Example buoy webcam images with melt ponds visible in (a) and
dark areas in (b) that drained or snow covered ponds. The reason for the different
views is unknown, probably a loose camera mount or a curious ice bear.
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3.5 Processing of GFL High Resolution Satel-

lite Images

3.5.1 Obtaining Melt Pond Fractions for Fully Ice
Covered Areas

To obtain the melt pond fraction from the GFL images several processing
steps are performed. The processing is done by custom Python scripts, unless
otherwise noted, and intermediate results can be inspected. The following
describes each step in detail.

1. Splitting. The image is split into 3000× 3000 pixel tiles to avoid loading
the full image into memory. The GDAL2 program gdal retile.py is
used for this purpose. The tiles are still georeferenced after this step.
Figure 3.2 (a) shows such an example tile.

2. Manual mask for sea ice and valid data. Since both open water
and melt ponds are equally dark in the images it is difficult to distinguish
them automatically. Therefore a mask for sea ice is created manually
using the paint tools of the software GIMP3. An example is shown in
Figure 3.2 (b). The masks are not accurate to one pixel but a rough
approximation excluding some sea ice close to open water and small flows.
Areas of the image that show heavily melted or potentially submerged
flows are also excluded as it is not possible to determine a correct melt
pond fraction in such areas. Furthermore the mask excludes a stripe
occurring in both images that contains interpolation artefacts.

3. Thresholding for melt ponds. A threshold tp is applied to each tile
to retrieve the melt pond fraction. Every pixel that is darker than tp is
marked as a melt pond or open water and every pixel that is brighter
than tp is considered to be sea ice. Figure 3.2 (c) shows an example. The
threshold tp is the same for all tiles.

4. Removing isolated pond pixels. It is impossible to say if an isolated
pond pixel is truly a melt pond because there is no information about the
shape. It might as well be a shadow of a pressure ridge. For this reason
isolated pixels classified as ponds are removed.

5. Combining masks and data. The masks for sea ice and the result of
the classification for melt ponds are combined into one image. Each pixel
that is masked out by the sea ice mask or has a pixel value of 0 is set to
255. Pixels with a value of 0 mark areas with missing data in the original
images. Each melt pond pixel is set to 50 and sea ice is set to a value of
100. An example is shown in Figure 3.2 (d).

2Geospatial Data Abstraction Library. See www.gdal.org
3GNU Image Manipulation Program. See www.gimp.org

www.gdal.org
www.gimp.org
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6. Generating the final product. To produce a data product that is
easy to work with, the data from all tiles of one GFL image is compiled
into a single CSV file with reduced spatial resolution. To achieve this, the
combined images resulting from the previous steps are split into 20×20 m
boxes. The fraction of melt ponds and open water or invalid data is
calculated for each box. Latitude and longitude are also calculated using
the Python interface of GDAL.

(a) Input tile (b) Manual mask for sea ice

(c) Threshold tp applied (d) Combined

Figure 3.2: Illustration of the different processing steps in the classification of the
GFL images. (a) shows an unmodified 3× 3 km tile. (b) is the manually created
mask for sea ice (white represents sea ice) and (c) shows the result of thresholding
(a). Here white corresponds to melt ponds or open water. (d) is the combined
image with white representing invalid data, ice is light grey and melt ponds are
dark grey.
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3.5.2 Accurate Mask for Open Water

The melt pond fraction for fully ice covered areas is obtained by the procedure
described in the previous paragraph. This dataset does not allow to investigate
the influence of open water on a retrieval algorithm because the sea ice mask is
not accurate to one pixel. The creation of such an accurate mask is possible,
but a very cumbersome task. In areas of sea ice broken up it is difficult and
time consuming to decide if a pixel is a melt pond, open water or sea ice. Only
the contextual information of the surrounding pixels helps in such cases. For
example if a crack between two ice flows is clearly visible at one point, it is
possible to follow that crack and mark the pixels as open water. An accurate

(a) Original tile (b) Mask for open water

Figure 3.3: Sub-tile of GFL image #2 with accurate open water mask. White
areas in (b) are classified as open water. The horizontal stripe with interpolation
artifacts visible in (a) is excluded using an additional mask that is not shown here.

open water mask is created for one sub-tile of the image GFL #2 mainly by
using the bucket fill tool of GIMP. In some cases single pixels are masked out
using the pencil tool. The mask replaces the rough sea ice mask described in
the previous section and the open water fraction is also written to the final
CSV file.

3.5.3 Classification of Ice Type

The spatial resolution of the GFL images allows an assessment of the ice type.
In principle, it is possible to separate multiyear ice from first-year ice by looking
at the shape and distribution of melt ponds and the surface roughness. Melt
ponds are distributed almost randomly on multiyear ice but tend to align their
major axis with melting sastrugi on first-year ice (Inoue et al., 2008; Kwok,
2014). This fact, and a general assessment of the surface roughness, is used
to classify the GFL image into regions of older and younger ice. Figure 3.4
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(a) Younger ice (b) Older ice

Figure 3.4: Example images for the two surface classes. In (a) the melt pond
fraction is much higher and we see a relative uniform distribution of ponds. The
ponds seem to be aligned to their direct neighbours. This is not the case in (b)
and we see a seemingly random distribution of melt ponds. In addition the surface
appears to be rougher.

shows example images for both classes. The classification is done by visual
inspection of the image. All regions with a surface that appears rough and
a random distribution of ponds are marked using the paint tools of GIMP.
The two classes can be discriminated easily in many cases. However, there
are also cases where the classification is difficult, as the ice appears to be an
intermediate type. Additionally, since the GFL images are single-band, there
is no information about the color of the ponds that could be used to separate
the two classes. Therefore the older ice class might contain deformed first-year
ice and vice versa. This general difficulty is also the reason why the classes are
not named multiyear and first-year ice.

3.5.4 Co-location to MERIS Data

To compare GFL and MPD melt pond fractions, the combined GFL dataset
in the CSV file is co-located box-wise to the MERIS pixels using a nearest-
neighbour algorithm. A box is a 20 × 20 m subsection of the GFL image,
as described in the previous paragraphs. All duplicated (cosmetic) pixels in
the MERIS L1B swath and pixels with more than 5% invalid or missing GFL
boxes are excluded after the co-location. The latter is done by thresholding
the number of valid GFL boxes for each MERIS pixel and is an approximation,
since the actual size of the MERIS pixels depend on the observation angle.
However, all pixels used in the comparison are from the same small region and
have very similar observation angles. The influence of this simplification is
therefore negligible.
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3.6 Prediction of September Sea Ice Area

Recently, it was found that there is a strong anticorrelation between the spring
melt pond fraction and the minimum sea ice area in September. This correlation
can be used to predict the sea ice minimum of a year with a standard deviation
of 0.5 ·106 km2 at the end of May (Schröder et al., 2014). The study is based on
melt pond fraction data derived from a numerical simulation of the Arctic sea
ice for the years 1979 – 2013. The dataset is available for this work (Schröder,
private communication, 2015) and holds daily melt pond fractions with a spatial
resolution of 40 km.

To predict the September ice area, Schröder et al. (2014) calculate a weighted
spatial and temporal mean of the melt pond fraction anomaly in May. If f im(y)
denotes the anomaly of the mean melt pond fraction for the grid cell i in May
of year y, the weight for grid cell i is given by the magnitude of the correlation
coefficient Ri between the time series f im(y) and the time series of the sea ice
minima s(y). Grid cells with a positive correlation coefficient are neglected by
setting the weight to zero. The weighted spatial and temporal mean fm(y) is
then calculated for each year via

fm(y) =

∑N
i |Ri| · f im(y)∑N

i |Ri|
(3.17)

with N being the total number of grid cells. Finally, the prediction of the sea
ice minimum p(y) is based on a linear fit of fm(y) and s(y)

p(y) = linfit
y

{(
fm(y), s(y)

)}
. (3.18)

Data from all years y is used to calculate the weights and the linear fit in
hindcast mode, yet only data from previous years is used to perform a prediction
(Schröder et al., 2014).

We apply a similar scheme to calculate a hindcast of the September ice area
from satellite-retrieved MPD melt pond fractions for the years 2003 – 2011.
The time series of minimum ice extent s(y) is derived from the ASI sea ice
concentration product (?). The MPD maps are cloud screened (Mask 2 from
Sec. 3.3.3) and the spatial resolution is reduced from 12.5 km to 100 km by
calculating the mean of 8× 8 grid cells. No threshold for the minimum number
of valid input grid cells is applied during this step to increase spatial coverage
and a 100 km grid cell can represent a single 12.5 km grid cell in worst case.
For each year, maps of the mean melt pond fraction are built over periods of
different length, always starting at 1st of May. The start date is not varied in
agreement with Schröder et al. (2014). Maps of the anomaly with respect to
the Arctic-wide mean of all years are calculated. The grid cells of these maps
are denoted by f im(y) in Equation 3.17 and the correlation coefficients Ri are
calculated from the time series f im(y) and s(y) as described above. However,
f im(y) is not available for all years and grid cells due to cloud coverage and Ri

is set to zero if more than two years are missing in f im(y).



Chapter 4

Results

4.1 Cloud Screening using gridded Cloud

Fraction from MODIS

A sensitivity study is performed to assess the effect of an additional cloud
screening on the gridded MPD melt pond fraction maps. Figure 4.1 presents
the temporal development of the mean melt pond fraction in dependency on
the MODIS cloud fraction threshold tc. In May and early June, we find smaller

Figure 4.1: Arctic-wide mean melt pond fraction in dependency to MODIS cloud
fraction. Shown is data from 2009. The colors indicate different values for the
threshold tc. The dark blue line includes only areas with a cloud fraction less than
10%. The thick red line includes all regions that are not screened out by MPD.

pond fractions if regions with high cloud coverage are excluded. The smallest
mean pond fraction is found together with the smallest threshold tc in many
cases. No evident dependency is visible in the second half of June with mean
melt pond fractions around 0.15. In July, however, the mean pond fraction
is clearly higher, if cloudy areas are screened out, and the differences exceed
0.05 pond fraction many times. In August, we find an erratic situation with a
eye-catching peak around 25th of August. Later in September, the situation is
similar to the one found in May.

30
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A closer inspection of the melt pond fraction maps reveal the reason for the
peak around 25th of August. The cloud filtering of the MPD algorithm excludes
large parts of the region covered with sea ice in this time period. Only a part
of the central Arctic and the Lincoln sea, with melt pond fractions around
0.20, and the area between the Queen Elizabeth Islands, with high melt pond
fraction around 0.40, is left. The additional cloud screening excludes all regions
except the Queen Elizabeth Islands and the mean pond fractions increases
dramatically. This example illustrates that results of this study can be erratic
if a small area in the Arctic Ocean is studied.

Figure 4.2: Spatial coverage in dependency of the MODIS cloud fraction threshold
tc. Shown is the number of valid (clear sky) grid cells in MPD maps divided by the
number of grid cells that have an sea ice concentration greater than 25% according
to the ASI algorithm.

The spatial coverage of the melt pond fraction maps in dependency of the
threshold tc is presented in Figure 4.2. Roughly 50% of the Arctic sea ice is
covered by the MPD maps without additional cloud screening in May and
July. This value decreases gradually towards the end of the melt season. The
additional cloud screening reduces coverage significantly. Even for tc = 0.8 up
to 70% of the available data is screened out in the early melt season and the
temporal evolution of coverage is more stable than without screening. However,
slightly smaller values are found at the end of the melt season. As expected,
the reduction is more pronounced for smaller thresholds tc. A threshold values
of tc = 0.25 screens out 85% of the available data on average. Nevertheless, in
order to minimize the influence of clouds on the MPD melt pond fractions, this
threshold is selected for the additional cloud screening.

4.2 Bayesian Cloud Screening MECOSI

The development and evaluation of the cloud screening algorithm MECOSI
is focused on the time period May – July 2009 since preliminary results indi-
cated that the MPD cloud detection performs reasonable well in August and
September. The corrections for the features, the background probability P (C)
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and the frequency histograms, that are necessary to estimate the probabilities
P (Fi, C) and P (Fi, C), are calculated using all 1087 MERIS swaths from May
– July 2009. A background cloud probability P (C) = 0.85 is found, hence, we
see a 85% chance to find a pixel showing clouds or open water in the AATSR
cloud masks.

The algorithm is then used to generate cloud probability files for the same
period and the results are closely inspected. An example is presented in
Figure 4.3 together with MERIS reflectances and the corresponding AATSR
cloud mask. In general, we find a good agreement between the cloud probability

(a) MERIS 412nm (b) Cloud probability (c) AATSR cloud mask

Figure 4.3: Example result of the Bayesian cloud screening MECOSI. Shown is a
cropped MERIS swath from 1st of July 2009. The images cover roughly 3300× 1300
kilometer. Land or invalid data is green and the New Siberian Islands are visible in
the lower right corner. In (b) blue corresponds to zero cloud probability and red to
one. Clouds are white in (c).

and the AATSR mask and no pronounced residues of the Smile-effect or borders
of the AATSR swath are visible. Misclassification is more likely in areas with
semi-transparent clouds and areas with subpixel ice floes. Small clouds are
also more likely to be missed by the MECOSI algorithm. This appears to be a
consequence of using the MODIS cloud fractions product with its coarse 1× 1◦

spatial resolution. Additionally, we find wrongly screened out clear sky regions
more frequently close to the cross-track edges of the swaths. This problem
appears to be connected to small sun zenith angles in several cases. However,
the reason for this is not fully understood.

To quantify the overall performance of the algorithm, we first investigate the
probability distribution for pixels that are cloud covered respectively marked
as clear sky in the AATSR mask. We find that 80% of the cloudy pixels
have a cloud probability close to one and the distribution drops sharply with
decreasing probability (Fig. 4.4 (a)). Only a small peak at zero probability
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(a) Cloud covered pixels (b) Clear sky pixels

Figure 4.4: Cloud probability distribution. The histogram (a) is build using all
pixels that are marked as cloud covered in the AATSR cloud mask and (b) shows
the same histogram for clear sky pixels. Note the logarithmic scale of the vertical
axis.

is a sign of a clear misclassification. The distribution for clear sky pixels is
less distinct (Fig. 4.4 (b)). Up to P (C) = 0.85, we find a distribution that
drops towards zero which is the desired behaviour. Yet it rises again and 9% of
the clear sky pixels show a cloud probability close to one. Therefore we see a
tendency of the MECOSI algorithm to incorrectly screen out clear sky regions.
The distribution of the cloud probability in cross-track directions is also of
particular interest since AATSR covers only the center half of the full MERIS
swath. The mean cloud probability per cross-track pixel in Figure 4.5 shows a

Figure 4.5: Mean cloud probability versus cross-track pixel position. The vertical
red lines show the transition between the five cameras of MERIS.

clear dependency on the pixel number. The evident steps are located at the
transitions between the five detector cameras, hence, it is likely that we see a
residue of the Smile-effect. However, the overall variation is below 0.03 cloud
probability and neglected henceforth.

The performance of the single features is assessed by calculating the Hanssen-
Kuipers skill score for each feature (Tab. 4.1). We find that the feature with
the highest skill score is the MODIS cloud fraction product closely followed
by the MERIS differential snow index. All other features show a considerably
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Table 4.1: Hanssen-Kuipers skill scores for single features. The skill score was
calculated using the AATSR cloud mask as true value.

Feature Symbol Short Name Skill Score

m MODIS cloud fraction 0.44
idx(r12, r13) Differential snow index 0.40
rox O2-A ratio 0.25
w Whiteness 0.20
idx(r1, r3) Index function bands 1 and 3 0.19
bnir Brightness in near infrared 0.08
c45 GLCM correlation 0.05

smaller score. Especially the brightness in near infrared bnir and the GLCM
correlation c45 are close to zero respectively no skill. This is not surprising for
the experimental feature c45 since the range has been cropped. Yet a better
performance has been expected from bnir because clouds tend to have a higher
reflectance than snow or sea ice in near infrared. However, it has to be noted
that the skill scores only give a rough overview over the general performance
of a feature. Most important is the interaction of the single features. Two
features with a higher skill score can still lead to a poor performance if they
miss the same type of clouds, i.e. if they are correlated.

A probability threshold of tr = 0.5 is selected for the creation of binary
cloud masks based on the histogram in Figure 4.4. Varying this threshold has
an effect on the overall performance of the algorithm. However, we do not
find a pronounced dependency on the threshold for tr ∈ [0.4, 0.6]. The binary
masks are again compared to the AATSR masks to quantify the performance
of the final product. Clear sky pixels showing open water are excluded from
this comparison. Cloud covered open water areas are included because it is
not possible to separate them from sea ice pixels using optical data only. By
comparing all swaths from May – July, we find that 77% of the pixels are
correctly classified as clouds and 12% correctly as clear sky. This gives a total
number of 89% pixels that are correctly classified by the MECOSI algorithm.
The remaining 11% split up to 4% missed clouds and 7% of clear sky pixels
wrongly classified as cloud covered. The temporal dependency of these numbers
is presented in Figure 4.6. It is evident that the algorithm has more pronounced
difficulties to separate clouds from sea ice at the beginning of the melt season.
The fraction of missed clouds is small, yet the fraction of missed clear sky pixels
is higher than the fraction of correctly classified clear sky pixels in several cases.
This means that more than 50% of the clear sky region is wrongly screened
out. However, we find a comparatively stable performance of the algorithm in
June and July.

Finally, we study the cloud screened melt pond fraction product. An
example map is shown in Figure 4.7. The cloud screening removes a large
amount of data and regions, that are not excluded by the screening (Fig. 4.7 (b)),
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Figure 4.6: Temporal development of correctly classified respectively wrongly
classified pixels. Shown is the daily mean fraction of all pixels that are covered by
the AATSR cloud mask and do not show clear sky open water. The vertical axis is
logarithmic.

correspond well to regions with smaller melt pond fractions in the original
product (Fig. 4.7 (a)). The temporal development of the mean melt pond
fraction is also compared to a gridded product that uses the AATSR masks

(a) Without additional screening (b) MECOSI cloud screened

Figure 4.7: MPD melt pond fraction maps with and without additional cloud
screening from 14th of May 2009.

directly (Fig. 4.8). Only regions that are covered by AATSR are included into
the comparison and a mask of at least 50% valid input pixels per grid cells is
applied. No pronounced differences are found between MECOSI and AATSR
cloud screened melt pond fractions. The maximum difference is 0.03 and the
difference of means is below 0.01 melt pond fraction. However, comparing both
products to the mean melt pond fraction of the original maps reveals an evident
disagreement. At the beginning of the melt season we find approximately 0.03
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Figure 4.8: Temporal development of the mean melt pond fraction using the
MECOSI cloud screening, the AATSR mask and no additional cloud screening. The
two day gap in the AATSR product is due to missing cloud masks for this time
period at the end of May.

higher mean pond fractions in the original product and, after a transition phase
in early June, we see considerably smaller values in Mid-July. The differences
exceed 0.05 melt pond fraction in many cases.

4.3 Comparison of MPD and ICDC Melt Pond

Fraction

4.3.1 Comparison of Daily Data from 2009

An overview over the results of the comparison of daily melt pond fractions is
given in Figure 4.9. Both datasets agree remarkably well with a RMSD = 0.04
and a high coefficient of determination R2 = 0.90. The difference of means
D = −0.02 shows a slight tendency of MPD to retrieve higher values, yet more
noticeable differences can be found in the scatter plot. The tendency of MPD
towards higher values is more pronounced for small melt pond fractions and
there is a conspicuous accumulation of points around 0.13 ICDC and 0.05 MPD
melt pond fraction. Additionally, several high values from MPD around 0.50
are not well matched and the map of average differences (Fig. 4.9 right panel)
shows a non-uniform distribution with higher values from ICDC north of Franz
Joseph Land and higher MPD pond fractions close to the Beaufort sea. Possible
reasons for these disagreements can be identified by investigating the temporal
development. In June, we find melt pond fraction below 0.20 (Fig. 4.10 (a) left
panel). The tendency of MPD to yield higher values for small pond fractions
is clearly visible. The map of average differences (Fig. 4.10 (a) right panel)
shows a dependency to longitude with higher MPD pond fractions north of
Canada and smaller values north of Franz Joseph Land. A strong increase in
melt pond fraction is observable in July and we find a very good match between
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Figure 4.9: Comparison of all available daily data from first of June to the end of
August 2009. The left panel shows a scatter plot of the data and N gives the toal
number of points, D is the difference of means ICDC - MPD and the regression
line f(x) = S · x+ C. The panel on the right shows a map of averages differences.
Grey areas represent land or regions with no data available.

the two dataset (Fig. 4.10 (b) left panel) . Only very few high values from
MPD between 0.45 and 0.50 stick out. These points originate from a small
region between Greenland and Ellesmere Island. An arrow in Figure 4.11 (f)
points to the region and a MERIS full resolution image is shown in Figure 4.13.
No open water is visible between the ice and the shore of Greenland on 4th

of July, and, therefore, the ice might have been landfast over the winter. The
high values from MPD are plausible in this case since landfast ice is known
for high melt pond fractions. In August, the majority of data is screened out
because of clouds and the 90% ice concentration limit (Fig. 4.10 (c) left panel).
One part of the data with melt pond fractions around 0.25 agrees again very
well. The other part accumulates at 0.13 ICDC melt pond fraction and clearly
sticks out in the scatter plot. They are also the main reason for non-uniform
distribution of the spatial differences in Figure 4.9.

4.3.2 Comparison of 8-day Composites for Regions with
High ICDC Sea Ice Concentration

To start with the comparison of the Arctic-wide datasets we first select regions
with high sea ice concentration. The ice concentration minimum is set to 90%
and Figure 4.14 presents the result of comparing data from 2003 to 2011. The
two datasets agree well for small melt pond fractions below 0.15, yet we find a
tendency of MPD to retrieve higher values above 0.15 pond fraction. There is
less data in this range since the majority of points gather between zero and
0.15. However, a sufficient amount of data with values above 0.15 is available
to conclude that MPD estimates a higher melt pond fraction in this range than
the ICDC algorithm.
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(a) June 1st to June 30th

(b) July 1st to July 30th

(c) July 31st to August 29th

Figure 4.10: Comparison of daily melt pond fraction data from 2009 splitted into
periods of thirty days. See Figure 4.9 for a description of used symbols and colors.
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(a) June 2nd to 9th (b) June 10th to 17th

(c) June 18th to 25th (d) June 26th to July 3rd

(e) July 4th to 11th (f) July 12th to 19th

Figure 4.11: MPD melt pond fraction maps. Shown is the melt pond area fraction
averaged over an 8-day period. All data is from the year 2009.
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(a) July 20th to 27th (b) July 28th to August 4th

(c) August 5th to 12th (d) August 13th to 20th

(e) August 21st to 28th (f) August 29th to September 5th

Figure 4.12: MPD melt pond fraction maps. Shown is the melt pond area fraction
averaged over an 8-day period. All data is from the year 2009. In August and
September the cloud screening based on MODIS cloud fractions is applied and one
can identify residues of the 1× 1◦ constant angle grid from the cloud fraction data.
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Figure 4.13: MERIS full resolution RGB image from 4th of July 2009. The land
visible on the left is a part of the Ellesmere Island. On the bottom and right the
shore of Greenland is visible. The location of the image center is 83.18◦N, 56.14◦W.

Figure 4.14: Comparison of ICDC and MPD melt pond fractions for regions with
high sea ice concentration. Shown is data from the years 2003 to 2011. Total number
of points N = 710817, difference ICDC - MPD of means D = −0.04, RMSD = 0.07,
R2 = 0.76, regression line f(x) = 1.32 · x+ 0.15. White areas contain less than ten
points per cell.
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The spatial distribution of average differences is shown in Figure 4.15 and we
find a good match above 80◦N latitude in the first time period (Fig. 4.15 (a)).
Winter conditions are predominant for this region and time. For latitudes

(a) May 9th to June 9th (b) June 10th to July 11th

Figure 4.15: Temporal and spatial development of melt pond fraction differences
in regions with high sea ice concentration. Differences maps from the years 2003 to
2011 are averaged over the given period of the years.

below 80◦N we find higher fractions from MPD. A great amount of data is
excluded due to cloud cover in June and the beginning of July (Fig. 4.15 (b)).
A statistically significant comparison cannot be assured in most of the regions
below 75◦N. However, one can still identify regions with conspicuous differences
between the datasets. The Canadian archipelago with frequent occurrence of
landfast ice shows particular high differences, similar as north of the Canadian
archipelago close to the Beaufort Sea. MPD retrieves average pond fractions
above 0.25 in both regions as one can see in Figure 4.19 (b). After Mid-July,
not enough data is left to build difference maps with coverage sufficient for
reliable interpretation.

4.3.3 Comparison of 8-day Composites Including Re-
gions with Lower Sea Ice Concentration

Regions with lower sea ice concentration are included into the comparison in
order to increase the spatial coverage and to include regions with high ICDC
melt pond fraction. A minimum of 25% ICDC ice concentration is chosen. The
resulting scatter plot is presented in Figure 4.16. In general, we find a strong
correlation between the two datasets and a good match for melt pond fractions
below 0.15, yet we find a pronounced tendency of MPD to estimate higher melt
pond fractions than ICDC for values above 0.15. A similar result is found in
the comparison for high sea ice concentrations (Fig. 4.14). A greater amount
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Figure 4.16: Comparison of ICDC and MPD melt pond fractions including regions
with low sea ice concentration. Shown is data from the years 2003 to 2011. Total
number of points N = 1766963, difference ICDC - MPD of means D = −0.05,
RMSD = 0.08, R2 = 0.74, regression line f(x) = 1.30 · x+ 0.01.

of data with pond fractions above 0.15 is included here because of the lower
sea ice concentration threshold.

The temporal development of the mean melt pond fraction and the difference
for the investigated years is presented in Figure 4.17. In general, we find a
similar behaviour for each year and the exeptional high values in the early melt
season of 2007 are well matched. However, MPD shows a higher interannual
variability after onset of melt in early June (Fig. 4.17 top and middle panel).
The mean differences around −0.04 at the beginning of the melt season indicate
slightly higher values from MPD (Fig. 4.17 bottom panel). The magnitude of
differences increases after onset of pond formation and the greatest discrepancy
is found at the beginning of July with mean values around -0.08. Then we
see a gradual reduction of the differences and the datasets agree again well in
early September. The year 2007 sticks out with two weeks of strong negative
differences at the beginning of July that are caused by the exceptional high
melt pond fraction at this time.

The spatial distribution of mean differences from May to beginning of June
(Fig. 4.18 (a)) is very similar to the one found in the comparison for high sea
ice concentration (Fig. 4.15 (a)). A slight increase in coverage is observable for
some regions, e.g. in the Chukchi Sea. However, the second map (Fig. 4.18 (b))
shows a strong increase in coverage and we can identify additional regions
with pronounced differences. The area between the New Siberian Islands and
the Russian mainland is eye-catching with up to 0.15 higher MPD melt pond
fraction. This region is typically covered by landfast ice. A similar disagreement
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Figure 4.17: Temporal development of the mean melt pond area fractions and
the difference ICDC - MPD for 2003 – 2011. The mean is calculated over all grid
cells with valid data in both products and a ICDC sea ice concentration above 25%.
Maps with less than 1500 grid cells to compare are excluded.
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(a) May 9th to June 9th (b) June 10th to July 11th

(c) July 12th to August 12th (d) August 13th to September 13th

Figure 4.18: Temporal and spatial development of melt pond fraction differences
including regions with low sea ice concentration. Data from 2003–2011 is average
over the given days of the year.
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between the datasets is found between the Queen Elizabeth Islands, also a
region known for landfast ice. Moreover, we find higher melt pond fractions
from MPD in the eastern Beaufort sea. A related distribution is found in the
next time period from July 12th to August 12th (Fig. 4.18 (c)). Less area is
covered as the ice continues to retreat and the differences in the Beaufort Sea
are slightly extenuated. We see a notable change in the maps from Mid-August
to Mid-September (Fig. 4.18 (c)). The ICDC algorithm retrieves slightly higher
melt pond fractions above 80◦N, yet the spatial coverage of the comparison is
poor in this period.

(a) May 9th to June 9th (b) June 10th to July 11th

(c) July 12th to August 12th (d) August 13th to September 13th

Figure 4.19: Maps of the mean MPD melt pond area fraction. The mean is
calculated using data from the given time periods for the years 2003 to 2011.

Comparing the maps of mean MPD melt pond area fraction (Fig. 4.19)
to the differences maps (Fig. 4.18) shows a high correlation. Regions with
high average MPD melt pond fraction are clearly visible in the difference maps
and vice versa for regions with low melt pond fraction. The same correlation
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(a) May 9th to June 9th (b) June 10th to July 11th

(c) July 12th to August 12th (d) August 13th to September 13th

Figure 4.20: Maps of the ICDC mean melt pond area fraction. The mean is
calculated using data from the given time periods for the years 2003 to 2011.
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is clearly observable in the scatter plot (Fig. 4.16). The mean ICDC melt
pond area is presented in Figure 4.20 and especially the result for the time
period Mid-July to Mid-August (Fig. 4.20 (c)) is conspicuous. While the
Canadian archipelago and the eastern Beaufort sea show higher pond fractions
around 0.25, no pronounced differences are found between the Chukchi sea
with frequent occurrence of first-year ice and the central Arctic with multiyear
ice. This is not the expected result and comparing the maps to the maps of
the relative melt pond fraction presented in Rösel et al. (2012) and Rösel and
Kaleschke (2012) shows an evident discrepancy. Therefore the conversion of
the ICDC relative melt pond fraction to the melt pond area fraction might be
problematic.

4.3.4 Comparing Relative Melt Pond Fraction to Area
fractions

We compare the relative melt pond fraction in the ICDC dataset to the melt
pond area fraction retrieved by MPD. Thus we compare two quantities that
differ from each other in regions with low sea ice concentration. Again a
threshold of 25% ICDC ice concentration is used and the result is presented in
Figure 4.21. We see a much better agreement between the two datasets than in

Figure 4.21: Comparison of ICDC relative melt pond fraction and MPD melt
pond are fractions. Total number of points N = 1766963, difference ICDC - MPD of
means D = −0.02, RMSD = 0.06, R2 = 0.73, regression line f(x) = 1.01 · x+ 0.02.

the comparison of melt pond area fractions (Fig. 4.16). The tendency of MPD
to yield higher values at higher ICDC melt pond fractions is strongly reduced
and the slope of the regression line is almost equal to one. The difference of
means D = −0.02 shows a slight trend of MPD to retrieve higher melt pond
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fractions. Only the outer shape of the area with a significant amount of data is
equal to the result of comparing melt pond area fractions. This shape is also
found for high sea ice concentrations (Fig. 4.14) and is it not surprising to find
it here as well since relative melt pond fraction and melt pond area fraction
are equal quantities for fully ice covered regions.

The development of the melt pond fractions again shows similar behaviour
for the investigated years (Fig. 4.22 top and middle panel). Yet, in contrast
to the comparison of melt pond area fractions (Fig. 4.17), we find a higher
interannual variability of the ICDC pond fraction. The mean differences are

Figure 4.22: Temporal development of the mean MPD melt pond area fraction,
the mean ICDC relative pond area fraction and the difference for 2003 – 2011. The
mean is calculated over all grid cells with valid data in both products and a ICDC
sea ice concentration above 25%. Maps with less than 1500 grid cells to compare
are excluded.

again around -0.04 in May (Fig. 4.22 bottom panel). However, the peak at the
beginning of July is strongly extenuated with mean differences around -0.04
and we find higher ICDC relative pond fractions in September. The year 2007
is conspicuous again with the most pronounced differences at the beginning
June. We also see discrepancies for the year 2003 more clearly with pronounced
negative differences at the end of June and the beginning of July.
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The spatial distribution of average differences is presented in Figure 4.23.
If we compare the result for the first period (Fig. 4.23 (a)) to the comparison
of area fractions (Fig. 4.18 (a)), we find an identical distribution but reduced
absolute differences. In the second period, Mid-June to Mid-July, we see a
better agreement in the Chukchi sea, western Beaufort sea and the Fram
Strait close to the ice edge (Fig. 4.23 (b) and Fig. 4.18 (b)). The other parts
of the map show again overall reduced differences but an identical spatial
distribution. Regions known for landfast ice stick out as well as higher MPD
melt pond fractions north of the Queen Elizabeth Islands. For the next period,
Mid-July to Mid-August, we see a very good match between the two datasets
(Fig. 4.23 (c)). Except for Queen Elizabeth Islands, no clear pattern in the
distribution of differences is visible since the differences are small. From August
13th to September 13th, we find higher melt pond fractions in the ICDC dataset
above 80◦N (Fig. 4.23 (d)) while we found higher values from MPD in the
period May – July. At this time the result is close to the previous result in
Figure 4.18 (d), but the differences are more pronounced.

Finally, the maps of the mean ICDC relative melt pond fraction (Fig. 4.24)
show a stronger dependency on latitude compared to the maps of the area
fraction (Fig. 4.20) and the expected difference between the Chukchi sea and
the Central Arctic is clearly visible.

4.4 ICDC Sea Ice Concentration and Depen-

dency on Melt Pond Fraction

The ICDC melt pond fraction dataset holds the relative melt pond fraction.
Both the melt pond area fraction and the sea ice concentration are retrieved
simultaneously by the spectral unmixing algorithm (Sec. 2.4). We investigate
the temporal development of the ICDC sea ice concentration first. Figure 4.25
presents the median and the 90% percentile of all grid cells above 60◦N with
an ice concentration greater than 25%. The data is taken from the ICDC 8-day
composite maps and a mask as described in Section 3.3.3 is applied to ensure
high data quality. However, no bias correction is performed. From May to
the beginning of June we find a median sea ice concentration of approximately
93%. Then the median starts to decrease and reaches its minimum mid-August.
All the years show a similar behaviour with higher interannual variability in
August. However, we can identify a exceptionally small value for 9th of June
2007 and the global minimum in August 2011. Both years showed a minimum
in sea ice extend and also an exceptionally high melt pond fraction in the ICDC
dataset (Rösel and Kaleschke, 2012).

The 90% percentile of the sea ice concentration shows a similar temporal
dependency as the median (Fig. 4.25 bottom panel). We find values around
95% sea ice concentration an no interannual variation from the beginning of
May to Mid-June. Thus 90% of all grid cells have a sea ice concentration below
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(a) May 9th to June 9th (b) June 10th to July 11th

(c) July 12th to August 12th (d) August 13th to September 13th

Figure 4.23: Spatial distribution of mean differences between the ICDC relative
melt pond fraction and the MPD melt pond area fraction based on data from 2003
to 2011.
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(a) May 9th to June 9th (b) June 10th to July 11th

(c) July 12th to August 12th (d) August 13th to September 13th

Figure 4.24: Maps of the mean ICDC relative melt pond fraction for the years
2003 to 2011. The colorbar gives the relative melt pond fraction.
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Figure 4.25: Temporal development of ICDC sea ice concentration. The top panel
shows the median value of all grid cells from the Arctic (above 60◦N) with a sea ice
concentration higher than 25%. The bottom panel gives the 90% percentile of the
same data.

95%. In Mid-August, the 90% percentile drops to values between 85% and
92% and increases afterwards to values around 93%. The two exceptionally
low values in the median plot (9th of June 2007 and 12th of August 2011) are
not found in the 90% percentile. These exceptions are formed in regions of ice
concentration between 25% and 90%.

Figure 4.26 presents maps of ICDC and ASI sea ice concentrations for the
year 2008. The ASI sea ice concentration has been averaged over an 8-day
period so that they are based on the same period as ICDC 8-day composites.
In general, we find that the outer shape of the regions covered with ice match
very well. However, ASI retrieves higher sea ice concentrations, especially in
July and August. The region above 85◦N is fully ice covered in the ASI maps
with few exceptions. The ICDC algorithm shows values between 80% and 90%
for this region in July and August, and even more pronounced differences can
be found for latitudes below 85◦N.

Data from the years 2003 to 2011 is analysed to investigate a conceivable
dependency between the ICDC sea ice concentration and the relative melt pond
fraction. The result is presented in Figure 4.27 as scatter plots for successive
periods of 32 days. The ICDC clear sky subset is used with all grid cells
screened out that contain less than 90% valid pixels and no bias correction
is performed. For the first period we find the majority of points around 0.08
relative pond fraction and 0.07 open water fraction (Fig. 4.27 (a)). There is
a slight anticorrelation between the two quantities since pond fractions close
to zero are only found for open water fractions above 0.07 and small open
water fractions only for melt pond fractions above 0.10. The situation of a
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Figure 4.26: Maps of the MODIS derived ICDC and the ASI sea ice concentration.
The ICDC maps are also shown in Rösel et al. (2012). The ASI maps are 8-day
averages.
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(a) May 9th to June 9th (b) June 10th to July 11th

(c) July 12th to August 12th (d) August 13th to Septeber 13th

Figure 4.27: ICDC open water fraction vs. relative melt pond fraction. The open
water fraction Aw is related to the sea ice concentration Ac via Ac = 1−Aw. The
plots are cropped to the range [0, 0.5] and white cells contain less than ten points.
No bias correction is performed. The number of data points is equal to the number
of grid cells.
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fully ice covered grid cell with zero pond fraction is almost never found. In the
next period Mid-June to Mid-July we find a different situation (Fig. 4.27 (b)).
The majority of grid cells have an open water fraction of approximately 0.05
and 0.13 relative pond fraction. Pond fractions above 0.13 tend to be seen in
combination with an increased open water fraction and the relation between
the two quantities appears to be linear. This is even more evident in the next
period (Fig. 4.27 (c)). Such a linear dependency between the melt pond area
fraction and the open water fraction is mentioned in Rösel et al. (2012). Here
we show the relative melt pond fraction that needs to be multiplied with the
sea ice concentration to obtain the melt pond area fraction (Eq. 3.15). The
conversion is linear and affects only the slope of the dependency. Towards the
end of the melt season we find a more blurred distribution with the majority of
points around 0.18 pond fraction and 0.09 open water fraction (Fig. 4.27 (d)).

4.5 Comparison of Melt Pond Fraction to Buoy

Webcam Images

The result of analysing buoy webcam images and the comparison to the satellite-
derived melt pond fractions is presented in Figure 4.28. Until 5th of July, we
find a mean air temperature well below 0◦ and no melt pond are visible on
the webcam images. Then the temperature rises and stays around 0◦ until
the beginning of August. The formation of melt ponds starts on 8th of July,
four days after the air temperature hits 0◦, and ponds are visible until 14th of
August. The air temperature indicates that the ponds might be over frozen
after 7th of August, however, this cannot be confirmed by the webcam images
due to the viewing angle. No melt ponds are visible until 23rd of August. After
this period, we see again an increased air temperature and ponds are clearly
visible on the images. Hence, we observe an freeze-melt cycle.

Before onset of pond formation, we find ICDC and MPD melt pond fractions
around 0.05 except for 5th of July where the ICDC algorithm retrieves a value
of 0.13. Not enough data is available to determine the onset of pond formation
accurately from the satellite-derived melt pond fractions. At Mid-July, we find
values around 0.20 which is a reasonable value for multiyear ice five days after
onset of pond formation. The highest values are found in the end of July with
a maximum around 0.40 which is also compatible to multiyear ice. Again, not
enough data is available to determine the date of the maximum accurately.
The pond fraction decreases gradually towards values around 0.12 for 10th of
August. One observation from 19th of August falls into the time period with
no melt ponds visible in the webcam images and we find a significantly higher
value in the ICDC dataset. While MPD retrieves a pond fraction of 0.05, the
ICDC algorithm retrieves 0.13. However, the maximum air temperature at this
time indicates that melt is possible and it is unknown if the observation at the
buoys location is representative for the whole 50 km grid cell. Nevertheless, we
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Figure 4.28: The top panel shows the temporal development of the satellite-
retrieved pond fractions at the location of the buoy. Blue background color indicates
periods with no melt pond visible in the webcam images and the green color indicates
visible melt ponds. No images are available in periods with a white background
color. The bottom panel shows the air temperature measured by the buoy.
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find only a slightly increased ICDC melt pond fraction during the second melt
period in late August. No MPD data is available to allow a direct comparison.

4.6 Comparison of MPD to GFL Satellite Im-

ages

It is necessary to assess the uncertainties of the GFL melt pond fraction data
in order to interpret the results of a comparison between MPD and the GFL
images. This is done in the next section followed by the actual comparison for
fully ice covered regions and for an area with sea ice broken up.

4.6.1 Quality Assessment of the GFL Melt Pond Frac-
tion Dataset

The procedure used to classify the GFL images strongly depends on the selection
of the threshold parameter tp. A sensitivity study is performed to find a suitable
value (not shown here). Different threshold values are applied to one exemplary
sub-tile of the image GFL #1 and the result is closely inspected for an any
misclassifications. An underestimation of the melt pond fraction can be clearly
observed for tp ≤ 65 and an overestimation for tp ≥ 90. For tp ∈ [70, 85] it
is not possible to determine if there is any misclassification and therefore the
average is selected tp = 78. Varying tp within the range [70, 85] leads to a
maximum difference of 0.03 in average pond fraction for the whole image GFL
#1. Hence the influence of the threshold selection can be estimated with an
uncertainty of ±0.015 melt pond fraction.

Other sources of Uncertainty

There are other factors beside the processing parameter tp that might affect
the quality of the melt pond dataset. They are described and discussed in the
following.

1. It is impossible to distinguish melt ponds from melt holes since open
water and melt ponds are equally dark in the images. Therefore, the melt
pond fraction might be significantly overestimated in several cases.

2. Melt pond with an area much less than one square meter are likely to
be overseen. This might result in an underestimation of the melt pond
fraction. However, the images show sea ice in an advanced melting state
and we believe that the majority of small melt ponds already joined into
larger ones that can be detected in the GFL images.

3. Visual inspection shows that some of the dark pixels, that are classified
as ponds, might be in fact shadows from pressure ridges. This issue is
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addressed by removing isolated pixels classified as ponds. The result of
this operation is a negligible reduction in melt pond fraction of less than
one percent. Dark regions that span more than one pixel are still taken
as melt ponds. This might result in a small overestimation of the melt
pond fraction.

4. Some undocumented image enhancing techniques might have been applied
to the GFL images. An operation like sharpening could affect the retrieved
melt pond fraction by enhancing pixel to pixel contrast.

It is believed that all of the listed uncertainties except for the first one do not
greatly affect the retrieved pond fraction. Therefore we estimate an overall
uncertainty of ±0.05 melt pond fraction, including the influence of the threshold
parameter. The presence of melt holes, however, might lead to a significantly
greater error.

4.6.2 Co-location and Manual Alignment

The co-location can introduce differences into a comparison in addition to
the uncertainties of two datasets itself, especially for a parameter with a high
spatial variability like the melt pond fraction. Figure 4.29 shows a direct
comparison between the MERIS swath and the two co-located GFL images.
Before manual alignment, the difference images reveal a shift between the two
datasets. It is visible especially at the edges of the ice floes and might result
from georeferenzing errors of the data products and from the time difference
between the satellite overflights. However, the shift seems to be constant and
equal for both images. Therefore it can be reduced by adding an offset to the
coordinates of one dataset. The offset values have been estimated by visual
inspection and a trial an error strategy. They are added to the coordinates
of the MERIS swath and given by 0.004721◦N and 0.006070◦E, corresponding
to a shift of roughly two MERIS full resolution pixels. The difference images
after this manual alignment step do not show a pronounced shift any more
and careful inspection leads to the conclusion that the co-location error, with
respect to the observed surface, is less than one MERIS pixel.
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(a) Reflectance 779 nm (MERIS) (b) Co-located image (GFL #1)

(c) Difference GFL #1 - MERIS (d) Difference after manual alignment

(e) Reflectance 779 nm (MERIS) (f) Co-located image (GFL #2)

(g) Difference GFL #2 - MERIS (h) Difference after manual alignment

Figure 4.29: Co-location and manual alignment of GFL images. The top four
images show the co-location for GFL #1 and the bottom four for GFL #2. Both
are co-located to the same MERIS full resolution swath. The pixel values of the
GFL images have been divided by 255 in order to create the difference images.
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4.6.3 Comparison for Fully Ice Covered Regions

A first comparison of MPD and GFL melt pond fractions is done for fully
ice covered regions. The resulting total number of 5925 pixels is compared in
Figure 4.30. In general, we see a good match between the two datasets with a
RMSD less than 0.10 melt pond fraction in both cases. There is an apparent
tendency of MPD to retrieve smaller pond fractions than the GFL classification
procedure and a difference of means D = 0.06± 0.1 is found. This tendency is
more pronounced for greater melt pond fractions, as the regression lines show,
and the estimated uncertainty of 0.05 from the GFL dataset is exceed in many
cases.

(a) GFL #1 (b) GFL #2

Figure 4.30: Comparison for fully ice covered regions. In the following N gives
the number of pixels compared, D is the difference GFL - MPD in mean pond
fraction and f is the regression line. (a): N = 2985, D = 0.05, RMSD = 0.08,
R2 = 0.26, f(x) = 0.28 · x + 0.14. (b): N = 2940, D = 0.07, RMSD = 0.09,
R2 = 0.49, f(x) = 0.39 · x+ 0.11.

The spatial distribution of the differences between the two datasets (Fig. 4.31 (c)
and Fig. 4.31 (g)) reveals a possible dependency on the ice surface. The most
pronounced differences are not randomly distributed but appear in patches. A
close inspection of the GFL images shows that regions where MPD retrieves
clearly smaller pond fractions correspond well to regions of younger ice with a
flat surface topography. To quantify this dependency, the ice surface of GFL
image #1 is classified using the method described in Section 3.5.3 and the
result is presented in Figure 4.32. We find a difference of means D = 0.03 and
a RMSD = 0.06 for older ice (Fig. 4.32 (a)). For regions with younger ice we
find D = 0.11 and RMSD = 0.12 (Fig. 4.32 (b)). Hence the agreement of the
datasets is better for older ice.

In addition to comparing melt pond fractions, the retrieval uncertainty
as estimated by the MPD algorithm is investigated. Figure 4.33 shows this
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(a) Melt pond fraction (MPD) (b) Melt pond fraction (GFL #1)

(c) Difference MPD - GFL #1 (d) Error estimation (MPD)

(e) Melt pond fraction (MPD) (f) Melt pond fraction (GFL #2)

(g) Difference MPD - GFL #2 (h) Error estimation (MPD)

Figure 4.31: Spatial distribution of melt pond area fractions and difference maps.
White areas in GFL the melt pond fractions represent missing data or areas that are
not fully ice covered. White pixels in the MPD product are screened out because
they are not bright enough to be sea ice.



4.6. Comparison of MPD to GFL Satellite Images 63

(a) Older ice (b) Younger ice

Figure 4.32: Influence of different ice types for the image GFL #1. Older ice
means that more than 95% of a pixel is classified as older ice. Each pixel in the
younger ice plot has less than 5% of its area classified as older ice. Numbers for
(a): N = 1830, D = 0.03, RMSD = 0.06, R2 = 0.29, f(x) = 0.35 · x + 0.13. (b):
N = 701, D = 0.11, RMSD = 0.12, R2 = 0.49, f(x) = 0.39 · x+ 0.09.

retrieval uncertainty versus the difference between MPD and GFL melt pond
fraction for both images. The uncertainty does not correspond well to the melt
pond fraction difference. We find a slightly higher retrieval uncertainty for
differences greater than 0.10 melt pond fraction only for image #2. However,
the retrieval uncertainty is still smaller than the difference between the datasets.
Conspicuous are a points with an uncertainty around 0.20 melt pond fraction
as they stick out in both plots. They are not related to pronounced differences
between the datasets and more likely to be found close to the edges of a floe
(Fig. 4.31 (d) and Fig. 4.31 (h)). Huge melt ponds, that cover more than
half of a MERIS pixel, are found at the location of of the points in several
cases. However, this is not always the case and the reason for these conspicuous
uncertainty estimations is not fully understood.

Finally, the melt pond fraction derived from GFL image #2 is related to
MERIS reflectances at 779 nm and a strong correlation is found (Fig. 4.34).
This confirms the good co-location between the two datasets. Moreover, it
shows that the melt pond fraction could be retrieved accurately in the study
region using only the reflectances at 779 nm. Light and dark pond have a very
similar albedo at this wavelength (Fig. 1.1).

4.6.4 Influence of Open Water

In order to investigate the influence of open water on the MPD algorithm, one
of the 3× 3 km sub-tiles from the image GFL #2 has been accurately classified
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(a) GFL #1 (b) GFL #2

Figure 4.33: Difference between the two datasets and the uncertainty of the
retrieval as estimated by MPD. The unit of the error estimation is melt pond
fraction. The corresponding scatter plots are shown in Figure 4.30

Figure 4.34: GFL melt pond fraction vs. MERIS reflectance for GFL image #2.
R2 = 0.79, f(x) = −0.52 · x+ 0.70.
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for sea ice and open water (Sec. 3.5.2). Thus the sea ice concentration can be
calculated for each MERIS pixel within this area and Figure 4.35 shows the
comparison of melt pond fractions in dependency of the sea ice concentration.
We find the same behaviour for pixels with sea ice concentrations above 95%

Figure 4.35: Influence of open water on the retrieval of melt pond fractions.
Shown is data from a 3× 3 kilometer cutout of the image GFL #2. The errorbars
are the uncertainties given by MPD. The numbers are N = 85, RMSD = 0.06,
R2 = 0.19, f(x) = 0.22 · x+ 0.17.

as in the previous comparison for fully ice covered regions (Fig. 4.30 right
panel). They are mainly located below or close to the main diagonal. However,
for sea ice concentrations below 95%, the majority of points is located above
the diagonal and the futhermost pixels show the lowest sea ice concentration.
Therefore we conclude that MPD misestimates the melt pond fraction retrieved
from the GFL image in dependency of the amount of open water in a pixel,
with slightly higher values at ice concentrations below 90% and slightly lower
values at ice concentrations above.

4.7 Prediction of September Sea Ice Area

We first investigate the influence of the period length on the temporal averaging
of the spring melt pond fraction (Fig. 4.36 (a)). We find the strongest (negative)
correlation between the melt pond fraction and the sea ice minimum if we
include data until 8th of June into the calculation of the mean. The correlation
does not improve if data from Mid-June or July is included. For shorter
periods we find a more erratic situation with a local maximum around 25th of
May. The number of available grid cells is considerably smaller in this period
(Fig. 4.36 (b)) which might explain the erratic behaviour.



66 4. Results

(a) Correlation (b) Number of valid and used grid cells

Figure 4.36: Correlation between spring melt pond fraction and minimum sea ice
area. The mean melt pond fraction fm(y) (Eq. 3.17) is calculated for the period 1st

of May until the given day. In (a) the correlation coefficient of the fit p(y) (Eq. 3.18)
is shown. (b) gives the total number of valid (available) grid cells and the number
of grid cells with a non-zero weight (used grid cells) in the calculation of fm(y).

Based on these findings, we use the period 1st of May – 8th of June for
the temporal averaging of the melt pond fraction and calculate a hindcast of
the minimum sea ice extend (Fig. 4.37). We find a good agreement with the

Figure 4.37: Hindcast of the September minimum sea ice extend using the
weighted mean melt pond fraction from the time period 1st of May – 8th of June.
The measured (red) data is derived from the ASI sea ice concentration product.

measured data with a standard deviation of the difference σ = 0.27 · 106 km2.
Only the year 2008 sticks out where the minimum sea ice area is overestimated
by 0.7 · 106 km2. This might be caused by gaps in the melt pond data due to
cloud coverage. In addition to the hindcast, a prediction for the year 2011 is
calculated by excluding this year from the estimation of the weights Ri and
the fit function p(y) (Eq. 3.17 and Eq. 3.18). The result is an overestimation
of the measured ice extend by 0.59 · 106 km2 which is about twice the standard
deviation we observe in the hindcast. This shows that the method is strongly
affected by the exclusion of a single year. In general, a longer time series is
desirable to assess more reliably the prediction skill.
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The spatial distribution of the correlation coefficients Ri, that are used to
calculate the weights for the spatial averaging in the hindcast, is presented in
Figure 4.38. We find a scattered distribution if the mean melt pond fraction is

(a) 1st of May – 8th of June (b) 1st of May – 26th of June

Figure 4.38: Spatial distribution of the correlation coefficients Ri. Shown are two
different time periods for the temporal averaging of the melt pond fraction. Areas
with missing data are grey.

calculated for the period 1st of May to 8th of June (Fig. 4.38 (a)). No distinct
pattern is observable above 75◦N, only the Beaufort sea sticks out with the
strongest negative correlation. The distribution changes considerably if the
period is extended 18 days until 26th of June (Fig. 4.38 (b)). Now large parts of
the Arctic Ocean show a negative correlation, including the central Arctic, and
therefore contribute to the mean melt pond fraction fm(y) (Eq. 3.17). Positive
correlation coefficients are found mainly in the seasonal ice zone north of Russia
and in the Canadian archipelago below 70◦N.

Finally, we compare the MPD melt pond fraction to the modelled pond
fraction used by Schröder et al. (2014). In the scatter plot of the temporal and
spatial mean pond fraction for the years 2003–2011 (Fig. 4.39), the (unweighted)
mean for the period 1st of May to 8th of June shows a high correlation between
the two datasets. Yet the modelled pond fractions are 0.08 smaller on average.
On the one hand, this can be explained by the different treatment of over frozen
melt ponds in the datasets. The model sets them to zero pond fraction while
MPD does not distinguish between exposed and over frozen ponds. On the
other hand, MPD is not sensitive for small melt pond fractions before onset
of melt and during the early melt stages since it barely retrieves values below
0.05 (e.g. Fig. 4.21). This leads to higher mean values in the period 1st of May
to 8th of June with winter conditions in large parts of the Arctic.
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Figure 4.39: Comparison of the unweighted Arctic-wide mean melt pond fraction
calculated over the period 1st of May to 8th of June for the years 2003 – 2011. D
denotes the difference of means and S is the slope of the regression line and C the
intercept.



Chapter 5

Discussion

5.1 Influence of Clouds on MPD Melt Pond

Fractions

The result presented in Section 4.1 show an influence of clouds on the MPD
melt pond product. We find smaller pond fractions if regions with high MODIS
cloud fractions are screened out before onset of pond formation and during fall
freeze-up (Fig. 4.1). The inverse situation is found when the mean pond fraction
rises above 0.20 in July. These results are understandable if we consider that
MPD retrieves values around 0.15 pond fraction in areas covered by opaque
clouds and a similar dependency on clouds is found when using the AATSR
cloud mask as an additional cloud filter (Fig. 4.8). The high spatial coverage,
especially at the beginning of the melt season, is an additional sign for an
insufficient cloud screening (Fig. 4.2). Average cloud fractions between 70% and
90% are found by radar and lidar measurements in two locations in the Arctic
during summer (Dong et al., 2010; Intrieri et al., 2002). A spatial coverage
of 50% over two months does not agree well with such findings. Therefore we
have to expect a strong influence of cloud contamination in any study using
the MPD melt pond fractions maps if no additional cloud screening is applied.

Based on these findings we use the MODIS cloud fractions as an additional
cloud screening for the MPD melt pond fraction product. Although this
approach will reduce the influence of clouds e.g. in the comparison to the ICDC
dataset, this method has a severe drawback. On the one hand, we still have
a 25% chance to miss clouds by thresholding the MODIS cloud fraction at
0.25. On the other hand, a grid cell with 0.30 cloud fraction will be completely
removed from the melt pond fraction product although there is a 70% chance
to find clear sky pixels. Hence, this procedure reduces the spatial coverage.
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5.2 Bayesian Cloud Screening MECOSI

In general, the results in Section 4.2 show that the MECOSI algorithm is able
to reproduce the AATSR cloud mask with good accuracy. Only 4% of the
pixels are wrongly classified as cloud free and the mean melt pond fraction
of the gridded product shows no pronounced differences to using the AATSR
mask directly (Fig. 4.8). There is also no indication that the performance is
significantly worse in the areas of the MERIS swath that are not covered by
AATSR and we can conclude that MECOSI improves the quality of the MPD
melt pond product significantly. However, the algorithm is still a prototype and
the cloud probability distribution for clear sky pixels in Figure 4.4 (b) reveals
a flaw of the algorithm in its current state. A significant amount of clear sky
pixels are screened out by the MECOSI algorithm in May (Fig. 4.6). Yet we
find a stable performance of the algorithm for the most important period June
to July when the melt pond fraction develops faster.

5.3 Comparison of MPD and ICDC Melt Pond

Fraction Datasets

The comparison of daily MPD and ICDC melt pond fractions in Section 4.3.1
shows an overall high agreement between the two datasets. We find an RMSD
of 0.04, a difference of means D = −0.02 and a coefficient of determination
R2 = 0.90 (Fig. 4.9), which are remarkable numbers for a comparison of two
completely independent geophysical datasets. Yet we find these results after
compensating a bias of the ICDC dataset (Sec. 2.4.4). The differences of means
would be D = 0.06 and the RMSD = 0.07 without this compensation.

The comparison also reveals noticeable discrepancies beside the overall good
agreement. We see a tendency of MPD to yield higher values for ICDC melt
pond fractions below 0.05 (Figure 4.10 (a)) and similar results are found in the
comparison of the Arctic-wide datasets (e.g. Figure 4.14). Thin clouds missed
by the cloud screening might be the reason for this in several cases. However,
the MPD algorithm in general appears not to be sensitive to such small melt
pond fractions. It barely retrieves values below 0.05 in the central Arctic with
winter conditions at the beginning of May, hence, we have to assume a mean
noise floor of 0.05 melt pond fraction. A similar noise floor of 0.06 is found
for the ICDC algorithm in Rösel et al. (2012), yet the bias correction removes
any indication of this in the comparison. The second noticeable disagreement
is found in August (Fig. 4.10 (c)). The ICDC pond fraction appears to be
cropped at 0.12 while MPD retrieves values in the range from 0.04 to 0.11.
Such a limited range is unlikely to be observed in nature. It might be a the
consequence of the 90% sea ice concentration threshold used in the comparison.
However, a hint that the ICDC pond fraction is too high in this period is found
in the analysis of buoy webcam images (Sec. 4.5). On 19th of August, no melt
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ponds are visible on the webcam images, but we find a melt pond fraction
of 0.13 in the ICDC dataset. The MPD algorithm retrieves 0.05 melt pond
fraction for this day and, therefore, agrees better with the in situ observation.
A possible reason for the high ICDC pond fraction is thin ice in the study area.
The ICDC algorithm cannot distinguish thin ice from melt ponds (Rösel et al.,
2012; Rösel and Kaleschke, 2012) and the buoy air temperature, having been
below zero for the last five days (Fig. 4.28), indicates that the formation of
thin ice is possible in the study area at Mid-August.

The comparison of daily data is limited to the spatial coverage of the ICDC
dataset to a region where the predominant ice type is multiyear ice. The results
of comparing MPD to ICDC 8-day composite maps with Arctic-wide coverage,
including other ice types, are less conclusive. First, we discuss the comparison
of melt pond area fractions, excluding and including regions with ICDC sea ice
concentration below 90% (Sec. 4.3.2 and Sec. 4.3.3). No distinct differences can
be observed in dependency on the sea ice concentration threshold. Both scatter
plots (Fig. 4.14 and Fig. 4.16) show higher values from MPD above 0.15 melt
pond fraction and the RMSD as well as the numbers of the linear regression
are almost equal. All we find is that the 90% sea ice concentration threshold
excludes the majority points with a pond fraction above 0.15. However, the
exclusion of low sea ice concentrations allows us to relate the results to the
comparison of daily data with the same ice concentration threshold. If we
compare the maps of average differences (Fig. 4.10 (a) and Fig. 4.15 (b)), we
can identify the Canadian archipelago as main region of differences between the
two comparisons. This landfast ice region, with much higher values from MPD,
is not included into comparison of daily data. A similar spatial distribution
is found in other regions. The differences are less pronounced north of Franz
Joseph Land but increase westward with a peak around 140◦W. However, we see
a more pronounced tendency of MPD towards higher values in Figure 4.15 (b).
This raises the question if the method of comparing 8-day composites against
8-day average maps introduces a bias. We expect to see an increased scatter
by using this method, yet no artificial is expected as long as the composited
observations in the ICDC datasets are distributed randomly over the 8-day
period. In fact, a correlation between the melt pond or the open water fraction
and the selection criteria of the MOD09 composite product is not impossible. In
general, the MOD09 product is designed to be used over land. The composited
observations are selected including a criterion for the aerosol load which might
lead to a dependency on the albedo of the sea ice surface and, therefore, a
dependency on the melt pond fraction. However, the handling of sea ice in the
MOD09 product is not fully documented.

In the map of average differences including lower sea ice concentrations for
the period May to June (Fig. 4.18 (a)), we find higher pond fractions from
MPD in the Beaufort sea around 70◦N, 140◦W. Validation data is available
for this region and time, namely airborne measurements from the MELTEX
campaign in June 2008, and both melt pond fraction datasets have been
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compared against this measurements (Rösel et al., 2012; Istomina et al., 2014).
A mean overestimation around 0.02 was found for the ICDC dataset. However,
the relative melt pond fraction has been used for this comparison and no
bias correction was performed. The MPD algorithm shows a similar result
for the flight on 7th of June, but a distinct overestimation for the flights on
26th of May and 4th of June. Hence, the average difference we observe here
agrees with previous results and an overestimation by MPD is more likely.
Regions with frequent occurrence of landfast ice show higher values from MPD
in the following period (Fig. 4.18 (b) and Fig. 4.18 (c)). The validation against
airborne measurements and in situ observations from landfast ice (Istomina
et al., 2014) shows that the high MPD pond fractions are reasonable. The
ICDC dataset has not been validated over landfast ice and, therefore, an
underestimation of the melt pond fraction is possible. Pronounced differences
are also found north of the Queen Elizabeth Islands and in the eastern Beaufort
sea, especially in the time period mid-June to mid-July. No validation data is
available for this region and time.

Finally, we compare the relative ICDC melt pond fraction to the melt pond
area fraction from MPD (Sec. 4.3.4). A much better agreement between the
datasets is found than in the comparison of area fractions using the same
ice concentration threshold (Fig. 4.21 vs. Fig. 4.16). The difference of means
D = −0.02 (Fig. 4.21) is equal to the result of comparing daily data (Fig. 4.9),
the RMDS is slightly higher (0.06 vs. 0.04). Only the coefficient of determination
is considerably smaller (0.73 vs. 0.90) which can be explained by temporal
mismatches between the datasets. The spatial distribution of average differences
show very similar shapes as the comparison of area fractions but the absolute
differences are strongly extenuated (Fig. 4.23 vs. Fig. 4.18). From mid-July
to mid-August, we find an almost perfect match with differences in the range
±0.03 if we do not consider the Canadian archipelago with frequent occurrence
of fast ice (Fig. 4.23 (c)). Overall, the results are similar to the comparison of
daily melt pond fractions.

However, relative melt pond fraction and melt pond area fraction are
unequal quantities and the good agreement between them is a strong indication
that one of the retrieval algorithms, or both, are influenced by the open
water fraction. The influence of sea ice concentration (respectively open water
fraction), estimated by the ICDC spectral unmixing algorithm, is investigated
in Section 4.4. We find considerably smaller values if we compare it to the ASI
sea ice concentration (Fig. 4.26). However, the ASI algorithm is also known to
overestimate high ice concentrations (Ivanova et al., 2013, p. 190). Therefore we
cannot conclude that the ICDC algorithm underestimates the ice concentration
from this comparison. Nevertheless, the ICDC sea ice concentration has not
been validated in Rösel et al. (2012) and the unmixing algorithm is not able to
adapt to the decreasing albedo of melting sea ice (see e.g. Fig. 1.1). We have to
expect an overestimation of the melt pond or the open water fraction for regions
where the reflectances, that are chosen a priori to represent the ice/snow class,
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are too high. In fact, we find a linear dependency of the ICDC melt pond and
open water fraction from June to September (Fig. 4.27 (a) – (c)). This indicates
that the unmixing algorithm increases both fractions equally in the case of
dark pixels. Hence, an overestimation of the open water fraction is likely and
an underestimation of the melt pond area fraction possible. This leads to the
conclusion that the ICDC relative melt pond fraction might be in fact the melt
pond area fraction. However, the MPD algorithm is also influenced by the open
water (Fig. 4.35). It overestimates the melt pond area fraction in dependency
on the open water fraction, hence, it might actually retrieve a quantity close to
the relative pond fraction in regions with low sea ice concentration.

5.4 Validation of MPD

The comparison of MPD melt pond fractions to high resolution GFL images
leads to three results. First, in the comparison for fully ice covered regions
(Sec. 4.6.3), we find an good agreement between the datasets with a RMSD below
0.10 melt pond fraction in both cases (Fig. 4.32). Previous validation efforts
against airborne measurements resulted in a mean RMSD of 0.22 (Istomina
et al., 2014). The accurate co-location between the datasets (Fig. 4.29) might
explain why we find a smaller RMSD here. We see a tendency of MPD to
underestimate the melt pond fraction from the GFL images. One reason for
this is the thin cloud cover over the scene. MPD retrieves melt pond fractions
around 0.15 for opaque clouds and it is likely that the dataset used in the
comparison is biased towards this value (compare Fig. 4.1). The presence of
melt holes also might have an influence as they may be misclassified as melt
pond in the GFL dataset and they are more likely to appear in regions of heavy
melting. However, as it is shown in the comparison to GFL images including
low sea ice concentrations (Fig. 4.35), MPD tends to overestimate melt pond
fractions if open water is present in a pixel. Therefore it is unlikely that melt
holes are the main reason for the underestimation.

Instead, we find a better match between the datasets if we restrict the
comparison to regions with older ice, which is the second important result. A
possible explanation is related to the internal verification of the MPD algorithm
(Sec. 2.5.1). It is expected that MPD underestimates the pond fraction if ponds
appear dark and it is more likely to find dark melt ponds in the younger ice class
because younger ice should also be thinner. Yet the GFL images contain no
color information and we cannot confirm that the melt ponds are indeed darker
in areas with younger ice. Moreover, the scatter plots in Figure 4.32 show
that the distribution of points is not fully separated for the older and younger
ice class. In addition to a potential uncertainty in the classification by visual
inspection the regions for the true distribution of the two classes may overlap.
Furthermore, areas with high GFL melt pond fractions are almost always
classified as younger ice (Fig. 4.32 (a) vs. Fig. 4.32 (b)). This corresponds well
to the flat surface topography of younger ice. However, in combination with
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the uncertainty of the ice type classification, it is not possible to eliminate a
general underestimation of high melt pond fractions by MPD. Nevertheless, a
general underestimation of high values is unlikely because we see a good match
of melt pond fractions above 0.50 in the validation against aerial measurements
over landfast ice (Istomina et al., 2014).

The third important result is found by comparing MPD and GFL melt
pond fractions in dependency on the sea ice concentration (Fig. 4.35). We see
that MPD overestimates the GFL pond fraction if open water is present in a
pixel. This agrees well with the evident overestimation found in the validation
against airborne measurements from two MELTEX flights on 26th of May and
4th of June 2009 (Istomina et al., 2014). Both flights took place over extremely
trashed ice and an influence of open water is very likely. Yet the accuracy of
the open water mask used to calculate the sea ice concentration in Figure 4.35
cannot be verified. It might be significantly off in areas where the sea ice is
broken up into small floes with less than 5–10 meter diameter. Nevertheless,
it should be accurate to at least 10% sea ice concentration in the majority of
cases with well defined borders between sea ice and open water and, therefore,
the uncertainty in the open water mask is unlikely to be the reason for the
dependency we find. An error in the co-location could also lead to such a
dependency. As stated in Section 4.6.2, it is believed that the co-location is
better than one MERIS pixel. Yet a sub-pixel shift between the two datasets
cannot be excluded and will certainly affect the comparison. However, the
used sub-tile of GFL image #2 image shows many ice floes of different sizes
and open water in between (Fig. 3.3). A pronounced spatial shift would only
increase the scatter in the comparison but cannot explain the dependency we
see.

There are physical reasons to retrieve greater melt pond fractions in regions
with sea ice broken up. Small floes easily flip upside-down and expose the
bottom of the floe that looks similar to blue ice with a spectral signature close to
bright melt ponds. Flooded areas at the edges of ice floes also increase the melt
pond fraction as detected by a satellite sensor. However, we do not see such a
large amount of small floes or flooded areas in the GFL image (Fig. 3.3 (a)). It
is more likely that the MPD algorithm tries to compensate for the darkness of
a pixel containing open water by increasing the melt pond fraction. It therefore
depends on the sea ice concentration and the use of the algorithm in its current
state is restricted to regions with high sea ice concentration.

5.5 Prediction of September Sea Ice Area

A hindcast the minimum sea ice area in September using the MPD melt
pond dataset was presented Section 4.7. We find the strongest correlation
(R = −0.91) between melt pond fraction and sea ice area if we average the pond
fraction over the period 1st of May to 8th of June (Fig. 4.36 (a)). This agrees
well with the results in Schröder et al. (2014) where the strongest correlation
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(R = −0.80) is found for the period 1st of May to 31st of May. The greater
magnitude of R that we find can be explained by shorter time series that we
investigate (9 years vs. 35 years). By using the period 1st of May to 8th of
June, we find a hindcast that matches the measured data well (Fig. 4.37) and
the standard deviation of the difference σ = 0.27 · 106 km2 is similar to the one
found by Schröder et al. (σ = 0.33 · 106 km2 for 35 years).

However, the spatial distribution of the correlation coefficients, that are
used as weights in the calculation of the average melt pond fraction, is very
scattered if we calculate the temporal average over this period (Fig. 4.38 (a)). A
connected patch with strong negative correlation is found only in the Beaufort
sea and it is questionable if an accurate forecast of the sea ice area in the whole
Arctic is possible based on this data. If the period for the temporal average
is extended to the 26th of June, a much larger area with negative correlation
coefficients is found and, therefore, a more stable forecast can be expected
(Fig. 4.38 (b)).



Chapter 6

Summary and Conclusion

In this work, we investigated the MPD algorithm for retrieval of melt pond
fraction on Arctic sea ice. As a first result, we find that the melt pond product
is strongly influenced by cloud contamination. This is shown by comparing daily
maps of the melt pond fraction to cloud fraction data derived from MODIS
observations. The Arctic-wide mean of the melt pond fraction is lower in the
early melt season and during fall freeze-up if regions of high cloud fraction
are excluded from the product. On the contrary, we find higher mean pond
fractions at the peak of pond evolution in July and the differences exceed 0.05
pond fraction many times (Fig. 4.1). Therefore, we conclude that the built-in
cloud detection scheme of MPD is not sufficient to avoid a significant influence
of clouds in the comparison to other datasets.

This is addressed in two ways. First, we use the MODIS cloud fraction for
additional cloud screening of the gridded melt pond product. This approach
reduces the influence of clouds; however, partly cloudy regions are screened
out completely and spatial coverage is strongly reduced. Secondly, a Bayesian
cloud detection scheme for MERIS swath data is developed. It is designed
to derive pixel-accurate cloud masks over ice and snow, which is the most
difficult cloud screening scenario, and reproduces masks from AATSR with
good accuracy. We find no indication that the screening is significantly worse
outside of the narrow AATSR swath and conclude that the algorithm has the
ability to improve the MPD melt pond product significantly (Fig. 4.8). The
reliability of the procedure has been shown for the early melt season. However,
further investigation is needed, e.g. to quantify the performance in August and
September.

The MPD dataset is compared to a independent melt pond product from
ICDC based on MODIS data and a static neural network classification scheme
(Rösel et al., 2012). We find a remarkably good agreement for daily maps of
the central Arctic (RMSD = 0.04, D = −0.02 and R = 0.95, Fig. 4.9) after
we compensate a positive 0.08 bias of the relative melt pond fraction in the
ICDC dataset. The comparison to ICDC 8-day composite maps with Arctic-
wide coverage, including first-year and landfast ice regions, gives similarly
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good results (RMSD = 0.06, D = −0.02, R = 0.85) if the ICDC relative
pond fraction is compared to the area fraction retrieved by MPD (Fig. 4.21).
However, relative melt pond fraction and area fraction are different quantities
for sea ice concentrations below 100%. The conversion of the ICDC dataset to
area fractions worsens the agreement and a pronounced tendency of MPD to
yield higher values for higher ICDC pond fraction is found (Fig. 4.16). This
indicates that at least one of the retrieval algorithms is influenced by open
water.

We investigate the open water fraction, retrieved by the same neural net-
work from MODIS data, and find a linear dependency on melt pond fraction
(Fig. 4.27). This could be explained by the spectral unmixing algorithm used
for the ICDC dataset being unable to distinguish dark melt ponds or darker
(melting) ice from open water. We also find that MPD retrieves higher values
in regions of higher open water fraction by comparing the MPD product to
high resolution satellite images from the Global Fiducials Library (Fig. 4.35).
Therefore, we conclude that both melt pond products are influenced by open
water. For further comparison, a sea ice concentration product would be needed
that works reliably during the Arctic summer and that is not influenced by
melt ponds. However, such a product is one of the current challenges of sea ice
remote sensing because the interaction of both visible and microwave radiation
with melt ponds is similar to that of open ocean.

The comparison of MPD to high resolution broadband satellite images for
fully ice covered regions shows similar results for both images used here. We
find RMSD = 0.08 (0.09), D = 0.05 (0.07) and R = 0.51 (0.70). The difference
of means D indicates that MPD tends to retrieve smaller melt pond fractions.
This is more pronounced for high pond fraction and a correlation to ice type
is found by classifying one image for areas with older and younger ice. The
agreement is better for older ice (RMSD = 0.06, D = 0.03, R = 0.54) than for
younger ice (RMSD = 0.12, D = 0.11, R = 0.70). This corresponds well to
the results of numerical simulation of the MPD performance if we assume that
ponds are darker on younger ice (Tab. 2.3). However, the ice type classification
has a high uncertainty and the assumption of darker ponds on younger ice
cannot be proven from the high resolution broadband images.

Finally, we investigate the possibility of predicting the September minimum
sea ice area from the melt pond fractions in spring and early summer. Al-
though the studied time series is too short to do yield a statistically significant
conclusion, we find a good agreement to the model based results of Schröder
et al. (2014). This indicates that a similar prediction skill is achievable and
the forecast of the September minimum can be an additional application of
melt pond fraction estimates when observations of the Ocean and Land Color
Instrument aboard Sentinel-3 becomes available (launch scheduled 2015).
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MODIS Moderate-Resolution Imaging Spectroradiometer

MERIS Medium-Resolution Imaging Spectrometer

AATSR Advanced Along-Track Scanning Radiometer

NSIDC National Snow & Ice Data Center

MPD Melt Pond Detector

NASA National Aeronautics and Space Administration

ICDC Integrated Climate Data Center

ENVISAT Environmetal Satellite

ESA European Space Agency

TOA top of atmosphere

SAR Synthetic Aperture Radar

GFL Global Fiducials Library

ICDC Integrated Climate Data Center
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