IOMASA – Integrated Observing and Modeling of the Arctic Sea ice and Atmosphere

EU project EVK3-CT-2002-00067

Georg Heygster*, Klaus Künzi* and IOMASA consortium *Institute of Environmental Physics, University of Bremen

3rd EuroGOOS Conference, Athens, 3-6 December 2002

- UB: University of Bremen, Institute of Environmental Physics (Co-ordinator)
- DTU-DCRS: Danish Center for Remote Sensing, TU Denmark
- DMI: Danish Meteorological Institute
- met.no: The Norwegian Meteorological Institute
- SMHI: Swedish Meteorological and Hydrological Institute

- Part 1: Atmospheric Remote Sensing : UB
- Part 2: Numerical Weather Prediction Models: met.no, SMHI
- Part 3: Empirical Model for emissivity and backscatter of sea ice:
 DTU-DCRS
- Part 4: Sea ice concentration retrieval: DMI
- Part 5: Real time processing and user interface: DTU-DCRS

Total Water Vapour (TWV) from humidity sounders

- SSM/T2 and AMSU-B: 5 channels 183±1, ±3, ±5, 150, 89 GHz
- expressions In (T1-T2)/(T2-T3) ~ TWV

Daily Averaged TWV over Antarctica, Dec. 20, 1997

1. Transfer TWV procedure to

- 1. Arctic conditions
- 2. using a set of Arctic R/S and low TWV values over open water

2. Transfer Cloud Signature procedure to

- 1. Arctic atmospheric conditions,
- 2. Arctic sea ice emissivity (literature and ice types from Part 3)
- 3. AMSR(-E)
- 3. Estimate surface emissivity at AMSU-A frequencies and incidence angles
 - needed to improve temperature profiles in NWPs
 - use ice concentrations from SSM/I,
 - use surface temperatures from AVHRR, cloud free
 - R/S for atmospheric data

- from microwave temperature sounder SSM/T1, SSM/I (sea ice) and OLS (surface temp.)
- improved by knowledge about sea ice emissivity and concentration

Part 2 (met.no, SMHI): Improve NWP models

- HIRLAM, 20 km resolution, 48h
- Assimilate
 - TWV
 - direct
 - conventional
 - sea ice cover to improve
 - temperature retrieval (AMSU-A)
 - surface flux modeling
- validate with
 - R/S (calm conditions)
 - case studies (severe conditions)

Part 3 (DTU): Model of Sea Ice emissivity and backscatter

- Passive (SSM/I) and active (Quikscat, Sea Winds) microwave instruments
- Retrieval needs signature of pure surface types, 'tie points'
- Vary
- Relate temporal evolution of signature to sea ice parameters:
 - ice type,
 - snow cover (grain size, water content),
 - salinity
 - deformation
- AMSR(-E) on AQUA, ADEOS-2:
 - higher resolution
 - additional channels at 6 and 10 GHz
 - on ADEOS-2 also scatterometer SEA WINDS (~Quikscat)

- Accuracy 5...10 %
- Improvement needed at
 - low IC for navigation
 - high IC for heat fluxes:
 - 5% error at 90% IC 50 % error in OW and heat flux
- achieved by
 - accounting for atmospheric contributions (wind speed, TWV, LWP) to satellite signal
 - knowledge of surface types -> improved tie points
 - using new quasi-operational sensors, e.g. AMSR(-E), SEA WINDS,...

AMSR-E Sea Ice

SSM/I ASI, 15 km res. @ 85GHz

for daily data see www.seaice.de

AMSR ASI, 6 km res.@ 89 GHz

Part 5 (DTU): Real Time Processing and User Interface

• NWP models:

met.no, SMHI, operational chains DMI

DCRS, using IWICOS interface...

- Sea Ice:
- Distribution to public users:

- user dialogue during project
- weather forecast, ice charts
- attend 2...3 meetings
- planned: representatives of
 - ECMWF
 - HIRLAM group
 - ice services
 - .. and YOU?

IOMASA

- accounts for the interdependencies of Arctic atmosphere and surface
- improves weather forecasts and ice analyses
- extends notion of OF from ocean to atmosphere

SSM/I vs. AMSR characteristics

Frequency [GHz]		Resolution [km]	
SSM/I	AMSR(-E)	SSM/I	AMSR(-E)
-	6.9	-	71x41
-	10.7	-	46x25
19	18.7	69x43	25x15
22 V	23.8	50x50	23x14
37	36.5	37x29	14x8
85	89	15x13	6x4
-	50.3 V	-	12x6
-	52.8 V	-	12x6

All channels H + V polarisation if not indicated otherwise. Channels near 50 GHz on AMSR only.

- Preparatory Phase: Provide data, day 0 algorithms, data sets; literature studies
- Development Phase: Algorithms for retrieval and assimilation
- 3. Production experiment:

Produce on 2-year historic data

4. Validation and real time experiment: Demonstrate operational use and data distribution

